郭莉 徐靜 郭宏剛
[摘要]目的:探討過大壓力對(duì)人牙周膜細(xì)胞三維微球中Hif-1 alpha和Rankl/Opg表達(dá)的影響。方法:體外構(gòu)建人牙周膜細(xì)胞三維微球,壓力組給予0.2 MPa, 4 h靜態(tài)壓力,對(duì)照組不給予額外壓力,實(shí)時(shí)定量PCR檢測(cè)Hif-1 alpha、Rankl和Opg表達(dá)。結(jié)果:壓力組人牙周膜細(xì)胞微球Hif-1 alpha和Rankl mRNA 表達(dá)增加,而Opg mRNA表達(dá)降低。結(jié)論:過大壓力可以使人牙周膜細(xì)胞上調(diào)Hif-1 alpha并且升高Rankl/Opg mRNA比值,使其分泌的因子向促破骨方向發(fā)展。
[關(guān)鍵詞]人牙周膜細(xì)胞微球;壓力;Hif-1 alpha ;Rankl/Opg
[中圖分類號(hào)]Q813.1[文獻(xiàn)標(biāo)識(shí)碼]A[文章編號(hào)]1008-6455(2012)11-1964-03
牙周炎是口腔疾患中的常見疾病,牙槽骨吸收是其的主要臨床表現(xiàn)之一,嚴(yán)重者可導(dǎo)致牙齒松動(dòng)或脫落。在引起破骨過程中,Rankl/Opg之間的平衡起著主要作用,Rankl作為分泌性因子與破骨前體細(xì)胞或破骨細(xì)胞膜上表達(dá)的Rank受體結(jié)合而誘導(dǎo)破骨細(xì)胞的分化、成熟和破骨功能,而Opg是分泌性同Rankl結(jié)合的假受體,其與Rankl結(jié)合而抑制破骨活動(dòng)[1]。
體內(nèi)實(shí)驗(yàn)及體外人牙周膜細(xì)胞二維培養(yǎng)實(shí)驗(yàn)等提示人牙周膜細(xì)胞可能是Rankl/Opg來源而影響牙周炎中牙槽骨的改建[2-7]。咬合創(chuàng)傷常常是牙周炎的協(xié)同致病因素,過大的咬合力量導(dǎo)致牙槽骨吸收,體外試驗(yàn)也顯示人牙周膜細(xì)胞能夠感受機(jī)械信號(hào)而調(diào)節(jié)Rankl/Opg表達(dá)[8-14]。Hif-1 alpha是細(xì)胞感受乏氧的重要轉(zhuǎn)錄因子[15],外界力學(xué)信號(hào)也可以改變其表達(dá)[17-19],而最近研究表明Hif-1 alpha可以直接誘導(dǎo)Rankl的表達(dá)[20]。
采用高密度細(xì)胞自行在非貼壁的瓊脂孔內(nèi)形成無支架的三維細(xì)胞塊已經(jīng)用于軟骨和纖維軟骨的組織工程研究[21-22],本研究采用高密度的人牙周膜細(xì)胞微球三維培養(yǎng)和壓力加載系統(tǒng)觀察壓力對(duì)Hif-1 alpha和Rankl/Opg的影響,以其模擬過大咬合力對(duì)牙周膜細(xì)胞在牙槽骨改建中的作用。
1材料和方法
1.1 人牙周膜細(xì)胞的分離培養(yǎng):參考[23]的方法,無菌條件下刮取健康男性正畸拔牙的雙尖牙牙根表面中1/3的牙周膜,以組織塊酶消化法得到原代人牙周膜細(xì)胞。牙周膜細(xì)胞常規(guī)培養(yǎng)于含20%胎牛血清的DMEM。待細(xì)胞匯聚80%左右后,0.25%胰酶消化傳代。P3代的人牙周膜細(xì)胞用于構(gòu)建細(xì)胞微球。
