譚 靖,郭冬發(fā),張彥輝,謝勝凱,張良圣
(核工業(yè)北京地質(zhì)研究院分析測試研究所,北京 100029)
激光燒蝕光譜-電感耦合等離子體質(zhì)譜聯(lián)用技術(shù)在地質(zhì)分析中的應(yīng)用
譚 靖,郭冬發(fā),張彥輝,謝勝凱,張良圣
(核工業(yè)北京地質(zhì)研究院分析測試研究所,北京 100029)
激光燒蝕光譜(LAS)技術(shù)具有空間分辨率高,樣品用量少,制樣簡單,分析速度快,可遠(yuǎn)程、實時、在線分析多相物質(zhì)(氣態(tài)、液態(tài)、固態(tài))的特點(diǎn),是近年來發(fā)展迅速的一種分析技術(shù),具有廣闊的應(yīng)用前景,但它對痕量元素的分析能力不足。電感耦合等離子體質(zhì)譜(ICP-MS)技術(shù)具有靈敏度高和多元素及同位素同時檢測的能力,在微痕量元素精密分析方面具有很大的優(yōu)勢,但對基體元素分析存在困難。將LAS和ICP-MS技術(shù)相結(jié)合,形成LAS和LA-ICP-MS聯(lián)用技術(shù)(LAS-ICP-MS),可充分利用兩種技術(shù)的優(yōu)勢,形成互補(bǔ)技術(shù),為地質(zhì)分析提供一種便捷、可靠的分析手段:利用LAS技術(shù),可預(yù)先監(jiān)測樣品的大致含量與信號的穩(wěn)定性等參數(shù),篩選適用于LA-ICP-MS分析的樣品,避免因元素含量過高引起的LA-ICP-MS采樣錐錐口易堵塞,基體效應(yīng)過大,以及因樣品均勻性差或激光參數(shù)未優(yōu)化等因素影響分析的準(zhǔn)確性和精密度等問題;利用LA-ICP-MS技術(shù),可對激光進(jìn)樣條件和原子化、離子化條件分開進(jìn)行優(yōu)化,從而改善儀器的分析性能。將LAS-ICP-MS用于巖石礦物分析,表現(xiàn)出其良好的應(yīng)用前景。
激光燒蝕光譜(LAS,LIBS);電感耦合等離子體質(zhì)譜(ICP-MS);聯(lián)用技術(shù);地質(zhì)分析
激光燒蝕光譜(LAS、LIBS)技術(shù)利用聚焦強(qiáng)激光束激發(fā)樣品靶面,產(chǎn)生高溫等離子體,通過測定等離子體冷卻過程中發(fā)射光譜的波長和強(qiáng)度來進(jìn)行元素定性、定量分析。該技術(shù)不需要對樣品進(jìn)行繁瑣的化學(xué)處理,對樣品破壞小,具有快速、實時,可遠(yuǎn)程監(jiān)測等特點(diǎn)。隨著激光技術(shù)的發(fā)展和檢測系統(tǒng)的改善,LAS技術(shù)廣泛應(yīng)用于環(huán)境[1-5]、地質(zhì)[6]、冶金[7]、燃料能源[8-9]、核工業(yè)[10-13]、材 料[14-17]、生物 醫(yī) 藥[18-19]等 領(lǐng) 域,但激光燒蝕光譜技術(shù)對于痕量元素的分析能力不足。電感耦合等離子體質(zhì)譜(ICP-MS)分析技術(shù)是一種公認(rèn)的、強(qiáng)有力的高靈敏度多元素及同位素分析技術(shù)。但對固體樣品而言,在ICP-MS分析前通常是先將樣品消解,后轉(zhuǎn)入溶液,容易造成樣品污染和易揮發(fā)組分的丟失;同時,水溶液的存在增加了干擾和氧化物的產(chǎn)生。將LAS與ICP-MS分析技術(shù)相結(jié)合構(gòu)成LAS和LA-ICPMS聯(lián)用技術(shù)(LAS-ICP-MS),可充分利用激光將固體樣品直接引入ICP,不僅避免了濕法消解樣品的種種困難和缺點(diǎn),消除了水和酸所致的多原子離子干擾,而且提高了進(jìn)樣效率,增強(qiáng)了ICP-MS的實際檢測能力[20]。
