劉玉榮,涂銘旌,張 進(jìn)
(重慶文理學(xué)院材料交叉學(xué)科研究中心,重慶市高校微納米材料工程與技術(shù)重點(diǎn)實(shí)驗(yàn)室,重慶 402160)
多孔硅樹(shù)脂/聚二甲基硅氧烷復(fù)合材料的制備及其孔結(jié)構(gòu)表征①
劉玉榮,涂銘旌,張 進(jìn)
(重慶文理學(xué)院材料交叉學(xué)科研究中心,重慶市高校微納米材料工程與技術(shù)重點(diǎn)實(shí)驗(yàn)室,重慶 402160)
采用甲基苯基硅樹(shù)脂為樹(shù)脂基體,嵌段共聚物聚二甲基硅氧烷-聚氧乙烯(PDMS-PEO)為模板劑,合成甲基苯基硅樹(shù)脂/聚二甲基硅氧烷(MPS/PDMS)復(fù)合材料,并采用透射電鏡(TEM)、氫核磁(1H NMR)和氮?dú)馕矫摳降葘?duì)所制備材料的結(jié)構(gòu)和性能進(jìn)行表征。結(jié)果表明,所制備的MPS/PDMS復(fù)合材料具有有序的介孔結(jié)構(gòu),其BET比表面積、孔容和平均孔徑分別為285 m2/g、0.21 cm3/g 和 24.2 nm。
甲基苯基硅樹(shù)脂;PDMS-PEO嵌段共聚物;EISA方法;多孔材料
多孔材料具有低密度、低熱導(dǎo)率、高溫穩(wěn)定性、高滲透率和耐熱震等優(yōu)點(diǎn),在熱防護(hù)系統(tǒng)、熱交換器和輕質(zhì)結(jié)構(gòu)材料等領(lǐng)域具有廣泛的應(yīng)用前景[1-3]。目前,采用硅樹(shù)脂作為樹(shù)脂基體,已成功制備多孔陶瓷泡沫[4-6]和多孔單片[7]材料。制備方法包括直接發(fā)泡技術(shù)、犧牲填料法和超臨界二氧化碳法等。然而,上述制備方法具有許多局限性,如直接發(fā)泡法常導(dǎo)致沿主要膨脹軸方向的孔隙率和孔尺寸存在一定梯度[8-9];犧牲填料法需采取特殊的形式進(jìn)行焙燒,以消除所制備材料的缺陷[10];超臨界二氧化碳法由固體聚合物中的擴(kuò)散所控制,因此所得材料的厚度局限在一定范圍之內(nèi)[11]。上述幾種方法的共同缺點(diǎn)是:所制備多孔材料的孔結(jié)構(gòu)基本上都呈無(wú)規(guī)排列,具有較寬的孔徑尺寸分布,并在控制最終產(chǎn)品的孔容和孔徑尺寸分布上具有一定局限性。
以甲基苯基硅樹(shù)脂(MPS)為樹(shù)脂基體,嵌段共聚物聚二甲基硅氧烷-聚氧乙烯(PDMS-PEO)為模板劑,采用溶劑揮發(fā)誘導(dǎo)自組裝(EISA)方法,制備多孔硅樹(shù)脂/聚二甲基硅氧烷(MPS/PDMS)復(fù)合材料。嵌段共聚物PDMS-PEO具有無(wú)毒、環(huán)境相容性好和低表面張力等優(yōu)點(diǎn)[12-14]。目前,采用PDMS-PEO作為模板劑已被用來(lái)制備介孔氧化硅材料[15-17]。采用甲基苯基硅樹(shù)脂作為樹(shù)脂基體,是由于硅樹(shù)脂具有優(yōu)異的耐熱穩(wěn)定性和耐熱氧化穩(wěn)定性[18],而且甲基苯基硅樹(shù)脂在高溫條件下形成耐熱陶瓷,進(jìn)而保護(hù)結(jié)構(gòu)材料不被進(jìn)一步燒蝕[19-21]。EISA方法是獲得多孔材料的有效方法[22],通過(guò)溶劑的蒸發(fā),促進(jìn)膠束的形成和自組裝,膠束的尺寸和結(jié)構(gòu),最終決定了多孔材料的孔結(jié)構(gòu),進(jìn)一步除去模板劑,即得到有序的多孔結(jié)構(gòu)材料。
甲基三氯硅烷 (CH3)SiCl3,二甲基二氯硅烷(CH3)2SiCl2,苯基三氯硅烷PhSiCl3,二苯基二氯硅烷Ph2SiCl2,純度分別為98%、98%、98%和100%;PDMSPEO(Mw=3 012,DMS32-EO20)嵌段共聚物結(jié)構(gòu)示意圖如圖1所示。實(shí)驗(yàn)過(guò)程中,所用的水為蒸餾水,溶劑為四氫呋喃(THF)。
圖1 PDMS-PEO嵌段共聚物的結(jié)構(gòu)示意圖Fig.1 Structure of PDMS-PEO diblock copolymer
