李建寧,任 維,劉一輝
(1陜西師范大學(xué)生命科學(xué)學(xué)院,西安710062;2寧夏醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院)
神經(jīng)微絲蛋白(Neurofilaments,NFs)作為神經(jīng)細(xì)胞骨架系統(tǒng)成員的結(jié)構(gòu)和功能在視神經(jīng)損傷及中樞神經(jīng)系統(tǒng)(Central nervous system,CNS)疾病中已經(jīng)有很多研究。現(xiàn)將NFs在外周神經(jīng)系統(tǒng)(Peripheral nervous system,PNS)中作用的研究進(jìn)展綜述如下。
NFs是專(zhuān)一性表達(dá)于CNS和PNS神經(jīng)元及其鄰近軸突中的細(xì)胞骨架主要結(jié)構(gòu)單位。NFs是組裝的異源多聚體,由輕型NF(NF-L;66 kDa)、中型NF(NF-M;95-100 kDa)、重型 NF(NF-H;110-115 kDa)蛋白和 α-介連蛋白(α-Catenin,α-Cat)組成[1],其中α-Cat表達(dá)于發(fā)育早期,在神經(jīng)系統(tǒng)成熟后正常下調(diào)。NFs在神經(jīng)元胞體或近胞體側(cè)軸突堆積是運(yùn)動(dòng)神經(jīng)元疾病的標(biāo)志,也被認(rèn)為是神經(jīng)元軸突降解的標(biāo)志物。通常認(rèn)為NFs具有“腳手架”的功能,在細(xì)胞內(nèi)用來(lái)錨定各種不同的細(xì)胞內(nèi)細(xì)胞器與胞質(zhì)蛋白[2,3]。對(duì)于 NFs形態(tài)、直徑、分類(lèi)、基因定位及多肽鏈結(jié)構(gòu)等相關(guān)生物學(xué)特性的認(rèn)識(shí)已經(jīng)比較清楚[4],本文僅對(duì)其與PNS及外周神經(jīng)損傷相關(guān)的特性進(jìn)行陳述。
一般認(rèn)為,PNS在神經(jīng)系統(tǒng)發(fā)育早期最先表達(dá)的是邊緣蛋白并在整個(gè)軸突發(fā)生過(guò)程中保持高濃度,隨后 NFs逐漸開(kāi)始表達(dá),直到成熟后穩(wěn)定表達(dá)[5]。與NFs mRNA結(jié)合的蛋白有很多種,均參與維持NFs mRNA的穩(wěn)定性等功能,而這些功能失調(diào)可導(dǎo)致某些疾病發(fā)生。CNS通常通過(guò)對(duì)NFs mRNA的運(yùn)輸、翻譯后調(diào)控及其本身穩(wěn)定性改變來(lái)影響軸突發(fā)育和神經(jīng)元穩(wěn)定性[6]。Yabe等研究發(fā)現(xiàn),在軸突生長(zhǎng)中NFs運(yùn)輸會(huì)被驅(qū)動(dòng)蛋白(Kinesin)的抗體和噻氨酯噠唑(Nocodazole)所阻斷,提示其可沿微管通過(guò)順行方式利用驅(qū)動(dòng)蛋白作為運(yùn)輸馬達(dá)而輸送到坐骨神經(jīng)遠(yuǎn)端[7]。NFs受制于其他一些蛋白質(zhì)的表達(dá)與調(diào)控。比如運(yùn)動(dòng)神經(jīng)元存活蛋白-1(Survival Motor Neuron 1,SMN1)表達(dá)減少會(huì)導(dǎo)致遠(yuǎn)端神經(jīng)肌肉接頭處(NeuroMuscular Junctions,NMJs)NFs堆積[8]。
