王於平, 肖建強(qiáng)
(1.南京林業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,南京 210037; 2.南京工程學(xué)院土木工程系,南京 211100)
參數(shù)邊界條件下奇型Sturm-Liouville算子的半逆問題
王於平1, 肖建強(qiáng)2
(1.南京林業(yè)大學(xué)應(yīng)用數(shù)學(xué)系,南京 210037; 2.南京工程學(xué)院土木工程系,南京 211100)
譜;勢函數(shù);半逆問題;參數(shù)邊界條件
在譜理論中,反譜問題是熱點(diǎn)問題之一,1929年Ambartsumyan[1]首次研究了這類問題,1946年以后,Borg[2],Levinson[3],Levitan[4]等都做了大量的工作;近幾年,Sakhnovich[6],Rostyslav,Mykytyuk,Yaroslav[7],Koyunbakan,Panakhov[8-9]等研究了半逆問題并取得了一些可喜的成果;Fulton[11],Binding,Browne,Seddighi[12],Binding,Browne,Browne,Waston[13],Zhang,Huang[14]等研究了參數(shù)邊界條件下Sturm-Liouville的問題,取得了一些有一定影響的成果.由于參數(shù)邊界條件下Sturm-Liouville的問題比較復(fù)雜,這類問題的半逆問題難以解決,文[13]利用Crum和Darboux變換解決了一類Sturm-Liouville問題的特征根的重?cái)?shù)、估計(jì)式等問題,使研究這類參數(shù)邊界條件下的奇型Sturm-Liouville算子的半逆問題變?yōu)榭赡?,本文利用Koyunbakan和Panakhov的方法和[13]的結(jié)果,討論(0,π)上的勢函數(shù)中含1/sin2x的Sturm-Liouville算子L滿足參數(shù)邊界條件y(0,λ)=0或y′(0,λ)-hy(0,λ)=0和y′(π,λ)+(aλ+b)y(π,λ)=0的半逆問題,得到了新的結(jié)果,即由一組譜和(π/2,π)上的勢函數(shù)q(x)唯一確定(0,π)上勢函數(shù)的q(x).本文推廣了文[9]的結(jié)果.
我們先介紹勢函數(shù)中含1/sin2x的Sturm-Liouville算子[5].Legendre函數(shù)是典型的超幾何函數(shù),它是在球?qū)ΨQ問題中產(chǎn)生的,這類算子是由經(jīng)典的Legendre方程經(jīng)過下面變換得到的.Legendre方程是
根據(jù)[13]的結(jié)果,滿足(8),(9(i)),(10)和(8),(9(ii)),(10)的Sturm-Liouville問題的特征值有三種情況,經(jīng)過Crum和Darboux變換,其它兩種情況都可以轉(zhuǎn)化為滿足(8),(9(i)),(10)和(8),(9(ii)),(10)的Sturm-Liouville問題僅具有實(shí)的、簡單的點(diǎn)譜.因此,我們只要考慮滿足(8),(9(i)),(10)和(8),(9(ii)),(10)的Sturm-Liouville問題具有實(shí)的、簡單的點(diǎn)譜{λn}.根據(jù)[5,13,14],不難得到
引理3 (i)當(dāng)(10)中a≠0時(shí),設(shè)滿足(8),(9(i)),(10)的Sturm-Liouville問題具有實(shí)的、簡單的點(diǎn)譜{λn}(n≥0),則{λn}是(10)的根,并滿足下面漸近式
(ii)當(dāng)(10)中a≠0時(shí),設(shè)滿足(8),(9(ii)),(10)的Sturm-Liouville問題具有實(shí)的、簡單的點(diǎn)譜{λn}(n≥0),則{λn}是(10)的根,并滿足下面漸近式
根據(jù)[5],可以得到
引理4[5]當(dāng)(10)中a=0時(shí),滿足(8),(9(ii)),(10)的Sturm-Liouville問題具有實(shí)的、簡單的點(diǎn)譜{λn}(n≥0),則{λn}是(10)的根,并滿足下面漸近式
根據(jù)[15],利用變換算子性質(zhì),可以得到
引理5 方程(8),(9(ii))的解可寫為
其中積分核A(x,t)是下面的偏微分方程的解
下面證明本文的定理1及定理2.
定理1的證明 根據(jù)引理1,方程(8),(9(i))和(11),(12(i))的解分別為
類似地可以證明定理2,不再贅述.
[1] Ambartsumyan V A.über eine frage der eigenwerttheorie[J].Zeitschrift für Physik,1929,53:690-695.
[2] Borg G.Eine umkehrung der Sturm-Liouvillesehen eigenwertaufgabe[J].Acta Mathematica,1945,78:1-96.
[3] Levinson N.The inverse Sturm-Liouville problem[J].Mathematica Tidsskrift 13,1949,25-30.
[4] Levitan B M.On the determination of the Sturm-Liouville operator from one and two spectra[J].Mathematics of the USSR Izvestija,1978,12:179-193.
[5] Hochstadt H.The Functions of Mathematical Physics[M].New York:Wiley Interscience,1971.
[6] Sakhnovich L.Half inverse problems on the finite inteval[J].Inverse Problems,2001,17:527-532.
[7] Rostyslav H,Mykytyuk O,Yaroslav V.Half-inverse spectral problems for Sturm-Liouville operators with singular potentials[J].Inverse Problem,2004,20(5):1423-1444.
[8] Koyunbakan H,Panakhov E S.Half-inverse problem for diffusion operators on the finite interval[J].J.Math.Anal.Appl.,2007,326:1024-1030.
[9] Koyunbakan H,Panakhov E S.Half-inverse problem for operators with singular potential[J].Integral Transforms and Special Functions,2007,18(10):765-770.
[10] Hochstadt H,Lieberman B.An inverse Sturm-Liouville problem with mixed given data[J].SIAM Journal of Applied Mathematics,1978,34:676-680.
[11] Fulton C T.Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[J].Proc.Edinb.Math.Soc.1977,77A:293-308.
[12] Binding P A,Browne P J,Seddighi K.Sturm-Liouville problems with eigenparmeter dependent boundary condtions[J].Proc.Edinb.Math.Soc.1993,37:57-72.
[13] Binding P A,Browne P J,Bowne W J,Watson B A.Transformation of Sturm-Liouville problems with decreasing affine boundary conditions[J].Proc.Edinb.Math.Soc,2004,47:533-552.
[14] Zhang Mao zhu,Huang Zhen you.aclass of sturm-liouville problems with eigenparameter dependent two boundary conditions[J].Acta Analysis Functionalis Applicata,2008,10(4):366-372.
[15] Levitan B M and Sargsjan I S.Sturm-Liouville and Dirac operators[M].Dordrecht:Kluwer Academic Publishers,1990.
Half-inverse Problem for Singular Sturm-Liouville Operators with an Eigenparameter Boundary Condtion
WANG Yu-ping1, XIAO Jian-qiang2
(1.Department of Applied Mathematics,Nanjing Forestry University,Nanjing,Jiangsu 210037,China;2.Department of Civil Engineering,Nanjing Institute of Technology,Nanjing,Jiangsu 211100,China)
spectrum;potential function;half-inverse problem;eigenparamenter boundary condtions
O175.12
A
1672-1454(2012)03-0053-06
2009-12-04