甲基苯基硅樹(shù)脂參考文獻(xiàn)[23]進(jìn)行合成。以所制備的甲基苯基硅樹(shù)脂為樹(shù)脂基體,嵌段共聚物PDMSPEO為模板劑,采用EISA方法制備多孔MPS/PDMS復(fù)合材料。具體的合成步驟如下:將1.0 g PDMS-PEO嵌段共聚物溶于20.0 g THF中,在40℃攪拌10 min,得均一透明的溶液。然后,加入10.0 g質(zhì)量百分比濃度為30% 的甲基苯基硅樹(shù)脂的THF溶液。繼續(xù)攪拌0.5 h,將所得混合物轉(zhuǎn)移到培養(yǎng)皿中。在室溫條件下放置5~8 h。然后,放入烘箱中150℃加熱24 h,使材料進(jìn)一步熱聚合。所得樣品為淺黃色透明薄膜,從培養(yǎng)皿上刮下,并研磨成粉末。將上述粉末樣品放在管式爐中,在氮?dú)獗Wo(hù)氣氛下進(jìn)行加熱焙燒,焙燒溫度為300℃,時(shí)間為3 h。
透射電鏡(TEM)照片由日本JEOL JEM2011型高分辨透射電鏡獲得,加速電壓為200 kV。樣品的制備步驟如下:將粉末狀的材料溶解在乙醇中形成溶漿態(tài),使用帶有炭膜的銅網(wǎng)掛取該溶漿,干燥后可直接用于觀察。氮?dú)馕?脫附等溫線采用Micromeritics Tristar 3000吸附儀在77 K條件下獲得。測(cè)試前,樣品在真空條件下于200℃預(yù)先脫氣不少于6 h。樣品的比表面積(SBET)采用BET方法,根據(jù)相對(duì)壓力在0.04~0.2范圍內(nèi)的吸附數(shù)據(jù)進(jìn)行計(jì)算;孔容(Vt)和孔徑(D)由等溫線吸附分支采用BJH模型計(jì)算,其中孔容用相對(duì)壓力p/p0=0.992處的吸附量計(jì)算。樣品的氫核磁譜圖(1H NMR)采用Bruker-500核磁共振譜儀進(jìn)行測(cè)定,測(cè)試溫度為25℃,四甲基硅烷作為內(nèi)標(biāo)物,CDCl3為溶劑。
從MPS/PDMS復(fù)合材料的TEM圖像(圖2)可看出,所制備的MPS/PDMS復(fù)合材料具有有序的多孔結(jié)構(gòu),孔的平均孔徑尺寸為25 nm,這表明采用PDMSPEO嵌段共聚物作為模板劑,可制備得到有序的多孔MPS/PDMS復(fù)合材料,經(jīng)過(guò)300℃焙燒3 h后,其介孔結(jié)構(gòu)不出現(xiàn)塌陷和較大的收縮和變形等現(xiàn)象,說(shuō)明所制備的多孔MPS/PDMS復(fù)合材料在高溫焙燒條件下具有良好的形狀保持穩(wěn)定性。
圖2 MPS/PDMS復(fù)合材料的TEM圖像Fig.2 TEM image of MPS/PDMS composite
圖3是所制備MPS/PDMS復(fù)合材料的N2吸附等溫線和孔徑分布曲線。N2吸脫附等溫線具有很窄的滯后環(huán),表明有介孔結(jié)構(gòu)的存在。MPS/PDMS復(fù)合材料的BET比表面積、孔容和平均孔徑分別為285 m2/g,0.21 cm3/g 和 24.2 nm。
樣品的1H NMR譜圖如圖4所示。圖中,a為PDMS-PEO嵌段共聚物,b為MPS樹(shù)脂,c為未焙燒的MPS/PDMS-PEO復(fù)合材料,d為多孔MPS/PDMS復(fù)合材料。在化學(xué)位移δ=0.05和δ=7.26處所對(duì)應(yīng)的峰歸屬于 Si—CH3和 Si—C6H5基團(tuán)的氫。圖4(a)和(c)中,化學(xué)位移δ=3.54和δ=3.36處所對(duì)應(yīng)的峰歸屬于嵌段共聚物PDMS-PEO和復(fù)合材料MPS/PDMS-PEO的EO單元(—CH2—CH2—O)和亞甲基基團(tuán)(—CH2)。MPS樹(shù)脂的1H NMR譜圖在δ=1.65和δ=2.37處具有2個(gè)明顯的信號(hào)峰,表明有Si—OH基團(tuán)的存在。在MPS/PDMS-PEO復(fù)合材料的1H NMR譜圖(圖4(c))中,Si-OH的峰明顯降低,這是由于MPS/PDMS-PEO復(fù)合材料中Si—OH發(fā)生了縮聚反應(yīng)。在氮?dú)鈿夥?00℃焙燒3 h,MPS/PDMS-PEO復(fù)合材料的EO單元和—CH2基團(tuán)所對(duì)應(yīng)的峰消失(圖4(d)),說(shuō)明PDMS-PEO嵌段共聚物模板劑幾乎完全分解。
圖3 MPS/PDMS復(fù)合材料的N2吸脫附曲線和孔徑分布曲線Fig.3 N2adsorption-desorption isotherms and pore size distribution curves of porous MPS/PDMS composite
圖4 樣品的1H NMR譜圖Fig.4 1H NMR spectrum of samples