國內(nèi)外對于LAS與ICP-MS的聯(lián)用技術(shù)報道很少,僅有幾篇文章對LIBS與LA-ICP-MS聯(lián)用技術(shù)及各自的分析能力進(jìn)行了比較闡述。Meissner等[21]對含有KBr和兩種氧化物的固體基質(zhì)中痕量金屬元素的LIBS與LA-ICP-MS同時分析結(jié)果進(jìn)行了比較。實驗表明,LIBS定量分析的最大難點(diǎn)由基體效應(yīng)和自吸收引起,樣品制備對于分析結(jié)果影響不大,常規(guī)分析相對標(biāo)準(zhǔn)偏差小于10%,檢測限可達(dá)微克量級[22];LA-ICP-MS通常情況下檢測限更低,定量結(jié)果更精確,可精確測定微克級以下的金屬元素,但分析結(jié)果受樣品制備影響大。在某些情況下,LIBS可以成為LA-ICP-MS很好的補(bǔ)充技術(shù)。Latkoczy等[23]采用 LIBS與 LA-ICP-MS技術(shù)同時分析鎂基合金工業(yè)樣品中的主量及痕量元素的分布情況,對死時間、脈寬、不同氣氛(空氣,氦氣,氬氣)、激光波長、束斑直徑及激發(fā)次數(shù)等基本參數(shù)對激光誘導(dǎo)等離子體的影響進(jìn)行了優(yōu)化實驗。實驗表明,該聯(lián)用技術(shù)可用于工業(yè)樣品微米區(qū)域內(nèi)的主量及痕量元素分布圖象快速分析,也可用于元素同位素比值分析;在不久的將來,LAS-ICP-MS將成為研究LIBS過程基本參數(shù)機(jī)理的理想診斷工具:可通過實驗ICP-MS中激光燒蝕產(chǎn)生粒子的響應(yīng)與相應(yīng)的激光燒蝕過程中發(fā)射光譜信號來研究激光燒蝕過程中的分餾效應(yīng);也可用于不同激光誘導(dǎo)等離子體隨時間、空間發(fā)展變化及燒蝕產(chǎn)生粒子間的相互作用研究。
本工作將LAS與ICP-MS通過自制專用接口裝置聯(lián)用,應(yīng)用LAS系統(tǒng)完成未知樣品的定性與主量元素的半定量分析,根據(jù)定性和半定量分析結(jié)果選擇標(biāo)準(zhǔn)物質(zhì),在LA-ICP-MS儀器上測得目標(biāo)元素計數(shù)強(qiáng)度,繪制工作曲線,旨在實現(xiàn)未知樣品的定量分析,并提高樣品分析的效率。
1.1.1 主要儀器 Nd-YAG 213nm 固體激光器:美國CETAC產(chǎn)品,型號LSX-213,激光能量4.5mJ/脈沖,脈沖寬度5ns,脈沖頻率1~20 Hz,燒蝕斑點(diǎn)5~200μm;電感耦合等離子質(zhì)譜儀:美國PerkinElmer公司產(chǎn)品,型號ELAN DCR-e;光導(dǎo)纖維CCD光譜儀:荷蘭Avants公司產(chǎn)品,型號Avaspec-2048FT-4-DT,四通道,波長范圍247~757nm,10μm狹縫,具有DCL靈敏度增強(qiáng)透鏡,DUV探測器深紫外鍍膜,OSF消二級衍射效應(yīng)濾光片,分辨率0.1nm。
