飼用微生物工程國(guó)家重點(diǎn)實(shí)驗(yàn)室 胡小媛 王安如*
大北農(nóng)科技集團(tuán)
福建師范大學(xué)生命科學(xué)學(xué)院 黃建忠*
農(nóng)業(yè)部飼料生物技術(shù)重點(diǎn)開(kāi)放實(shí)驗(yàn)室 滕 達(dá) 王建華*
中國(guó)農(nóng)業(yè)科學(xué)院飼料研究所
細(xì)菌素是由某些細(xì)菌染色體或質(zhì)粒編碼、核糖體合成、具有抗菌活性的多肽或蛋白質(zhì)(Deegan等,2006),主要作用于與產(chǎn)生菌親緣關(guān)系近的菌株(Gautam和Sharma,2009)。迄今已有許多細(xì)菌素得到分離和鑒定,以乳酸菌產(chǎn)生的細(xì)菌素居多,在細(xì)菌素?cái)?shù)據(jù)庫(kù)中,乳酸菌細(xì)菌素約占65%。據(jù)統(tǒng)計(jì),已有129種乳酸菌細(xì)菌素被報(bào)道,其中IIa類39種,約占30%。IIa類細(xì)菌素除了二硫鍵形成之外無(wú)其他翻譯后修飾,相對(duì)于其他細(xì)菌素具較簡(jiǎn)單結(jié)構(gòu),因此被廣泛用于異源表達(dá)研究,并相繼在乳酸菌、大腸桿菌、酵母等系統(tǒng)中得到成功表達(dá)(Lohans和Vederas,2012)。本文從細(xì)胞及分子水平上歸納總結(jié)了乳酸菌IIa類細(xì)菌素的抗菌機(jī)制及其在動(dòng)物消化道中的抗菌作用研究進(jìn)展。
根據(jù)基本結(jié)構(gòu)及性質(zhì),可將乳酸菌細(xì)菌素分為三大類(表1),其中IIa類乳酸菌細(xì)菌素是數(shù)量最多且研究比較廣泛及深入的一類。IIa類細(xì)菌素成熟肽多含37~48個(gè)氨基酸,其肽鏈大致分為兩個(gè)區(qū)域:帶正電荷、高保守的親水性N端,低保守的兩親性或疏水性C端。在高保守區(qū)N端含1個(gè)“片球菌素盒”即YGNGV/L共有序列,兩個(gè)半胱氨酸形成一個(gè)二硫鍵(Nes等,2007)。有些細(xì)菌素C端也有1個(gè)二硫鍵,如pediocin PA-1/AcH、divercin V41、enterocin A 等。 核磁共振(NMR)分析 5種 IIa類細(xì)菌素 leucocin A、carnobacteriocin B2、curvacin A、sakacin P及 sakacin P 突變體的結(jié)構(gòu)顯示,N端形成β片層結(jié)構(gòu),由一個(gè)保守二硫鍵穩(wěn)定其結(jié)構(gòu)(Fimland等,2005)。C端為兩親性α螺旋,延伸的C末端形成發(fā)夾樣結(jié)構(gòu),含2個(gè)二硫鍵的IIa類細(xì)菌素則依靠C端二硫鍵穩(wěn)定此發(fā)夾結(jié)構(gòu)(Drider等,2006)。
IIa類細(xì)菌素具高等電點(diǎn),pI為8~10;對(duì)熱穩(wěn)定,如plantaricin 423經(jīng)100℃、60 min仍保持50%活性;對(duì)酸堿耐受性強(qiáng),在pH 2~11仍保持大部分活性;對(duì)胃蛋白酶、胰蛋白酶、木瓜蛋白酶、蛋白酶k等敏感,對(duì)α-淀粉酶和脂肪酶不敏感(Herranz等,2001a;Reenen 等,1998)。 除了對(duì)產(chǎn)生菌親緣關(guān)系近的細(xì)菌及李斯特氏菌有抑制作用外,有些寬抑菌譜細(xì)菌素,如enterocin P、pediocin PA-1等也可抑制親緣關(guān)系較遠(yuǎn)的革蘭氏陽(yáng)性菌,如金黃色葡萄球菌、梭狀芽孢桿菌、產(chǎn)氣莢膜梭菌等(Gautam 和 Sharma,2009;Cintas等,1997)。
表1 乳酸菌細(xì)菌素的分類
