王 月 ,熊振湖 *,周建國 (.天津城市建設學院環(huán)境與市政工程系,天津市水質科學與技術重點實驗室,天津300384;.天津城市建設學院材料科學與工程系,天津 300384)
杯[4]芳烴修飾Amberlite XAD-4樹脂去除水中雙氯芬酸
王 月1,熊振湖1*,周建國2(1.天津城市建設學院環(huán)境與市政工程系,天津市水質科學與技術重點實驗室,天津300384;2.天津城市建設學院材料科學與工程系,天津 300384)
通過偶氮化反應將合成的去叔丁基杯[4]芳烴連接到Amberlite XAD-4樹脂上,并且采用FTIR、SEM和TG/DTA法表征了杯[4]芳烴修飾Amberlite XAD-4樹脂的結構.結果表明,水溶液中杯[4]芳烴修飾Amberlite XAD-4樹脂對雙氯芬酸的去除率遠大于單獨Amberlite XAD-4樹脂和杯[4]芳烴.雙氯芬酸的濃度為20mg/L時,隨著杯[4]芳烴修飾AmberliteXAD-4樹脂投加量的增加,雙氯芬酸的去除率增加很快.當吸附劑量增加到80mg/L時,雙氯芬酸的去除率為92.8%,并且達到吸附平衡,吸附的雙氯芬酸量為34.02mg/g. Langmuir和Freundlich等溫線與實驗數(shù)據(jù)均有很好的擬合度.對熱力學參數(shù)的計算表明,△H與△G負值顯示出反應的放熱和自發(fā)過程.
杯[4]芳烴;AmberliteXAD-4樹脂;修飾;雙氯芬酸;吸附
雙氯芬酸(DCF)是一種具有鎮(zhèn)痛、抗關節(jié)炎和抗風濕作用的非甾體抗炎藥,人類服用 DCF之后有15%以原藥的形式排出體外[1].由于DCF生物降解能力低和在環(huán)境中的持久性,污水處理廠僅能將其部分去除(50%),在污水處理廠出水中的濃度已達到0.14~1.48μg/L,為表面水體和城市廢水中最頻繁出現(xiàn)的藥物與個人護理用品(PPCPs)之一[2],且對陸生脊椎動物和魚類的生長已產生逆向作用[3].另外,污水處理過程的微生物代謝還可能引發(fā)DCF生物活性代謝物的釋放[4].
目前,去除水中 DCF的方法有吸附法,膜過濾,高級氧化法等[5-7].其中吸附處理是一種簡單,快速,費用低廉與可重復使用的方法.常用的吸附劑材料有二氧化硅、活性碳、沸石等[8-10].但這些吸附劑的吸附容量并不充分[11-12].
杯芳烴是由苯酚-甲醛縮合而成的一類環(huán)狀低聚物,它具有可調節(jié)預成型的疏水性空穴,剛性構象以及在其上緣(酚羥基),下緣(叔烷基)可進行選擇性的官能團取代[13-14].這些特性賦予了杯芳烴可與一系列有機或無機化合物形成主-客體配位絡合物,并因此被廣泛用做水介質中對中性物種和金屬離子的捕捉劑[15-16].但杯芳烴的疏水性導致它在水中的溶解性很低,需要在有機溶劑中進行液-液萃取,而且萃取之后還要進行繁瑣的分離步驟[17-18].另一方面,溶液中杯[4]芳烴的吸附能力還受到構象等因素的制約[19].上述原因在一定程度上限制了它們在水處理中的實際應用.為此,近期有人采用共價或浸漬方式將杯[4]芳烴結合到聚合物基質上或者接枝到 SiO2納米顆粒上,在改善杯[4]芳烴對有機污染物與重金屬離子的選擇性萃取的同時還可方便地將吸附劑從水中分離出來[20-22].