1.1.2 LAS-ICP-MS搭建 搭建一套適用于LAS-ICP-MS組合分析用的實驗裝置,裝置圖示于圖1。將213nm固體激光器與四極桿質(zhì)譜儀連接,光譜儀光纖探頭通過自制專用接口裝置安置在激光器樣品室上方,調(diào)節(jié)光纖探頭使其共焦指針延長線與激光束在焦點(diǎn)相交,獲得最靈敏信號。高能量的激光束經(jīng)過聚焦后照射在樣品表面,熔融并蒸發(fā)樣品表面微區(qū),產(chǎn)生的蒸汽和細(xì)微顆粒與引入的環(huán)繞樣品的氬氣流形成氣溶膠,從樣品室的側(cè)面引出,通過特氟龍通訊接環(huán)(保證封閉體系與載氣穩(wěn)定,解決兩個系統(tǒng)的聯(lián)通),引至ICP炬管,進(jìn)行質(zhì)譜測量。
圖1 LAS-ICP-MS組合分析裝置示意圖Fig.1 Schecmatic diagram of LAS-ICP-MS
四硼酸鋰:Li2B4O7,相對分子質(zhì)量169.2,純度>99.995%,加拿大Claisse公司產(chǎn)品;天然巖石國家標(biāo)準(zhǔn)物質(zhì):GBW07108;NIST人工合成硅酸鹽玻璃標(biāo)準(zhǔn)參考物質(zhì):NIST610。
準(zhǔn)確稱取天然巖石國家標(biāo)準(zhǔn)物質(zhì)0.800 0g(準(zhǔn)確至0.001g)(GBW07108),加入5.600 0g(準(zhǔn)確至0.001g)四硼酸鋰,混合物在鉑金坩堝中混勻,于高溫熔融儀上1 050℃熔融10min,熔融至透明無氣泡,傾倒入坩堝蓋中,待凝固后扣出,即為標(biāo)準(zhǔn)玻璃熔片。將其放入213nm激光器樣品室,在大氣中開啟LAS,監(jiān)測光譜信號,進(jìn)行定性測量。根據(jù)LAS結(jié)果,選取NIST610為標(biāo)準(zhǔn)參考物質(zhì)。蓋上樣品室的蓋子,激光器軟件選用“purge”模式,通Ar氣穩(wěn)定15min,然后改為“online”模式,調(diào)節(jié)光纖探頭使其共焦指針延長線與激光束在焦點(diǎn)相交,用激光激發(fā)樣品表面,Ar作為載氣,將激光激發(fā)后的氣溶膠送入ICP-MS中進(jìn)行質(zhì)譜定量測量;同時采集LAS信號,做定性分析以作補(bǔ)充。
設(shè)計專用光纖探頭與LA-ICP-MS接口,其裝置圖示于圖2。該接口由光纖探頭支架與共焦指針組成。利用底座支架、緊固件將光纖探頭固定,可通過調(diào)節(jié)底座支架,緊固件上的螺栓,對光纖探頭實現(xiàn)上下、左右以及角度多維調(diào)節(jié);共焦指針一端固定在共焦指針架上,另一端活動,共焦指針可以伸縮,將指針展開,將共焦指針架撥至第二緊固件上的凸部處,可使共焦指針與光纖探頭共軸,通過調(diào)節(jié)共焦指針可以確保光纖探頭對準(zhǔn)焦平面的激發(fā)點(diǎn),有利于提高光譜信號捕捉靈敏度。
圖2 光纖探頭的接口裝置的示意圖Fig.2 Schematic diagram of the connector of the fiber optic probe
用NIST研制的人工合成硅酸鹽玻璃標(biāo)準(zhǔn)參考物質(zhì)NIST610進(jìn)行儀器工作參數(shù)優(yōu)化,使儀器達(dá)到最大的靈敏度、最小的氧化物產(chǎn)率(CeO/Ce<3%)和最低的背景值。由于ELAN DRC-e離子透鏡具有AutoLens(自動離子透鏡最佳化)功能,所以儀器最佳化過程可以在半小時內(nèi)完成。采樣方式為面剝蝕,數(shù)據(jù)采集選用一個質(zhì)量峰一點(diǎn)的跳峰方式(peak jumping)。儀器工作參數(shù)列于表1。NIST610作為含量已知的標(biāo)準(zhǔn)物質(zhì),用工作曲線法測量微量元素含量。