2.1 細(xì)胞水平 IIa類細(xì)菌素主要通過(guò)破壞靶細(xì)胞膜穩(wěn)定性導(dǎo)致胞內(nèi)K+、磷酸鹽、氨基酸、ATP及其他小分子物質(zhì)外泄,細(xì)胞質(zhì)子動(dòng)力(△ψ-跨膜電勢(shì)和△pH-pH梯度)下降或崩潰,ATP耗竭,從而殺死細(xì)胞(Kjos等,2009;趙愛(ài)珍,2004)。研究報(bào)道,mesentericin Y105(600AU)可使單增李斯特氏菌膜電位在10 min內(nèi)降低45%,還能抑制亮氨酸和谷氨酸轉(zhuǎn)運(yùn),使氨基酸在細(xì)胞內(nèi)累積之前排出胞外(Maftah等,1993)。bavaricin MN以濃度依賴方式快速降低單增李斯特氏菌膜電位,濃度達(dá)9.0 μg/mL時(shí)靶細(xì)胞膜電位下降 85%(Kaiser和Montville,1996)。 另有報(bào)道,enterocin P 盡管不影響屎腸球菌Enterococcus faecium T136的跨膜pH梯度,但能降低跨膜電位,在靶細(xì)胞質(zhì)膜上形成特定K+通道導(dǎo)致K+外流,引起靶細(xì)胞死亡(Herranz等,2001b)。
帶正電荷的親水性N端β片層結(jié)構(gòu)通過(guò)靜電作用先與靶細(xì)胞膜上陰離子磷脂頭部極性殘基結(jié)合(Deegan 等,2006;Kazazic 等,2002),然后疏水性C端與膜脂?;溩饔貌迦氲郊?xì)胞膜疏水區(qū),進(jìn)而形成跨膜螺旋結(jié)構(gòu),介導(dǎo)細(xì)胞內(nèi)各種物質(zhì)及能量泄漏,引起細(xì)胞死亡(Chen等,1997;Fimland等,1996)。C端是細(xì)菌素靶細(xì)胞特異性的關(guān)鍵決定區(qū)(Todorov,2009)。細(xì)菌素C端定點(diǎn)突變后,靶細(xì)胞特異性發(fā)生改變,早期有研究者將不同細(xì)菌素的N端和C端進(jìn)行雜交得到新細(xì)菌素,其靶細(xì)胞特異性類似于C端來(lái)源的母體細(xì)菌素(Fimland 等,2005;Fimland 等,1996)。 這些證據(jù)均表明,C端為IIa類細(xì)菌素靶細(xì)胞特異性的決定區(qū)。
2.2 分子水平 大多數(shù)IIa類細(xì)菌素殺菌作用具特異性,緣于細(xì)菌素C-端的特異性決定區(qū)與靶細(xì)胞膜表面特異受體相互作用(Kjos等,2011)。來(lái)源于pediocin PA-1 C端的15肽抑制細(xì)菌素pediocin PA-1對(duì)靶細(xì)胞的作用,而對(duì)其他細(xì)菌素?zé)o抑制作用或抑制程度較輕。研究認(rèn)為,是由于15肽與細(xì)菌素pediocin PA-1競(jìng)爭(zhēng)結(jié)合靶細(xì)胞膜中的受體的原因(Fimland等,1998)。有研究報(bào)道,IIa類細(xì)菌素是以靶細(xì)胞膜中的甘露糖透性酶EIItMan為受體,該受體屬磷酸轉(zhuǎn)移酶系統(tǒng)PTS,在一些細(xì)菌中主要負(fù)責(zé)糖的運(yùn)輸和磷酸化(Stoll和Goebel,2010;Drider等,2006)。 甘露糖磷酸轉(zhuǎn)移酶系統(tǒng)Man-PTS中的 EIItMan由 IIA、IIB、IIC及 IID 四個(gè)結(jié)構(gòu)域組成,形成2~4個(gè)亞基,如單增李斯特氏菌的EIItMan由3個(gè)亞基組成(IIA和IIB融合成一個(gè)亞基),由mptACD操縱子編碼,其中IIA和IIB位于細(xì)胞質(zhì),參與磷酸化;IIC和IID位于膜上,參與甘露糖轉(zhuǎn)運(yùn) (Kjos等,2011;Tessema 等,2011)。有研究表明,在單增李斯特氏菌和糞腸球菌中,編碼EIItMan的mpt操縱子定向變異會(huì)導(dǎo)致細(xì)菌對(duì)細(xì)菌素失去敏感性 (Dalet等,2001;Hechard等,2001)。mpt操縱子的轉(zhuǎn)錄由rpoN基因編碼的σ54因子控制,該因子可選擇性識(shí)別啟動(dòng)子序列,負(fù)責(zé)特定基因的轉(zhuǎn)錄(Drider等,2006)。