楊菲菲,章國慶
(上海理工大學(xué)理學(xué)院,上海 200093)
帶不定權(quán)非線性邊界的p-Lap lacian問題解的存在性
楊菲菲,章國慶
(上海理工大學(xué)理學(xué)院,上海 200093)
研究了一類帶不定權(quán)非線性邊界的p-Laplacian橢圓方程.獲得了當(dāng)非線性邊界的特征值參數(shù)小于第二特征值時(shí),該方程存在非平凡解.主要工具為環(huán)繞定理.
環(huán)繞定理;非線性邊界;p-Lap lacian問題
為Steklov問題[1].文獻(xiàn)[2]證明了問題(1.2)存在一列特征值序列λk→+∞,且其對(duì)應(yīng)的特征函數(shù)構(gòu)成Sobolev空間W1,2(Ω)中的一組完備規(guī)范正交基.當(dāng)p/=2時(shí),文獻(xiàn)[3]研究如下特征值問題:
利用L-S臨界點(diǎn)定理,證明了問題(1.3)存在變分特征值序列λk→+∞,但是,并不清楚其對(duì)應(yīng)的特征函數(shù)是否構(gòu)成W1,2(Ω)中的一組完備規(guī)范基.這給利用環(huán)繞定理來討論帶非線性邊界的p-Lap lacian問題帶來了本質(zhì)困難.1998年,文獻(xiàn)[4]建立了一種新的環(huán)繞定理,并研究了
證明了當(dāng)λ<λ2時(shí)(為第二特征值),問題(1.4)非平凡解的存在性.
本文利用一類帶不定權(quán)非線性邊界的p-Lap lacian特征值問題第二特征值性質(zhì)以及文獻(xiàn)[4]提出的環(huán)繞定理,證明了當(dāng)特征值參數(shù)λ小于其第二特征值時(shí),問題(1.1)存在非平凡解.
證明了問題(2.4)的第一特征值λ1的單重性,孤立性,以及所對(duì)應(yīng)的特征函數(shù)的不變號(hào)性,以及存在一列趨向于無窮大的特征值λk→+∞,同時(shí)也證明了第二特征值為
據(jù)特征值問題(2.4)的第一特征值和第二特征值的性質(zhì),類似文獻(xiàn)[4]中的推論2.1,可得:
由V(x)滿足條件(*)和(H1),可得E(u)∈C1(W1,p;?),則問題(1.1)的弱解即為泛函E(u)的臨界點(diǎn),由條件(H2)易知,0是問題(1.1)的平凡解.
[1]Steklov MW.Sur les p roblemes fondamentaux de la physique mathematique[J].Ann.Sci.Ecole Norm. Sup.,1902,19:455-490.
[2]Auchmuty G.Steklov eigenproblem s and rep resentation of solutions of elliptic boundary value p roblem s[J]. Num er.Funct.Anal.Optim.,2004,25:321-348.
[3]Bonder JF,Rossi JD.Existence results for the p-Lap lacian with nonlinear boundary conditions[J].J.Math. Anal.App l.,2001,263:195-223.
[4]Fan X L,Li Z C.Linking and existence results for perturbations of the p-Lap lacion[J].Nonlinear Anal., 2000,42:1413-1420.
[5]Bonder J F,Rossi J D.A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding[J].Publ.Mat.,2002,46:221-235.
[6]Xuan B J.Variational Methods:Theory and App lication[M].Hefei:University of Science and Technology of China Press,2006.
[7]Brezis H,Lieb E.A relation between pointw ise convergence of functions and convergence of functionals[J]. Proc.Amer.Math.Soc.,1983,88:486-490.
Existence result for the p-Laplacian problem with nonlinear boundary cond itions
Yang Feifei,Zhang Guoqing
(College of Sciences,University of Shanghai for Science and Technology,Shanghai 200093,China)
In this paper,we consider a class of p-Lap lacian elliptic equation with indefinite weights nonlinear boundary condition.The existence of nontrivial solutions for the equation is obtained when the eigenvalue param eter of the indefinite weight is less than the second eigenvalue.Them ain tool is the linking argum ent.
linking argum ent,non linear boundary condition,p-Lap lacian prob lem
O175.25
A
1008-5513(2012)03-0412-06
2011-05-25.
上海市自然科學(xué)基金(11ZR 1424500);上海市重點(diǎn)學(xué)科建設(shè)項(xiàng)目(S30501).
楊菲菲(1985-),碩士生,研究方向:非線性分析及其應(yīng)用.
2010 MSC:35J60,47J30