程桂賢, 何國龍
(浙江師范大學數(shù)理與信息工程學院,浙江金華 321004)
非線性方程求解的方法和理論是當今數(shù)值分析研究的重要課題之一,而Newton迭代法是非線性方程求根的重要經(jīng)典方法[1-2],其迭代公式為
收斂階為2.
近年來,有不少工作者對Newton迭代法進行了改進[3-6].如文獻[5]中的Newton-Steffensen迭代法,其迭代公式為
Chebyshev-Halley迭代法是一族收斂階為3的迭代法,而且一些著名的迭代法包含其中.例如,當法[6-8].然而,在Chebyshev-Halley迭代法中含有二階導數(shù)的計算.因此,它在實際應用中受到了一定的限制.故求解非線性方程時經(jīng)常會選用Newton迭代法.
至今,已有許多文獻對 Chebyshev迭代法、Halley迭代法及 Chebyshev-Halley迭代法進行了改進[9-13],其結(jié)果優(yōu)于經(jīng)典的Chebyshev-Halley迭代法及Newton迭代法.在上述工作的影響下,本文也提出了一族新的免求二階導數(shù)的Chebyshev-Halley型迭代法.在每次迭代過程中只需計算2個函數(shù)值和1個一次導數(shù)值,其收斂階仍為3.數(shù)值實驗結(jié)果也驗證了此方法的有效性.
設(shè)非線性方程
在開區(qū)間D?R→R上有單根α,且f(x)在D上充分光滑.將f(x)在xn(xn為n次迭代值)處泰勒展開,得
將x=α代入式(5)得
由式(7)可得
由式(8)和式(9)可得
于是,得到一族新的免求二階導數(shù)的Chebyshev-Halley型迭代法
定理1 設(shè)f:D?R→R在α附近充分光滑,α∈D是方程f(x)=0的單根,且x0充分靠近α,則由式(12)所定義的迭代式的收斂階至少為3,且誤差方程為
證明 將f(xn),f'(xn)在α處泰勒展開,得
于是
將式(15)及式(19)代入式(11)可得
故
于是1
因此
定理1得證.
當β=0時,可得到另一種新的3階迭代法
為了驗證本文所給出的迭代法的有效性,對每個算例都用文獻[1-2]中的Newton迭代式(NM)、文和本文所給出的迭代式(26)(MCH1)及迭代式(27)(MCH2)進行比較.
給出以下計算實例:
此處x*為方程f(x)=0的根α的近似值,xn為n次迭代后方程f(x)=0的根α的近似值,用TNFE表示函數(shù)值的求解總次數(shù),ITN表示迭代次數(shù),COC表示計算的收斂階的近似值,其計算公式為[14]
數(shù)值計算結(jié)果見表1.
表1 TNFE=12為中止迭代的判定條件
續(xù)表1
表2 |xn+1-xn|≤1.0×10-20為中止迭代的判定條件
給出的數(shù)值結(jié)果說明此方法是有效的.
[1]Ostrowski A M,Rheinboldt W G.Iterative solution of nonlinear equations in several variables[M].New York:Academic Press,1970.
[2]Traub J F.Iterative methods for the solution of equations[M].New York:Chelsea Publishing Company,1977.
[3]Amat S,Busquier S,Gutiérrez J M.Geometric constructions of iterative functions to solve nonlinear equations[J].Computational and Applied Mathematics,2003,157(1):197-205.
[4]Frontiti M,Sormani E.Modified Newton's method with third-order convergence and multiple roots[J].Computational and Applied Mathematics,2003,156(2):345-354.
[5]Sharma J R.A composite third order Newton-Steffensen method for solving nonlinear equations[J].Applied Mathematics and Computation,2005,169(1):242-246.
[6]Gutiérrez J M,Hernández M A.A family of Chebyshev-Halley type methods in Banach spaces[J].Bulletin of the Australian Mathematical Society,1997,55(1):113-130.
[7]Argyros I K.A note on the Halley method in Banach spaces[J].Applied Mathematics and Computation,1993,58(2/3):215-224.
[8]Gutiérrez J M,Hernández M A.An acceleration of Newton's method:super-Halley method[J].Applied Mathematics and Computation,2001,117(2):223-239.
[9]Kou J,Li Y,Wang X.Modified Halley's method free from second derivative[J].Applied Mathematics and Computation,2006,183(1):704-708.
[10]Kou J,Li Y.Modified Chebyshev's method free from second derivative for non-linear equations[J].Applied Mathematics and Computation,2007,187(2):1027-1032.
[11]Chun C.Some variants of Chebyshev-Halley methods free from second derivative[J].Applied Mathematics and Computation,2007,191(1):193-198.
[12]Chun C.Some second-derivative-free variants of Chebyshev-Halley methods[J].Applied Mathematics and Computation,2007,19(2):410-414.
[13]Zhou Xiaojian.Modified Chebyshev-Halley methods free from second derivative[J].Applied Mathematics and Computation,2008,203(2):824-827.
[14]Weerakoon S,F(xiàn)ernando T G.A variant of Newton's method with accelerated third-order convergence[J].Applied Mathematics Letters,2000,13(8):87-93.