基于上述實(shí)驗(yàn)及材料的表征結(jié)果,進(jìn)一步提出了介孔MPS/PDMS復(fù)合材料孔結(jié)構(gòu)形成的機(jī)理示意圖,如圖5所示。首先,溶劑THF的揮發(fā)促進(jìn)了體系各種物質(zhì)的自組裝,MPS和嵌段共聚物 PDMS-PEO的PDMS鏈段之間存在疏水相互作用,而親水性的PEO鏈段被包埋在膠束核的內(nèi)部。在氮?dú)鈿夥障拢?00℃焙燒3 h后,PEO鏈段發(fā)生分解,從而產(chǎn)生孔結(jié)構(gòu)。
圖5 MPS/PDMS復(fù)合材料的多孔結(jié)構(gòu)形成示意圖Fig.5 Proposed structure of porous MPS/PDMS composite
(1)TEM和氮?dú)馕摳浇Y(jié)果表明,所制備的MPS/PDMS復(fù)合材料具有有序的介孔結(jié)構(gòu)和大的孔徑,其BET比表面積、孔容和平均孔徑分別為285 m2/g,0.21 cm3/g 和 24.2 nm。
(2)1H NMR結(jié)果表明,PDMS-PEO嵌段共聚物在焙燒后,PEO鏈段幾乎完全分解,從而導(dǎo)致多孔結(jié)構(gòu)的形成。
(3)所制備MPS/PDMS復(fù)合材料的介孔結(jié)構(gòu)具有良好的形狀保持度,經(jīng)300℃焙燒后,不出現(xiàn)塌陷、較大的收縮和變形等現(xiàn)象。
[1]Colombo P,Modesti M.Silicon oxycarbide ceramic foam from a preceramic polymer[J].Journal of the American Ceramic Society,1999,82(3):573-578.
[2]Sepulveda P,Binner J G P.Processing of cellular ceramics by foaming and in situ polymerization of organic monomers[J].Journal of the European Ceramic Society,1999,19(12):2059-2066.
[3]Chandrappa G T,Steunou N,Livage J.Materials chemistry:macroporous crystalline vanadium oxide foam[J].Nature,2002,416(6882):702.
[4]Vakifahmetoglu C,Colombo P.A direct method for the fabrication of macro-porous SiOC ceramics from preceramic polymers[J].Advanced Engineering Materials,2008,10(3):256-259.
[5]Ma Q S,Ma Y,Chen Z H.Fabrication and characterization of nanoporous SiO2ceramics via pyrolysis of silicone resin filled with nanometer SiO2powders[J].Ceramics International,2010,36(8):2269-2272.
[6]Colombo P.Engineering porosity in polymer-derived ceramics[J].Journal of the European Ceramic Society,2008,28(7):1389-1395.
[7]Xu H F,Huang Y D,Liu L,et al.Superhydrophobic and porous methylsilicone monoliths prepared by one-step ammonia-catalyzed gelation and ambient pressure drying[J].Journal of Non-Crystalline Solids,2010,356(35-36):1837-1841.
[8]Colombo P,Hellmann J R.Ceramic foams from preceramic polymers[J].Materials Research Innovations,2002,6(5-6):260-272.
[9]Zeschky J,Hofner T,Arnold C,et al.Polysilsesquioxane derived ceramic foams with gradient porosity[J].Acta Material,2005,53(4):927-937.