15年前有人構(gòu)建單增李斯特氏菌轉(zhuǎn)座子突變體,發(fā)現(xiàn)rpoN基因缺失突變體對(duì)mesentericin Y105失去敏感性,突變體重獲rpoN基因后又恢復(fù)了敏感特性,類似現(xiàn)象在其他細(xì)菌如糞腸球菌中也存在 (Dalet等,2000;Robichon 等,1997)。 另外,甘油磷酰二酯磷酸二酯酶(GlpQ)、磷酸二酯酶(PDE)基因表達(dá)也會(huì)影響細(xì)菌對(duì)IIa類細(xì)菌素的敏感性,分別缺失rpoN、GlpQ及PDE基因的糞腸球菌JH2-2突變體均對(duì)IIa類細(xì)菌素divercin V41的敏感性降低,降低程度為:缺rpoN突變體>缺glpQ突變體>缺PDE 突變體(Calvez等,2007)。
Ramnath等(2004)將單增李斯特氏菌(Listeria.monocytogenes)的mptACD操縱子轉(zhuǎn)入對(duì)IIa類細(xì)菌素不敏感的乳酸乳球菌Lactococcus lactis中表達(dá),發(fā)現(xiàn)重組菌株對(duì)各IIa類細(xì)菌素均敏感,且不同菌株mpt表達(dá)差異影響重組子對(duì)細(xì)菌素的敏感程度 (Kjos等,2009)。 說(shuō)明,EIItMan確實(shí)作為IIa類細(xì)菌素受體在特異性和敏感性中起作用。在細(xì)菌素產(chǎn)生菌中,同源免疫蛋白以細(xì)菌素依賴方式結(jié)合在此受體上,防止自殺 (Diep等,2007)。EIItMan的IIC和IID位于膜上,可能是真正的受體結(jié)構(gòu)域。L.monocytogenes的mptACD操縱子的每個(gè)基因分別在L.lactis中表達(dá),結(jié)果顯示,只單獨(dú)表達(dá)mptC就足以使重組菌對(duì)IIa類細(xì)菌素敏感,進(jìn)而說(shuō)明IIC是IIa類細(xì)菌素在靶細(xì)胞膜上的特異受體(Ramnath,2004)。 Kjos等(2010)用敏感 L.monocytogenes的甘露糖磷酸轉(zhuǎn)移酶基因mpt和非敏感性L.lactis的甘露糖磷酸轉(zhuǎn)移酶基因ptn設(shè)計(jì)了一系列Man-PTS嵌合體和突變體,結(jié)果也顯示IIC是IIa類細(xì)菌素作用于靶細(xì)胞的特異受體。
但并非所有細(xì)菌的甘露糖透性酶均可以作為IIa類細(xì)菌素受體。Kjos等(2009)對(duì)大量細(xì)菌的甘露糖磷酸轉(zhuǎn)移酶系統(tǒng)Man-PTS進(jìn)行了遺傳進(jìn)化分析,將其分為三大類,只有第一類可作為IIa細(xì)菌素的作用受體,三個(gè)序列α、β、γ區(qū)域?qū)⒌谝活惻c其他兩類區(qū)別開(kāi)來(lái)(Kjos等,2009)。另外,Man-PTS表達(dá)水平并不是決定細(xì)菌是否對(duì)細(xì)菌素敏感的唯一因素,有些對(duì)細(xì)菌素不敏感的細(xì)菌中Man-PTS表達(dá)水平與敏感菌相當(dāng),其確切機(jī)制尚無(wú)定論(Kjos等,2011)。有試驗(yàn)表明,細(xì)菌細(xì)胞膜組分,如脂質(zhì)、丙氨酸含量及靶細(xì)胞膜表面電荷等也是影響其細(xì)菌素敏感性的因子 (Kjos等,2011;Vadyvaloo,2004)。由于IIa類細(xì)菌素作用于靶細(xì)胞的第一步是由其帶正電荷的N端與靶細(xì)胞膜陰離子磷脂頭部極性殘基結(jié)合,所以靶膜脂質(zhì)組成、電荷改變等理當(dāng)會(huì)影響細(xì)菌素對(duì)靶細(xì)胞膜的親和力,從而影響細(xì)菌素活性。
抗生素長(zhǎng)期和廣泛使用導(dǎo)致大量病原菌產(chǎn)生不同程度耐藥性,嚴(yán)重威脅人畜健康。開(kāi)發(fā)能有效抑制病原菌、對(duì)益生菌無(wú)害、無(wú)殘留,且不產(chǎn)生耐藥性的新型抗生物質(zhì)迫在眉睫。