Amberlite XAD-4是聚苯乙烯型非極性大孔樹脂.由于這類樹脂具有大的孔結構和較高的比表面積和優(yōu)良的化學,物理和熱穩(wěn)定性以及對水溶液不同pH值的耐受性,使其成為水中有機分子和金屬離子優(yōu)良的固相萃取材料[23-24].另外,Amberlite XAD-4樹脂聚合物網(wǎng)絡中的苯環(huán)殘基還可以容易地共價連接不同的功能基團,進而衍生出具備優(yōu)異結合特性的吸附材料[25-26].
本文研究杯[4]芳烴與Amberlite XAD-4樹脂二種吸附材料優(yōu)點的相互結合,提高杯[4]芳烴-Amberlite XAD-4樹脂復合吸附材料的吸附能力.為此,通過重氮化反應將杯[4]芳烴共價結合到 Amberlite XAD-4樹脂上.在杯芳烴修飾Amberlite XAD-4樹脂復合材料表征的基礎上,探討吸附劑的量,溶液 pH值等參數(shù)的變化對去除水中DCF的影響;采用準一級與二級模型對吸附過程進行擬合;計算不同溫度下吸附自由能(ΔG),焓(ΔH),熵(ΔS)等熱力學參數(shù).
實驗全部溶液為分析級試劑.NaOH,甲醛,二苯醚,丙酮,乙酸,乙醇等購自天津江天化學品公司.雙氯芬酸(DCF)鈉鹽的純度≥98%(安陽九州藥業(yè)有限責任公司),用于制備濃度為500mg/L的本體溶液,在使用前將其稀釋到所需濃度.實驗用水為二次蒸餾水.
HZQ-QG振蕩器(中國哈爾濱東聯(lián)電子技術開發(fā)有限公司),紫外-可見分光光度計(北京普析通用儀器有限責任公司).紅外光譜的數(shù)據(jù)由傅利葉變換紅外光譜儀(FTIR,NEXUS-5670, Nicolet, America)測得.采用S II Nano Technology Inc的TG/DTA6300型熱重分析儀檢測杯[4]芳烴修飾安珀萊特 XAD-4樹脂的熱穩(wěn)定性.用PHILIPS公司的XL30-ESEM環(huán)境掃描電鏡觀察修飾樹脂的表面形貌.
1.2.1 杯[4]芳烴的合成 根據(jù)文獻方法合成了對叔丁基杯[4]芳烴[27-28],繼而以甲苯為溶劑,無水三氯化鋁為催化劑,在氮氣保護下通過逆付-克反應的脫烷基化得到去叔丁基的杯[4]芳烴.
1.2.2 杯[4]芳烴與Amberlite XAD-4樹脂的修飾 圖 1給出了杯[4]芳烴(II)在 Amberlite XAD-4樹脂(4)上的固定化過程[29-30].第 1步,在連續(xù)攪拌下將Amberlite XAD-4樹脂微球(5.0g)加入到由65% HNO3(10mL)和98% H2SO4(25mL)組成的混合物中,緩慢升溫至50℃反應30min.降至室溫后將反應混合物傾入到冰水中,過濾出硝化的樹脂微球,用二次去離子水洗滌硝化的樹脂數(shù)遍,直到不顯酸性.第2步,將硝化的樹脂加入到由37% HCl(16mL)和無水乙醇(20mL)組成的混合溶液中,攪拌下加入 SnCl2·2H2O(15g, 66.48mmol),在90℃加熱回流37h,使樹脂上的硝基還原為氨基.冷卻至室溫,依次用二次去離子水和2.0mol/L NaOH洗滌固體小球,以從生成的氨基樹脂(R—NH2)中去除副產物(R—NH3)2SnCl6.最后,用2.0mol/L HCl和過量二次去離子水洗滌氨基樹脂.第3步,將氨基樹脂懸浮在低于5℃冰水(400mL)中,有規(guī)律地將 1.0mol/L NaNO2和1.0mol/L HCl逐滴加入到反應體系中進行樹脂的重氮化反應(混合物使淀粉-碘化鉀試紙變藍紫色為反應終點).反應結束,將重氮化樹脂過濾,冷水洗滌.第4步是去叔丁基杯[4]芳烴與重氮化樹脂的接枝,為此,將冰醋酸與丙酮(3:1)混合液降溫至 0~3℃,加入重氮化的樹脂與去叔丁基杯[4]芳烴(5mmol, 2.1g)反應過夜,得到修飾樹脂的暗灰色小球,過濾,依次用二次去離子水與氯仿洗滌并在室溫下干燥.