[10]Colombo P,Bernardo E,Biasetto L.Novel microcellular ceramics from a silicone resin[J].Journal of the American Ceramic Society,2004,87(1):152-154.
[11]Kim Y W,Park C B.Processing of microcellular preceramics using carbon dioxide[J].Composites Science and Technology,2003,63(14):2371-2377.
[12]Haesslin H W,Eicke H F,Riess G.Dimethylsiloxane-ethylene oxide block copolymers,1.Microphase separation of low segment mass copolymers and their compatibility with water and oil[J].Die Makromolekulare Chemie,1984,185(12):2625-2645.
[13]Haesslin H W.Dimethylsiloxane-ethylene oxide block copolymers,2.Preliminary results on dilute solution properties[J].Die Makromolekulare Chemie,1985,186(2):357-366.
[14]Kiraly Z,Cosgrove T,Vincent B.NMR self-diffusion study of poly(ethylene oxide)-block-poly(dimethylsiloxane)diblock copolymers in organic solvents and in poly(ethylene oxide)melts[J].Langmuir,1993,9(5):1258-1262.
[15]Xu A W.Highly ordered lamellar silica/surfactant composites templated from nonionic amphiphilic copolymer[J].Chemistry of Materials,2002,14(9):3625-3627.
[16]Xu A W.Neutral templating route to unusual mesostructured silicas[J].Journal of Physical Chemistry B,2002,106(51):13161-13164.
[17]Husing N,Launay B,Bauer J,et al.Silicone-containing surfactants as templates in the synthesis of mesostructured silicates[J].Journal of Sol-Gel Science and Technology,2003,26(1-3):609-613.
[18]Jovanovic J D,Govedarica M N,Dvornic P R,et al.The thermogravimetric analysis of some polysiloxanes[J].Polymer Degradation and Stability,1998,61(1):87-93.
[19]Keijman K.Use of novel siloxane hybrid polymers in protective coatings[J].Oil Gas European Magazine,1997,23(3):38-40.
[20]Torre L,Kenny J M,Maffezzoli A M.Degradation behaviour of a composite material for thermal protection systems Part IExperimental characterization[J].Journal of Materials Science,1998,33(12):3137-3143.
[21]Yang P D,Zhao D Y,Chmelka B F,et al.Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers[J].Chemistry of Materials,1998,10(8):2033-2036.
[22]Brinker C J,Lu Y,Sellinger A,et al.Evaporation-induced self-assembly:nanostructures made easy[J].Advanced Materials,1999,11(7):579-585.
[23]劉玉榮,黃玉東,劉麗,等.甲基丙烯酰氧基倍半硅氧烷對(duì)有機(jī)硅樹(shù)脂耐熱性能影響[J].固體火箭技術(shù),2006,29(3):217-221.
Preparation and characterization of porous methylphenylsiloxane/poly(dimethylsiloxane)composite
LIU Yu-rong,TU Ming-jing,ZHANG Jin
(Research Center for Material Interdisciplinary Science,Chongqing University of Arts and Science,Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology,Chongqing 402160,China)
Poly(dimethylsiloxane)-poly(ethylene oxide)(PDMS-PEO)diblock copolymer has been used as template in methylphenylsiloxane(MPS)resin matrix to fabricate porous MPS/PDMS composite.The structure of resulting materials has been characterized by transmission electron microscopy(TEM),nitrogen-sorption measurements and1H-nuclear magnetic resonance(1H NMR).Results show that MPS/PDMS composites with pore structures and large pore sizes have been obtained.Through calculation,the BET surface area,pore volume and mean pore size of porous MPS/PDMS composites are 285 m2/g,0.21 cm3/g,and 24.2 nm,respectively.
methylphenylsiloxane(MPS)resin;PDMS-PEO diblock copolymer;EISA method;porous materials
V258
A
1006-2793(2012)03-0401-04
2011-12-05;
2011-12-23。
重慶文理學(xué)院校內(nèi)科研項(xiàng)目(Z2011RCYJ04);永川區(qū)科技攻關(guān)計(jì)劃項(xiàng)目(YCSTC,2011AC4001);重慶市高等學(xué)校青年骨干教師資助項(xiàng)目;重慶市高校新材料開(kāi)發(fā)及應(yīng)用研究創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(201042)。
劉玉榮(1978—),女,副教授,研究方向?yàn)楦叻肿硬牧系闹苽浼捌鋺?yīng)用。E-mail:liuyr1978@163.com
(編輯:薛永利)