目前,細(xì)菌素作為飼料添加劑的研究報(bào)道很少,近年有關(guān)細(xì)菌素產(chǎn)生菌在動(dòng)物體內(nèi)抑制病原菌的報(bào)道較多,如用IIa類細(xì)菌素enterocin A產(chǎn)生菌E.faecium EK13飼喂感染Salmonella dusseldorf SA31的日本鵪鶉及感染Escherichia coli的豬仔,減少了日本鵪鶉盲腸和糞便中S.dusseldorf SA31數(shù)量,降低了豬仔糞便中E.coli數(shù)量(Strompfová 等,2006;Lauková 等,2003)。 給腸道已定植耐萬(wàn)古霉素腸球菌的小鼠每天口服IIa類細(xì)菌素pediocin PA-1產(chǎn)生菌片腸球菌MM33,3 d后耐藥菌濃度比對(duì)照組減少78 CFU/g,對(duì)照組無(wú)明顯變化,其機(jī)制有待進(jìn)一步探討(Millette等,2008)。此外,利用IIa類細(xì)菌素作為體內(nèi)治療藥物控制細(xì)菌感染研究正成為一個(gè)迅速發(fā)展的領(lǐng)域(Lohans和 Vederas,2012)。 用小鼠模型研究細(xì)菌素在體內(nèi)對(duì)L.monocytogenes的抑制效果,給感染L.monocytogenes的小鼠口服 250 μg/d純細(xì)菌素pediocin PA-1,腸道目標(biāo)菌菌數(shù)在第3、6天及9天分別比對(duì)照組減少10、251CFU和25 CFU,第3天時(shí)肝臟和脾臟目標(biāo)菌菌數(shù)分別減少159 CFU和1259 CFU,第6天肝臟和脾臟中已無(wú)目標(biāo)菌檢出,且不影響小鼠采食量、體重以及腸道正常菌群;另一處理是給感染L.monocytogenes小鼠靜脈注射 2 μg的divercinV41,目標(biāo)菌數(shù)比對(duì)照組減少2.0×105CFU,而先注射divercin V41后感染目標(biāo)菌的小鼠,其目標(biāo)菌數(shù)減少1.3×103CFU(Dabour等,2009;Rihakova 等,2009)。IIa 類細(xì)菌素對(duì)胃蛋白酶、胰蛋白酶等敏感,因此其應(yīng)用范圍和效果受到 限 制 (Lohans 和 Vederas,2012)。Kheadr 等(2010)在模擬胃腸道環(huán)境加入純細(xì)菌素pediocin PA-1,處理90 min后,該細(xì)菌素仍保持部分活性,到十二指腸才完全失活。胃腸復(fù)雜環(huán)境及豐富的酶不利于細(xì)菌素到達(dá)靶位點(diǎn)發(fā)揮作用,采用特殊材料包被細(xì)菌素被認(rèn)為是解決此問(wèn)題的有效途徑之一(Kheadr等,2010;Colas等,2007)。
IIa類細(xì)菌素大多由乳酸菌產(chǎn)生,少數(shù)IIa類細(xì)菌素由芽孢桿菌產(chǎn)生 (如bacillocin 602和bacillocin 1580)。乳酸菌和芽孢桿菌作為益生菌已在食品和飼料領(lǐng)域廣泛應(yīng)用,但其益生機(jī)制尚待進(jìn)一步深入研究。今后工作重點(diǎn)為以下幾個(gè)方面:(1)將細(xì)菌素作為此類益生菌遺傳改良的重要篩選指標(biāo),定向突變和篩選高產(chǎn)細(xì)菌素菌株;(2)利用分子手段改良優(yōu)化細(xì)菌素序列與結(jié)構(gòu),構(gòu)建高產(chǎn)重組菌株;(3)提高目標(biāo)益生成分的抗菌活性和結(jié)構(gòu)穩(wěn)定性;(4)注意突破細(xì)菌素對(duì)蛋白酶敏感、口服受限的瓶頸,探索有效運(yùn)載和包被技術(shù);(5)應(yīng)用細(xì)菌素部分替代常規(guī)飼料抗生素的配套技術(shù),為飼料抗生素減量使用做好鋪墊。相信隨著相關(guān)研究不斷深入,細(xì)菌素在飼料安全、健康養(yǎng)殖方面將發(fā)揮重要的技術(shù)支持作用。
[1]趙愛(ài)珍.EnterocinA結(jié)構(gòu)基因的克隆、功能性表達(dá)及構(gòu)效關(guān)系研究:[博士學(xué)位論文][D].長(zhǎng)春:吉林大學(xué),2004.