用 UV-vis分光光度計分析水溶液中DCF濃度,并且計算單位吸附劑對 DCF的吸附量(公式1)和去除率(公式2).每次實驗做平行3份.
式中, qe為吸附劑對吸附質的吸附量,mg/g;V為溶液體積,mL;C0,Ce和Ct分別是吸附前,吸附平衡和t時刻溶液中DCF的質量濃度,mg/L;m為杯[4]芳烴修飾 Amberlite XAD-4樹脂的量,g; r是DCF的去除率,%.
準確稱取 80mg杯[4]芳烴修飾樹脂,分別加入到 150mL濃度為 10,20,30,40,50,60mg/L的DCF水溶液中,然后置于一個振蕩器上,于溫度288,298,308,318K,160r/min搖動4h,濾出吸附劑,在275nm波長下用UV-vis分光光度計測定濾液中DCF的吸光度.根據(jù)Freundlich方程(公式3)與Langmuir方程(公式4)計算吸附等溫線的相關常數(shù).
式中, kf為Freundlich吸附系數(shù);n為Freundlich常數(shù);Xm和aL為Langmuir常數(shù).
取一系列 250mL錐形瓶,各自加入 150mL初始濃度為20mg/L的DCF本體溶液,再分別加入80mg杯芳烴修飾樹脂,調節(jié)pH值為6.0,密封錐形瓶,以 160r/min速度振搖,一定時間間隔(20, 40,60,80,100,120,150,180,210,240,300,360,420, 480min)取樣,用UV-vis分光光度計在275nm下測定濾液中 DCF的吸光度,并且計算吸附劑對DCF的吸附量.
2.1.1 杯[4]芳烴修飾樹脂的外形外貌 圖 2A是純Amberlite XAD-4樹脂放大30倍的SEM顯微圖像,可看到Amberlite XAD-4樹脂比較粗糙的表面.圖2B是杯[4]芳烴修飾Amberlite XAD-4樹脂的SEM圖像(放大30倍),可發(fā)現(xiàn)杯[4]芳烴覆蓋Amberlite XAD-4樹脂后得到的平滑與規(guī)則形狀的小球.
圖2 純Amberlite XAD-4樹脂與杯[4]芳烴修飾Amberlite XAD-4樹脂SEM圖像Fig.2 SEM images of pure Amberlite XAD-4TM and Amberlite XAD-4 resin immobilized calyx [4] arene
2.1.2 杯[4]芳烴修飾樹脂的FT-IR光譜 從圖3(A)可以明顯觀察到硝化樹脂苯環(huán)上硝基的反對稱伸縮振動(1529cm-1)和對稱伸縮振動(1349cm-1)特征峰,以及 C—N鍵的伸縮振動(841cm-1)吸收峰.圖 3(B)中杯[4]芳烴修飾Amberlite XAD-4的特征吸收峰都有體現(xiàn),但又與二者單獨存在的 FT-IR不同.在 1242,1367, 1455,1507,1698cm-1處的峰與 C—O、C—N和N=N基團的吸收有關,顯示出Amberlite XAD-4樹脂的重氮化和杯[4]芳烴與樹脂的連接狀態(tài).