1.2 人牙周膜細(xì)胞微球的構(gòu)建和加壓:參照J(rèn)ohns 等[21]的方法,先將消毒融化的2%的瓊脂糖注入到24孔板的孔內(nèi),然后將粘有24個(gè)直徑5mm×高10mm的不銹鋼圓柱體蓋板適合于24孔,瓊脂糖在室溫下1h左右結(jié)成凝膠,分離附有不銹鋼圓柱體的24孔板蓋板,形成24孔直徑5mm×高10mm的瓊脂孔,瓊脂孔被完全培養(yǎng)液飽和置換出瓊脂糖內(nèi)含的PBS。每孔把2×106個(gè)P3代人牙周膜細(xì)胞懸于100μl完全培養(yǎng)基中,細(xì)胞不能貼壁于瓊脂糖孔,也不能長(zhǎng)入其中,瓊脂孔內(nèi)每天換液50μl, 1w后細(xì)胞將自行聚集形成將人牙周膜細(xì)胞微球。
壓力裝置采用任利玲等[24]的加壓系統(tǒng),將人牙周膜細(xì)胞微球置于加有完全培養(yǎng)基5 ml注射器中,注射器固定在超凈臺(tái)內(nèi)中的加壓裝置上,維持于37℃恒溫水浴箱中。注射器通過活塞運(yùn)動(dòng)壓縮空氣產(chǎn)生靜水壓作用于人牙周膜細(xì)胞微球。將形成的人牙周膜細(xì)胞微球隨機(jī)分成兩組:壓力組給予0.2 MPa, 4h的靜態(tài)壓力,對(duì)照組給予4h除不加力外,其它培養(yǎng)條件同加壓組,加力后進(jìn)行大體觀測(cè),每組設(shè)4個(gè)樣本。
1.3 實(shí)時(shí)定量RT-PCR檢測(cè)Hif-1 alpha和Rankl/Opg的表達(dá):將加力后的人牙周膜細(xì)胞微球用Trizol試劑盒(Invitrogen, Carlsbad, CA, USA)提取總RNA, 按照PrimeScriptR RT Master Mix (Perfect Real Time, Takara, 大連)反轉(zhuǎn)錄試劑盒反轉(zhuǎn)錄成cDNA,實(shí)時(shí)定量按照PCR SYBRR Premix Ex TaqTM II(Perfect Real Time, Takara, 大連)試劑盒利用Applied Biosystems 7500 PCR系統(tǒng)。目的基因的引物序列如下:Hif-1 alpha上游引物: GCTGGCCCCAGCCGCTGGAG,Hif-1 alpha下游引物: GAGTGCAGG GTCAGCACTAC; Rankl上游引物: CGTTGGATCACAGCACATCAG, Rankl下游引物: GTACCAAGAGGACAGACTCAC; OPG上游引物:CACTACTACACAGACAGCTGG, Opg下游引物:ACTCTATCTCAAGGTA GCGCC; Gapdh上游引物:GTCTTCACCACCATGGAGAAG, Gapdh下游引物: GTTGTCATGGATGACCTTGGC。所以基因重復(fù)3次,對(duì)其結(jié)果取均值,目標(biāo)基因采用2-△△Ct相對(duì)定量的方法,將對(duì)照組目的基因設(shè)為1,壓力組與對(duì)照組比較得到相對(duì)定量值。
1.4 統(tǒng)計(jì)分析:所得數(shù)據(jù)以x±s表示,SPSS 16.0進(jìn)行單因素方差分析,選取α=0.05。
2結(jié)果
2.1 加壓后的人牙周膜細(xì)胞微球大體情況:圖1代表性顯示構(gòu)建好的人牙周膜細(xì)胞微球呈大約1mm球樣形態(tài),加壓組和對(duì)照組大體觀沒有明顯差異。
2.2 加壓后的人牙周膜細(xì)胞Hif-1 alpha和Rankl/Opg的mRNA表達(dá):人牙周膜細(xì)胞微球施加4h0.2Mpa持續(xù)壓力后Hif-1 alpha mRNA水平顯著性上調(diào),是對(duì)照組的2.7倍左右。受壓以后人牙周膜細(xì)胞的Rankl mRNA也明顯上調(diào),而Opg mRNA卻少許下降,反應(yīng)破骨功能的Rankl/Opg mRNA水平的比值因此在加壓組明顯上升,約是對(duì)照組的2.2倍。Rankl/Opg比值的上升,說明0.2MPa持續(xù)壓力使人牙周膜細(xì)胞分泌的因子向促破骨方向發(fā)展。