積分時間越長,累積信號越強(qiáng),越有可能達(dá)到光譜儀飽和信號,但背景干擾強(qiáng)。在4mJ能量密度下優(yōu)化積分時間,實驗選取積分時間為10ms、100ms、500ms和1 000ms,所得 LAS譜圖示于圖3。由圖3可以看出,選取10ms的積分時間能保證足夠的靈敏度。在LA-ICP-MS測量過程中,同時用LAS采集光譜信號,得到樣品LAS譜圖。
表1 LA-ICP-MS工作參數(shù)Table 1 Operating parameters of LA-ICP-MS
對LAS譜圖進(jìn)行分析,識別前后的譜圖示于圖4。從圖4中可看出,含有B、Mg、Fe、Ti、V、Ni、Ca、Li、Zr,其中Li、Zr等含量較高,與參考值、ICP-MS分析數(shù)據(jù)有一致性。
用LA-ICP-MS對 GBW07108的玻璃熔片樣品進(jìn)行檢測,分析結(jié)果列于表2。Mg、Fe、Ti、Mn、Sr、Ba等元素含量較高,分析結(jié)果較好;Na分析結(jié)果遠(yuǎn)高于參考值,制樣過程可能有污染;由于把樣品稀釋了8倍,其他各元素的測量值很接近檢出限,測量值與參考值的偏差較大,但基本控制在10%以內(nèi),RSD基本都優(yōu)于5%;含量很低的REE、U、Th、Nb、Ta、Ag等元素測量結(jié)果很接近參考值,而且RSD大都優(yōu)于5%,說明本方法能夠快速測量玻璃片中微痕量元素含量,靈敏度、準(zhǔn)確度能夠滿足微痕量元素分析要求,而且可以解決濕法分析中Nb、Ta、Zr、Hf易水解的難點(diǎn)。
圖3 不同積分時間的LAS譜圖Fig.3 Laser ablation spectrums of different integration times
圖4 10ms積分時間LAS譜圖Fig.4 Laser ablation spectrums in integration time of 10ms
表2 用LA-ICP-MS對GBW07108玻璃熔片樣品分析的結(jié)果Table 2 Analysis results of GBW07108by LA-ICP-MS
采用LAS-ICP-MS對四硼酸鋰熔融玻璃片法制備的樣品進(jìn)行檢測,能夠使用LAS對樣品主量元素進(jìn)行快速定性測量,對樣品進(jìn)行快速篩選,對激光條件進(jìn)行優(yōu)化;同時ICP-MS可對玻璃片中微痕量元素含量進(jìn)行快速定量測量,靈敏度、準(zhǔn)確度能夠滿足微量元素分析要求,并能夠解決濕法分析中Nb、Ta、Zr、Hf易水解的難點(diǎn)。本方法采用四硼酸鋰熔融玻璃片法制樣,硼和鋰作為溶劑基體,沒能解決Li、B的直接測量問題。下一步工作將開展LAS主微量元素定量分析方法研究,充分檢驗LAS與LA-ICP-MS聯(lián)用技術(shù)的適用性。
[1] 姜勁鋒,徐鴻志,郭 偉,等.粉末壓餅LA-ICP-MS測定土壤樣品中微量元素[J].分析試驗室,2007,26(1):20-24.
[2] 王建偉,張娜珍,侯可勇,等.LIBS技術(shù)在土壤重金屬污染快速測量中的應(yīng)用[J].化學(xué)進(jìn)展,2008,20(7-8):1 165-1 171.