由NFs建構(gòu)的軸突網(wǎng)絡(luò)形成對(duì)于軸突直徑擴(kuò)張和傳導(dǎo)速度增加至關(guān)重要,有學(xué)者認(rèn)為由重型與中型NF形成神經(jīng)微絲側(cè)臂(Sidearm),此側(cè)臂被認(rèn)為可以插入神經(jīng)束骨架中,在調(diào)控中間細(xì)絲空間構(gòu)型與軸突直徑中起關(guān)鍵作用,其中的重型NF受到磷酸化調(diào)控,而中型NF在所有NFs空間構(gòu)成與軸突直徑調(diào)控中起更重要的作用[9]。Perrot等[4]也認(rèn)為,NFs亞單位磷酸化在調(diào)節(jié)其生長(zhǎng)、運(yùn)輸、形態(tài)和功能上起關(guān)鍵作用,而糖基化及一些位點(diǎn)(包括部分蛋白質(zhì)模序)修飾也參與其中。
2.1 NFs與正常外周神經(jīng)纖維 目前研究認(rèn)為,NFs在成年鼠PNS(包括CNS)軸突中密集堆積似乎是一種普遍現(xiàn)象,NFs為PNS軸突中含量最多的細(xì)胞骨架成分,在有髓軸突中占90%以上。成年鼠軸突內(nèi)NFs間距為28 nm,幼鼠軸突內(nèi)NF間距為55 nm,幼鼠與成年鼠近端與遠(yuǎn)端坐骨神經(jīng)中NFs密度不同,此差別與軸突橫截面積相關(guān)[10]。對(duì)巨軸索神經(jīng)病的研究發(fā)現(xiàn),NF在軸突上的定向缺失可導(dǎo)致其直徑增加和間距減少[11]。PNS主要通過(guò)類(lèi)似于CNS神經(jīng)元胞體進(jìn)行信息整合、處理加工及輸出,調(diào)控NFs表達(dá)。Perrot等[4]認(rèn)為,NFs決定軸突直徑并促進(jìn)長(zhǎng)距離軸突生長(zhǎng)活動(dòng),從而影響沿軸突進(jìn)行的電傳導(dǎo)。
通常根據(jù)移動(dòng)特性將軸突內(nèi)的NFs分為移動(dòng)NFs和靜止NFs,但是NFs靜止態(tài)與停頓態(tài)之間的關(guān)系還不清楚[12~14]。一般認(rèn)為,NFs是在神經(jīng)元胞體合成并被沿軸突通過(guò)慢速運(yùn)輸傳遞的[15]。Yuan等[14]在視神經(jīng)中發(fā)現(xiàn),少于25%的NFs在經(jīng)慢速軸漿運(yùn)輸后仍然保留在視神經(jīng)軸突內(nèi),提示在成熟視神經(jīng)軸突內(nèi)超過(guò)90%的NFs組成固定細(xì)胞骨架,其余不足10%則經(jīng)過(guò)慢速軸漿運(yùn)輸;同時(shí)認(rèn)為經(jīng)慢速軸漿運(yùn)輸?shù)腘Fs或其亞基多聚體是形成成熟軸突高穩(wěn)定性細(xì)胞骨架結(jié)構(gòu)的前體。對(duì)于NFs三聯(lián)體的研究發(fā)現(xiàn),PNS中NFs三聯(lián)體在mRNA水平明顯上調(diào),這種上調(diào)需要靶標(biāo)的接觸,且與NFs mRNA的穩(wěn)定性相關(guān),繼而受擔(dān)任NFs mRMA穩(wěn)定性決定者的上游蛋白調(diào)控[16]。NFs表達(dá)與軸突發(fā)育和神經(jīng)元穩(wěn)態(tài)維持密切相關(guān)。主要通過(guò)轉(zhuǎn)錄后調(diào)控來(lái)影響其mRNA運(yùn)輸、翻譯及穩(wěn)定性。有實(shí)驗(yàn)顯示,在軸突再生中機(jī)體通過(guò)增加轉(zhuǎn)錄決定NFs表達(dá),并認(rèn)為正是這種調(diào)控的異常導(dǎo)致疾病產(chǎn)生[6]。已知在金魚(yú)摩斯納細(xì)胞軸突及哺乳動(dòng)物坐骨神經(jīng)中有NFM的mRNA水平表達(dá),但是否是從鄰近的浦肯野細(xì)胞和施旺細(xì)胞合成并運(yùn)輸而至尚不清楚[17]。Grant等[18]發(fā)現(xiàn),細(xì)胞周期蛋白依賴(lài)性激酶-5(Cyclin-dependent kinases-5,Cdk5)可通過(guò)使NFs發(fā)生磷酸化反應(yīng)影響骨架蛋白質(zhì)間的動(dòng)態(tài)交互,繼而調(diào)控神經(jīng)纖維生成與軸突徑向生長(zhǎng)。有研究利用放射標(biāo)記技術(shù)發(fā)現(xiàn)NFs在大鼠背根神經(jīng)節(jié)(Dorsal Root Ganglia,DRG)和靠近DRG胞體軸突中的磷酸化程度比DRG胞體遠(yuǎn)端坐骨神經(jīng)要高,且磷酸化程度與細(xì)胞骨架蛋白慢速運(yùn)輸密切相關(guān)[19]。