3討論
本研究結(jié)果顯示,0.2Mpa的持續(xù)壓力會(huì)引起人牙周膜細(xì)胞微球Hif-1 alpha和Rankl的mRNA 表達(dá)增加,而抑制Opg mRNA的表達(dá),從而Rankl/Opg mRNA比值升高,使人牙周膜細(xì)胞分泌的因子向促破骨方向發(fā)展。
Hif-1 alpha即缺氧誘導(dǎo)因子-1 alpha,在體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn)過大機(jī)械刺激會(huì)使軟骨細(xì)胞中Hif-1 alpha表達(dá)增高[19],而體外機(jī)械力作用肌腱成纖維細(xì)胞也會(huì)上調(diào)其表達(dá)[17]。最近體外報(bào)告基因?qū)嶒?yàn)顯示Hif-1 alpha可以直接上調(diào)Rankl[20],進(jìn)一步提示Hif-1 alpha轉(zhuǎn)錄因子可能通過調(diào)節(jié)Rankl的分泌而影響破骨活動(dòng)。這與本研究的結(jié)果一致,0.2MPa可能代表過大的咬合力,從而使人牙周膜細(xì)胞微球的內(nèi)環(huán)境改變而影響Hif-1 alpha的上調(diào),提示它可能與促進(jìn)Rankl表達(dá)增高有關(guān)。
牙槽骨的嚴(yán)重吸收是牙周炎晚期的主要表現(xiàn),而牙周膜細(xì)胞分泌的Rankl/Opg是調(diào)節(jié)破骨細(xì)胞功能的一對(duì)重要因子。體內(nèi)外實(shí)驗(yàn)提示牙周膜細(xì)胞分泌的Rankl/Opg的比值增加可能與牙周炎密切相關(guān)[2-7]。本研究發(fā)現(xiàn)0.2MPa持續(xù)壓力可以促進(jìn)Rankl表達(dá)而一致Opg表達(dá),從而有利于破骨,這與大多數(shù)體外機(jī)械刺激牙周膜細(xì)胞的結(jié)論一致[8-14],可能是過大壓力原因,而其他的研究者發(fā)現(xiàn)合適的機(jī)械刺激也會(huì)抑制牙周膜細(xì)胞的破骨因子分泌[25-26]。本研究采用純牙周膜細(xì)胞微球的三維培養(yǎng)[21-22]和壓力裝置[23],較體外單層培養(yǎng)有一定的優(yōu)勢(shì),雖然不能用來研究牙周膜細(xì)胞和破骨細(xì)胞共培養(yǎng),這與Bloemen 等[2]的研究成纖維細(xì)胞對(duì)破骨細(xì)胞影響的方法不一樣,但是牙周細(xì)胞微球加壓后的條件培養(yǎng)液可以用于體外模擬牙周膜細(xì)胞分泌的因子對(duì)破骨細(xì)胞功能的研究,這尚需進(jìn)一步研究。
縱上所述,異常的機(jī)械壓力可能上調(diào)人牙周膜細(xì)胞的Hif-1 alpha和Rankl而抑制Opg表達(dá)而發(fā)揮促破骨功能,這可能是導(dǎo)致晚期牙周炎牙槽骨吸收的原因之一,而其具體機(jī)制尚需深入研究。
[參考文獻(xiàn)]
[1] Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev,2008,29(2):155-192. [2]Bloemen V, Schoenmaker T, de Vries TJ, et al. Direct cell-cell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis[J]. J Cell Physiol,2010,222(3):565-573.