[3] GOTTFRIED J L,LUCIA F C D ,MUNSON C A,et al.Laser-induced breakdown spectroscopy for detection of explosives residues:a review of recent advances,challenges and future prospects[J].An-alytical and Bioanalytical Chemistry,2009,395(2):283-300.
[4] BURAKOV V S ,RAIKOV S N,TARASENKO N V,et al.Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis(review)[J].Journal of Applied Spectroscopy,2010,77(5):595-608.
[5] GAUDIUSO R,AGLIO M D,PASCALE O D,et al.Laser induced breakdown spectroscopy for elemental analysis in environmental,cultural heritage and space applications:a review of methods and results[J].Sensors,2010,10(8):7 434-7 468.
[6] VISENTINI U,CRISTOFORETTI G,LEGNAIOLI S,et al.Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy(LIBS)technique[J].Optoelectronics Letters,2007,3(3):222-226.
[7] BENGTSON A,THOMAS B J.激光誘導(dǎo)擊穿光譜技術(shù)對冶金樣品中鋼及爐渣的同時分析[J].冶金分析,2009,29(2):8-13.
[8] FRANCESCO FERIOLI,STEVEN G,BUCKLEY.Measurements of hydrocarbons using laser-induced breakdown spectroscopy[J].Combustion and Flame,2006,144:435-447.
[9] ESSINGTON M E,MELNICHENKO G V,STEWART M A.Soil metals analysis using laser-induced breakdown spectroscopy (LIBS)[J].SoilScience Society of America Journal,2009,73 (5):1 469-1 478.
[10] MICHEL A P M,MARION L S,MICHAEL ANGEL S,et al.Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures:evaluation of key measurem [J].Applied Optics,2007,46(13):2 507-2 515.
[11] LAWRENCE-SNYDER M,SCAFFIDI J,ANGEL S M,et al.Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions[J].Applied Spectroscopy,2006,60:786-790.
[12] BEDDOWS D C S,TELLE H H.Prospects of real-time single-particle biological aerosol analysis:A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry[J].Spectrochimica Acta Part B,2005,60:1 040-1 059.
[13] VISENTINI U,CRISTOFORETTI G,LEGNAIOLI S,et al.Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS)technique[J].Optoelectronics Letters,2007,3(3):222-226.
[14] 陸運(yùn)章,汪家升,李威霖,等.用激光誘導(dǎo)擊穿光譜技術(shù)定量分析礦石樣品中Si和 Mg[J].中國激光,2009,36(8):2 109-2 114.
[10] Applied Photonics Limited.Remote characterization of high-level radioactive waste at the THORP nuclear reprocessing plant. Website:www.appliedphotonics.co.uk/PDFs/002_Thorp_basket_h(yuǎn)andling_cave.pdf.
[11] Applied Photonics Limited.Identification of materials within spent fuel cooling ponds using LIBS Probe with a submersible remote probe.Website:www.appliedphotonics.co.uk/PDFs/004_Underwater_LIBS.pdf.
[12] Applied Photonics Limited.In-situ compositional analysis of economiser tubes within the Sub-Boiler Annulus of an AGR pressure vessel.Website:www.appliedphotonics.co.uk/PDFs/005_analysis_of_sba_economiser_tubes.pdf.
[13] WHITEHOUSE A I,YOUNG J,EVANS C P,et al .Remote compositional analysis of spent-fuel residues using laser-induced breakdown spectroscopy[C].WM’03Conference,Tucson,Arizona,2003,23-27.
[14] BRIDGE C M,POWELL J,STEELE K L,et al.Characterization of automobile float glass with laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry [J].Applied Spectroscopy,2006,60(10):1 181-1 187.
[15] DEATH D L,CUNNINGHAM A P,POLLARD L J.Multi-element analysis of iron ore pellets by laser induced breakdown spectroscopy and principal components regression [J].Spectrochimica Acta Part B,2008,63:763-769.