2.2 NFs與外周神經(jīng)損傷 外周神經(jīng)病理性疼痛是一類(lèi)特殊疼痛,其直接來(lái)源于影響軀體感覺(jué)系統(tǒng)的損傷或疾病,以自發(fā)性疼痛、痛覺(jué)過(guò)敏和痛覺(jué)超敏為特征[20]。多種動(dòng)物外周神經(jīng)損傷模型的相關(guān)損傷機(jī)制研究發(fā)現(xiàn),與疼痛密切相關(guān)的多種蛋白質(zhì)因子均可有不同水平的表達(dá)變化[21,22]。NFs具有高度動(dòng)態(tài)結(jié)構(gòu),在發(fā)育與成熟神經(jīng)元中經(jīng)歷了亞單位組成的明顯變化,繼而影響軸突的形態(tài)與生理學(xué)功能[2]。低等脊椎動(dòng)物中樞神經(jīng)截?cái)嗪螅琋F-M mRNA在PNS中的表達(dá)比正常軸突降低,說(shuō)明PNS有髓軸突直徑由NF-M 決定[23,24]。一般認(rèn)為,CNS受損后,作為細(xì)胞骨架組成的NFs在mRNA和蛋白質(zhì)水平均下調(diào),比如大鼠CNS腦皮質(zhì)損傷能引起受損側(cè)及對(duì)側(cè)腦皮質(zhì)中NF-H蛋白水平明顯下調(diào)[25]。已證實(shí)NFs與CNS疾病(如肌萎縮側(cè)索硬化癥,多發(fā)性硬化癥等)發(fā)生機(jī)制、預(yù)后監(jiān)測(cè)關(guān)系密切[26]。如前文所述,針對(duì)其結(jié)構(gòu)磷酸化、糖基化等修飾所引起的變化均與神經(jīng)變性疾病發(fā)病機(jī)理相關(guān)[2]。
相較于CNS,外周神經(jīng)損傷可導(dǎo)致神經(jīng)結(jié)構(gòu)發(fā)生程度不一的改變,這些改變一方面是損傷的結(jié)果,一方面是應(yīng)對(duì)損傷的修復(fù)過(guò)程。有研究發(fā)現(xiàn),在對(duì)成年大鼠一側(cè)坐骨神經(jīng)造成壓迫損傷后,L4和L5水平大DRG胞體中NF三聯(lián)體mRNA水平在術(shù)后7、14、28 d均降低,NF-L和NF-M mRNA水平術(shù)后1 d即下調(diào),NF-H mRNA水平則于損傷 7d后下調(diào)[27]。對(duì)截?cái)嗤庵苌窠?jīng)后再生軸突進(jìn)行的研究發(fā)現(xiàn),NFs亞單位表達(dá)與軸突生長(zhǎng)模式是重復(fù)進(jìn)行的,并推測(cè)NFs亞單位表達(dá)與再生與否密切相關(guān)[28]。Xiao等[22]檢測(cè)了坐骨神經(jīng)截?cái)嗪?2、7、14、28 d 后相連DRG胞體中三種NF mRNA水平,結(jié)果發(fā)現(xiàn)僅有NF-M在7 d前后輕微降低。
Uchida等[10]也發(fā)現(xiàn),近端NF堆積可導(dǎo)致遠(yuǎn)端軸突生長(zhǎng)停滯。Chiu等在強(qiáng)飼2,5-己二酮(2,5-HexaneDione,HD)導(dǎo)致的神經(jīng)軸突萎縮模型中發(fā)現(xiàn),脛骨神經(jīng)軸突中三種NF蛋白均有明顯下降,而坐骨神經(jīng)中僅為小幅降低,提示軸突NFs含量遞減與HD導(dǎo)致的軸突萎縮并非一一對(duì)應(yīng),即可能有其他調(diào)控NFs密度因子的改變參與了軸突萎縮的發(fā)生機(jī)制[29]。Lopachin等[30]也認(rèn)為 HD 與可溶性 NF蛋白密切相關(guān),可通過(guò)阻斷骨架結(jié)構(gòu)合成與維持導(dǎo)致軸突萎縮。Song等[31]對(duì)HD所致坐骨神經(jīng)炎癥進(jìn)行的研究發(fā)現(xiàn),16周后坐骨神經(jīng)中NF-H和NF-L表達(dá)升高恢復(fù)到正常水平,而NF-M則無(wú)明顯逆轉(zhuǎn);相關(guān)研究提示,PNS中NFs的確參與了軸突損傷(壓迫性與藥物性)后的變性與再生過(guò)程。