圖3 Amberlite XAD-4硝基衍生物與杯[4]芳烴修飾Amberlite XAD-4樹脂的FT-IR譜Fig.3 FT-IR spectrum of Amberlite amino derivative and Amberlite XAD-4 resin modified with calyx[4] arene
圖4 杯[4]芳烴修飾Amberlite XAD-4樹脂的熱重分析Fig 4 TG/DTA of Amberlite XAD-4 resin modifed with calyx[4]arene
2.1.3 杯[4]芳烴修飾樹脂的熱重分析 如圖 4所示的熱重分析(DTA/TG)曲線可知,在加熱初期,杯[4]芳烴修飾Amberlite XAD-4樹脂就有熱損失,例如在 68℃出現(xiàn)了一個小的吸熱峰,這是由于水分損失產生的;在 349℃出現(xiàn)一個大的放熱峰,可能源自杯[4]芳烴和 XAD-4樹脂上某些功能基團的熱解;497℃處小的放熱峰預示杯芳烴骨架的開裂;最后階段的熱重曲線下降到零,說明修飾樹脂在此溫度下的汽化.
圖5給出了修飾樹脂與純Amberlite XAD-4樹脂吸附DCF吸附的比較,反應條件為DCF濃度20mg/L,pH值6.0,接觸時間4h.
圖5 杯[4]芳烴修飾Amberlite XAD-4樹脂和Amberlite XAD-4樹脂及杯[4]芳烴去除DCF的比較Fig.5 The comparison for the removal of diclofenac by modified resin,Amberlite XAD-4 and calyx [4] arene
由圖5發(fā)現(xiàn),在同樣條件下修飾樹脂對DCF的吸附量比純Amberlite XAD-4樹脂及單獨杯[4]芳烴對DCF的吸附量大很多,而且隨投加量的增加差距更顯著.當修飾樹脂的量增加到 80mg以上時,去除率的增加趨于平緩并達到平衡.
一般認為,溶液中杯[4]芳烴以錐體,部分錐體,1,2-交替及 1,3-交替的構像存在[31],而且以錐體構象的杯[4]芳烴分子最容易與客體分子形成包結絡合物[32].由于溶液中杯[4]芳烴的錐體構象只是全部構象體的一部分,而且并不是所有的杯[4]芳烴分子都參加與有機物的包結作用,表現(xiàn)為溶液中杯[4]芳烴對DCF的去除率不高.但當杯[4]芳烴固定在Amberlite XAD-4樹脂上時,由于構象間的轉變受阻,大部分杯[4]芳烴分子以錐體構象存在[33],而該構象的空穴尺寸適合DCF這類有機分子.因此,在疏水作用力驅動下 DCF分子進入樹脂固定的杯[4]芳烴的空穴內而形成主-客體包結物(圖 6).另一方面,杯[4]芳烴上的羥基與DCF上的羧基可以形成氫鍵,導致杯[4]芳烴修飾Amberlite XAD-4樹脂對DCF的吸附性能的增大.至于修飾樹脂的量達到一定程度去除率達到平衡的原因,可能是當修飾樹脂上吸附的DCF量達到一定濃度時,修飾樹脂對DCF的作用相對變小,修飾樹脂上的DCF與溶液中剩余的DCF可能呈現(xiàn)相同的電性,而同種電荷之間形成靜電斥力,有礙于修飾樹脂對溶液中 DCF的吸附,造成了杯[4]芳烴修飾Amberlite XAD-4樹脂對DCF的吸附去除率隨著投加量的增加而趨于平緩.
圖6 化合物5與DCF的相互作用示意Fig.6 Proposed interactions of the adsorbent with DCF
pH值決定著吸附劑上作用位點的化學形態(tài),因而對整個吸附過程,尤其是對于吸附劑的吸附容量有至關重要的作用.將DCF的初始濃度固定為20mg/L,修飾樹脂的量為80mg,反應時間為4h,在不同 pH值(例如 1.0,2.0,3.0,4.0,5.0,6.0,7.0和9.0)進行實驗,所得結果列于圖7.