[2]Calvez S,Rince A,Auffray Y,et al.Identification of new genes associated with intermediate resistance of Enterococcus faecalis to divercin V41,a pediocin-like bacteriocin[J].Microbiology,2007,153(5):1609 ~ 1618.
[3]Chen Y,Shapira R,Eisenstein M,et al.Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure[J].Applied and Environmental Microbiology,1997,63(2):524~531.
[4]Cintas L M,Casaus P,Havarstein L,et al.Biochemical and genetic characterization of enterocin P,a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum[J].Applied and Environmental Microbiology,1997,63(11):4321 ~ 4330.
[5]Colas J C,Shi W,Rao V S N M,et al.Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting[J].Micron,2007,38(8):841 ~ 847.
[6]Dabour N,Zihler A,Kheadr E,et al.In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes[J].International Journal of Food Microbiology,2009,133(3):225 ~ 233.
[7]Dalet K,Briand C,Cenatiempo Y,et al.The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins[J].Current Microbiology,2000,41(6):441 ~ 443.
[8]Dalet K,Cenatiempo Y,Cossart P,et al.A sigma (54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105[J].Microbiology-Sgm,2001,147:3263 ~ 3269.
[9]Deegan L H,Cotter P D,Hill C,et al.Bacterlocins:biological tools for bio-preservation and shelf-life extension [J].International Dairy Journal,2006,16(9):1058 ~ 1071.
[10]Diep D B,Skaugen M,Salehian Z,et al.Common mechanisms of target cell recognition and immunity for class II bacteriocins[J].Proceedings of the National Academy of Sciences,2007,104(7):2384 ~ 2389.
[11]Drider D,F(xiàn)imland G,Hechard Y,et al.The continuing story of class IIa bacteriocins[J].Microbiology and Molecular Biology Reviews,2006,70 (2):564~582.
[12]Fimland G,Blingsmo O R,Sletten K,et al.New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins:the C-terminal region is important for determining specificity[J].Applied and Environmental Microbiology,1996,62(9):3313 ~ 3318.
[13]Fimland G,Jack R,Jung G,et al.The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus[J].Applied and Environmental Microbiology,1998,64(12):5057 ~ 5060.
[14]Fimland G,Johnsen L,Dalhus B,et al.Pediocin-like antimicrobial peptides (class IIa bacteriocins)and their immunity proteins:biosynthesis,structure and mode of action[J].Journal of Peptide Science,2005,11(11):688 ~ 696.
[15]Gautam N,Sharma N.Bacteriocin:safest approach to preserve food products[J].Indian Journal of Microbiology,2009,49(3):204 ~ 211.
[16]Hechard Y,Pelletier C,Cenatiempo Y,et al.Analysis of sigma (54)-dependent genes in Enterococcus faecalis:a mannose PTS permease(EIItMan)is involved in sensitivity to a bacteriocin,mesentericin Y105[J].Microbiology-Sgm,2001,147:1575 ~ 1580.