綜上所述,NFs廣泛存在于PNS中,不論在正常軸突組織及其發(fā)育中,還是在受損軸突的正常再生中,NFs蛋白表達(dá)與軸突向外生長(zhǎng)和成熟的一致性均存在密切關(guān)系[6],與外周神經(jīng)病理性疼痛的產(chǎn)生和維持有密切聯(lián)系。在上述層面應(yīng)用藥物干預(yù)可能成為較好的治療途徑,從而為臨床慢性疼痛患者減輕痛苦提供更廣闊的前景。
[1]Yuan A,Rao MV,Sasaki T,et al.Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS[J].J Neurosci,2006,26(39):10006-10019.
[2]Yabe JT,Pimenta A,Shea TB.Kinesin-mediated transport of neurofilament protein oligomers in growing axons[J].JCell Sci,1999,112(pt21):3799-3814.
[3]Dale JM,Shen H,Barry DM,et al.The spinal muscular atrophy mouse model,SMAΔ7,displays altered axonal transport without global neurofilament alterations[J].Acta Neuropathol,2011,122(3):331-341.
[4]Perrot R,Berges R,Bocquet A,et al.Review of the multiple aspects of neurofilament functions and their possible contribution to neurodegeneration[J].Mol Neurobiol,2008,38(1):27-65.
[5]Goldman RD,Grin B,Mendez MG,et al.Intermediate filaments:versatile building blocks of cell structure[J].Curr Opin Cell Biol,2008,20(1):28-34.
[6]鄧秋瓊,劉金華.神經(jīng)微絲與視神經(jīng)病變[J].中國(guó)實(shí)用眼科雜志,2006,24(7):670-672.
[7]Undamatla J,Szaro BG.Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord[J].Cell Motil Cytoskeleton,2001,49(1):16-32.
[8]Archer DR,Watson DF,Griffin JW.Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion[J].JNeurochem,1994,3(62):1119-1125.
[9]Chang R,Kwak Y,Gebremichael Y.Structural roperties of neurofilament Sidearms:equence-Based Modeling of Neurofilament Architecture[J].JMol Biol,2009,391(3):648-660.