[3]Mogi M, Otogoto J, Ota N, et al. Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis[J]. J Dent Res,2004,83(2):166-169.
[4]Hasegawa T, Yoshimura Y, Kikuiri T, et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells[J]. J Periodontal Res,2002,37(6):405-411.
[5]Kanzaki H, Chiba M, Shimizu Y, et al. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition[J]. J Dent Res,2001,80(3):887-891.
[6]Jin Q, Cirelli JA, Park CH, et al. RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis[J]. J Periodontol,2007,78(7):1300-1308.
[7]Ogasawara T, Yoshimine Y, Kiyoshima T, et al. In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue[J]. J Periodontal Res,2004,39(1):42-49.
[8]Pavasant P, Yongchaitrakul T. Role of mechanical stress on the function of periodontal ligament cells[J]. Periodontol 2000, 2011,56(1):154-165.
[9]Li Y, Zheng W, Liu JS, et al. Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression[J]. J Dent Res,2011,90(1):115-120.
[10]Nakajima R, Yamaguchi M, Kojima T, et al. Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro[J]. J Periodontal Res,2008,43(2):168-173.
[11]Nakao K, Goto T, Gunjigake KK, et al. Intermittent force induces high RANKL expression in human periodontal ligament cells[J]. J Dent Res, 2007,86(7):623-628.
[12]Yamaguchi M, Aihara N, Kojima T, et al. RANKL increase in compressed periodontal ligament cells from root resorption[J]. J Dent Res,2006,85(8):751-756.
[13]Kanzaki H, Chiba M, Shimizu Y, et al. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis[J]. J Bone Miner Res,2002,17(2):210-220.
[14]Tsuji K, Uno K, Zhang GX, et al. Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2[J]. J Bone Miner Metab,2004,2(2):94-103.
[15]Semenza GL. Hypoxia-inducible factors in physiology and medicine[J]. Cell,2012,148(3):399-408.
[16]Ng KT, Li JP, Ng KM, et al. Expression of hypoxia-inducible factor-1α in human periodontal tissue[J]. J Periodontol,2011,82(1):136-141.
[17] Petersen W, Varoga D, Zantop T, et al. Cyclic strain influences the expression of the vascular endothelial growth factor (VEGF) and the hypoxia inducible factor 1 alpha (HIF-1alpha) in tendon fibroblasts[J]. J Orthop Res,2004,22(4):847-853.
[18] Wang Y, Tang Z, Xue R, et al. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: an in vitro study[J]. J Orthop Res, 2011,29(7):1008-1014.
[19] Shirakura M, Tanimoto K, Eguchi H, et al. Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis[J]. Biochem Biophys Res Commun,2010,393(4):800-805.
[20] Park HJ, Baek KH, Lee HL, et al. Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts[J]. Mol Cells, 2011,31(6):573-578.
[21]Johns DE, Wong ME, Athanasiou KA. Clinically relevant cell sources for TMJ disc engineering[J]. J Dent Res,2008,87(6):548-552.
[22]Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering[J]. Tissue Eng,2006,2(4):969-979.
[23]Zhang L, Zhou X, Wang Q, et al. Effect of heat stress on the expression levels of receptor activator of NF-κB ligand and osteoprotegerin in human periodontal ligament cells[J]. Int Endod J, 2012,45(1):68-75
[24]任利玲.動(dòng)態(tài)壓力作用下體外藻酸鹽微囊化培養(yǎng)兔關(guān)節(jié)軟骨細(xì)胞差異蛋白組學(xué)研究[D].西安:第四軍醫(yī)大學(xué),2009:65-66.
[25] Kook SH, Son YO, Hwang JM, et al. Mechanical force inhibits osteoclastogenic potential of human periodontal ligament fibroblasts through OPG production and ERK-mediated signaling[J]. J Cell Biochem,2009,106(6):1010-1019.
[26]Kanzaki H, Chiba M, Sato A, et al. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction[J]. J Dent Res, 2006,85(5):457-462.
[收稿日期]2012-08-11[修回日期]2012-10-10
編輯/張惠娟