[17]Herranz C,Cintas L M,Hernandez P E,et al.Enterocin P causes potassium ion efflux from Enterococcus faecium T136 Cells[J].Antimicrobial Agents and Chemotherapy,2001b,45(3):901 ~ 904.
[18]Herranz C,Casaus P,Mukhopadhyay S,et al.Enterococcus faecium P21:a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B[J].Food Microbiology,2001a,18(2):115~131.
[19]Kaiser A L,Montville T J.Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles[J].Applied and Environmental Microbiology,1996,62(12):4529 ~ 4535.
[20]Kazazic M,Nissen-Meyer J,F(xiàn)imland G.Mutational analysis of the role of charged residues in target-cell binding,potency and specificity of the pediocin-like bacteriocin sakacin P[J].Microbiology,2002,148(7):2019 ~ 2027.
[21]Kheadr E,Zihler A,Dabour N,et al.Study of the physicochemical and biological stability of pediocin PA‐1 in the upper gastrointestinal tract conditions using a dynamic in vitro model[J].Journal of Applied Microbiology,2010,109(1):54 ~ 64.
[22]Kjos M,Nes I F,Diep D B.Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells[J].Microbiology,2009,155(9):2949 ~ 2961.
[23]Kjos M,Nes I F,Diep D B.Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system[J].Applied and Environmental Microbiology,2011,77(10):3335 ~ 3342.
[24]Kjos M,Salehian Z,Nes I F,et al.An Extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins[J].Journal of Bacteriology,2010,192(22):5906 ~ 5913.
[25]Lauková A,Guba P,Nemcová R,et al.Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium[J].Veterinary Research Communications,2003,27(4):275~280.
[26]Lohans C T,Vederas J C.Development of class IIa bacteriocins as therapeutic agents[J].International Journal of Microbiology,2012,doi:10.1155/2012/386410.
[27]Maftah A,Renault D,Vignoles C,et al.Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105[J].Journal of Bacteriology,1993,175(10):3232 ~ 3235.
[28]Millette M,Cornut G,Dupont C,et al.Capacity of Human Nisin-and Pediocin-Producing Lactic Acid Bacteria To Reduce Intestinal Colonization by Vancomycin-Resistant Enterococci[J].Applied and Environmental Microbiology,2008,74(7):1997 ~ 2003.
[29]Nes I F,Yoon S-S,Diep D B.Ribosomally synthesiszed antimicrobial peptides (bacteriocins)in lactic acid bacteria:areview [J].Food Science and Biotechnology,2007,16(5):675 ~ 690.
[30]Ramnath M.Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis[J].Microbiology,2004,150(8):2663 ~ 2668.
[31]Reenen V,Dicks L M T,Chikindas M L.Isolation,purification and partial characterization of plantaricin 423,a bacteriocin produced by Lactobacillus plantarum[J].Journal of Applied Microbiology,1998,84(6):1131 ~ 1137.
[32]Rihakova J,Cappelier J M,Hue I,et al.In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenes[J].Antimicrobial Agents and Chemotherapy,2009,54(1):563 ~ 564.
[33]Robichon D,Gouin E,Debarbouille M,et al.The rpoN(sigma(54))gene from Listeria monocytogenes is involved in resistance to mesentericin Y105,an antibacterial peptide from Leuconostoc mesenteroides[J].Journal of Bacteriology,1997,179(23):7591 ~ 7594.
[34]Stoll R,Goebel W.The major PEP-phosphotransferase systems(PTSs)for glucose mannose and cellobiose of Listeria monocytogenes,and their significance for extra-and intracellular growth[J].Microbiology,2010,156(4):1069~1083.
[35]Strompfová V,Marciňáková M,Simonová M,et al.Enterococcus faecium EK13—an enterocin A-producing strain with probiotic character and its effect in piglets[J].Anaerobe,2006,12(5 ~ 6):242 ~ 248.
[36]Tessema G T,Mo/retro/T,Snipen L,et al.Global transcriptional analysis of spontaneous sakacin P-resistant mutant strains of Listeria monocytogenes during growth on different sugars[J].Plos One,2011,6(1):e16192.
[37]Todorov S D.Bacteriocins from Lactobacillus plantarum production,genetic organization and mode of action[J].Brazilian Journal of Microbiology,2009,40(2):209 ~ 211.
[38]Vadyvaloo V.Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains[J].Microbiology,2004,150(9):3025 ~ 3033.