[10]Uchida A,Tashiro T,Komiya Y,et al.Morphological and biochemical changes of neurofilaments in aged rat sciatic nerve axons[J].JNeurochem,2004,88(3):735-745.
[11]Mohri I,Taniike M,Yoshikawa H,et al.A case of giant axonal neuropathy showing focal aggregation and hypophosphorylation of intermediate filaments[J].Brain,1998,20(1):594-597.
[12] Barry DM,Millecamps S,Julien JP,et al.New movements in neurofilament transport,turnover and disease[J].Exp Cell Res,2007,313(10):2110-2120.
[13]Trivedi N,Jung P,Brown A.Neurofilaments switch between distinct mobile and stationary states during their transport along axons[J].J Neurosci,2007,27(3):507-516.
[14]Yuan A,Sasaki T,Rao MV,et al.Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons[J].J Neurosci,2009,29(36):11316-11329.
[15]Nixon RA.Dynamic behavior and organization of cytoskeletal proteins in neurons:reconciling old and new findings[J].Bioessays,1998,20(10):798-807.
[16] Schwartz ML,Shneidman PS,Bruce J,et al.Actinomycin prevents the destabilization of neurofilament mRNA in primary sensory neurons[J].J Biol Chem,1992,267(34):24596-24600.
[17] Vogelaar CF,Gervasi NM,Gumy LF,et al.Axonal mRNAs:characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones[J].Mol Cell Neurosci,2009,42(2):102-115.
[18]Grant P,Sharma P,Pant HC.Cyclin-dependent protein kinase 5(Cdk5)and the regulation of neurofilament metabolism[J].Eur J Biochem,2001,268(6):1534-1546.
[19] Szaro BG,Strong MJ.Post-transcriptional control of neurofilaments:New roles in development,regeneration and neurodegenerative disease[J].Trends Neurosci,2010,33(1):27-37.
[20]Vinik A.The approach to the management of the patient with neuropathic pain[J].J Clin Endocrinol Metab,2010,95(11):4802-4811.
[21]Campbell JN,Meyer RA.Mechanisms of neuropathic pain[J].Neuron,2006,52(1):77-92.
[22]Xiao HS,Huang QH,Zhang FX,et al.Identification of gene expression pattern of dorsal root ganglion in rat peripheral axotomy model of neuropathic pain[J].Proc Natl Acad Sci USA,2002,99(12):8360-8365.
[23]Gervasi C,Thyagarajan A,Szaro BG.Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous systemaxons[J].JComp Neurol,2003,461(2):262-275.
[24]Garcia ML,Lobsiger CS,Shah SB,et al.NF-M is an essential target for the myelindirected"outside-in"signaling cascade that mediates radial axonal growth[J].J Cell Biol,2003,163(5):1011-1020.
[25]Posmantur R,Hayes RL,Dixon CE,et al.Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury[J].JNeurotrauma,1994,11(5):533-545.
[26]Gresle MM,Butzkueven H,Shaw G.Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis[J].Mult Scler Int,2011,(315406):2090-2654.
[27]Wong J,Oblinger MM.Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRGneurons[J].JNeurosci Res,1990,27(3):332-341.
[28]McGraw TS,Mickle JP,Shaw G,et al.Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons[J].J Neurosci,2002,22(12):4955-4963.
[29] Chiu FC,Opanashuk LA,He DK,et al.γ-diketone peripheral neuropathy.Ⅱ.Neurofilament subunit content[J].Toxicol Appl Pharmacol,2000,165(2):141-147.
[30]Lopachin RM,He D,Reid ML.2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve[J].Neurotoxicology,2005,26(2):229-240.
[31]Song F,Yu S,Zhang C,et al.The reversibility of neurofilaments decline induced by 2,5-hexanedione in rat nerve tissues[J].Biochem Pharmacol,2008,75(3):737-744.