[16] HERRERA K K,TOGNONI E,GORNUSHKIN I B,et al.Comparative study of two standardfree approaches in laser induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions[J].Anal At Spectrom,2009,24:426-438.
[17] WERITZ F,TAFFE A,SCHAURICH D,et al.Detailed depth profiles of sulfate ingress into concrete measures with laser induced breakdown spectroscopy[J].Construction and Building Materials,2009,23:275-283.
[18] KUMAR A,YUEH F U,SINGH J P,et al.Characterization of malignant tissue cells by laser-induced breakdown spectroscopy [J].Appl Opt,2004,43(28):5 399-5 403.
[19] SINGHV K,SINGH V,RAI A K,et al.Quantitative analysis of gallstones using laser-induced breakdown spectroscopy [J].Applied Optics,2008,47(31):G38-G47.
[20] 羅 彥,胡圣虹,劉勇勝,等.激光剝蝕電感耦合等離子體質(zhì)譜微區(qū)分析新進(jìn)展[J].分析化學(xué),2001,29(11):1 345-1 352.
[21] MEISSNER K,LIPPERT T,WOKAUN A,et al.Analysis of trace metals in comparison of laser-induced breakdown spectroscopy with LA-ICP-MS[J]. Thin Solid Films,2004, (453/454):316-322.
[22] YAMAMOTO K Y,CREMERS D A,F(xiàn)ERRIS M J,et al.Detection of metals in the environment using aportable laser-induced breakdown spectroscopy instrument [J].Appl Spectrosc,1996,50(2):222-233.
[23] LATKOCZY C,GHISLAIN T.Simultaneous LIBS and LA-ICP-MS analysis of industrial samples[J].Journal of Analytical Atomic Spectrometry,2006,21:1 152-1 160.
Laser Ablation Spectroscopy(LAS)Coupled with ICP-MS and Its Applications in Geoanalysis
TAN Jing,GUO Dong-fa,ZHANG Yan-h(huán)ui,XIE Sheng-kai,ZHANG Liang-sheng
(Analytical Laboratory,Beijing Research Institute of Uranium Geology,Beijing100029,China)
Laser ablation spectroscopy(LAS)is an elemental analysis method that requires in principle only optical access to the sample surface and can therefore be used as a real time,in-situ and remote monitoring method,with the advantages of the high space resolution,the speed of analysis,the ease or absence of sample preparation,the relatively low cost,and the possibility to build portable instruments that allow real field analysis for any substances(gas,liquid or solid).However,major restrictions are the poorer detection capabilities for trace elements compared to Inductively Coupled Plasma Mass Spectrometry (ICPMS).ICP-MS is a powerful,high sensitivity and low limit tool for multi-elemental and iso-topic analysis.But the sample preparation consumes time and the matrix elements influence the analysis results.Combine LAS with ICP-MS to form LAS and LA-ICP-MS can complement the weaknesses of these two techniques.For example,LAS can be used first to filter the samples of high contents to decrease the aggradation of the elements on the skimmer core and reduce the matrix effects,and to test the homogeneity of the samples and the stability of the laser,so that to improve the accuracy and precision of the analysis.The LAICP-MS has a separated laser sampling device,which makes it flexible to optimize the parameters of atomization and ionization respectively to improve the analysis performance.LAS-ICP-MS has been employed on the analysis of rocks and minerals,which shows good application prospects.
laser ablation spectroscopy(LAS,LIBS);inductively coupled plasma mass spectrometry(ICP-MS);geological analysis
O 657.63
A
1004-2997(2012)04-0212-07
2011-06-13;
2012-05-10
中國核工業(yè)地質(zhì)局資助(HD200801)
譚 靖(1979~),女(漢),山東人,博士研究生,從事激光光譜與質(zhì)譜技術(shù)研究。E-mail:jing.t@live.com
郭冬發(fā)(1965~),男(漢),江西人,研究員級高級工程師,從事核地質(zhì)分析測試技術(shù)研究。E-mail:guodongfa@263.net