由圖7可見,當溶液pH 值為 1到6時,DCF的去除率均超過90%.一般來說,由于DCF中羧基(–COOH)的存在,它在低 pH值下表現(xiàn)為游離分子狀態(tài),這有利于DCF分子通過π-π作用進入杯[4]芳烴及其多孔樹脂的空穴而被吸附.隨 pH值的增加,不斷增多的羥基負離子(OH–)將羧基中并逐漸成為帶負電荷的離子(–COO–),導致離子型DCF與分子態(tài)的DCF共存于溶液中.由于離子型DCF的羧基負離子是一種典型的吸電子基團,而Amberlite XAD-4樹脂苯乙烯聚合體的大 π鍵共軛體系容易供給電子,二者通過靜電吸附作用形成電子授-受體.這是 DCF吸附量增加的重要因素.但當pH值>6時,溶液中大量增加的OH–使杯[4]芳烴苯環(huán)上的酚羥基脫去質子形成負電荷,導致負電性的吸附劑與負離子型DCF產生靜電排斥,使DCF的去除率明顯下降,到pH值為9則去除率僅為1%.
圖7 不同pH值下的DCF去除率Fig.7 The removal rate of Diclofenac at different pH
圖8給出了在DCF初始濃度為10mg/L到60mg/L,杯[4]芳烴修飾Amberlite XAD-4樹脂的量為80mg,溶液體積為150mL,溫度分別為288, 298, 308, 318K,恒溫160r/min搖動4h條件下,杯[4]芳烴修飾Amberlite XAD-4樹脂對DCF的吸附等溫線.
由圖8可見,在298K下,初始濃度為20mg/L的DCF在杯[4]芳烴修飾Amberlite XAD-4樹脂上的飽和吸附量達 34.02mg/g,并且修飾樹脂對DCF的飽和吸附量隨初始濃度的增大而增大.溫度升高,飽和吸附量略有下降,說明此吸附過程為放熱過程,低溫對吸附有利.
為了探討杯[4]芳烴修飾樹脂對DCF的吸附速率,在DCF初始濃度C0=20mg/L,pH6.0,吸附劑投加量為533.3mg/L條件下,分別在288,298,308, 318K下,研究了吸附劑與DCF接觸時間對吸附量的影響,結果如圖9所示.
圖8 杯[4]芳烴修飾Amberlite XAD-4樹脂對于DCF的吸附等溫線Fig.8 Adsorption isotherms of DCF on Amberlite XAD-4 resin modified with calyx[4]arene
圖9 杯[4]芳烴修飾的Amberlite XAD-4樹脂在不同溫度下對DCF的吸附速率.Fig.9 The adsorption rates of Amberlite XAD-4 resin modified with calyx[4]arene to the DCF under the various temperature
由圖9可見,不同溫度下吸附劑對DCF的吸附速度有類似的趨勢.開始時吸附速度較快,前20min去除率就達到了60%左右,在4h后達到吸附平衡狀態(tài).對于這個現(xiàn)象,可認為開始時吸附劑上有大量未被占據(jù)的表面位點促使吸附速度相當快,但隨吸附量的增大,吸附劑上剩余表面位點逐漸減少,表現(xiàn)為吸附量的飽和.
為確定DCF在杯[4]芳烴修樹脂上的吸附速度,分別采用準一級方程式(5)和準二級方程式(6)模擬吸附過程的動力學.
式中: qe(mg/g)和qt(mg/g)是平衡與時間t杯[4]芳烴修飾樹脂吸附的DCF量;k1是一級方程式(5)的吸附速度常數(shù);k2是二級方程(6)的吸附速度常數(shù).
288~318K的qe和k1值可根據(jù)方程式(5)的ln(qe-qt)對時間t線性截距和斜率計算,方程式(6) t/qt對t的圖形應當給出一個線性關系,由此可得不同溫度下的qe與k2.上述2個方程的相關計算結果列于表1.
表1 不同溫度下動力學模型回歸系數(shù)Table 1 Coefficients of kinetic model regression at different temperatures
由表1可看出,準二級動力學模型比準一級模型更好地描述了杯[4]芳烴修飾 Amberlite XAD-4樹脂對DCF的吸附動力學.
根據(jù)方程式(5)與(6),在288,298,308,318K,評估了杯[4]芳烴修飾Amberlite XAD-4樹脂吸附DCF的熱力學參數(shù).
式中,ΔH,ΔS,ΔG,T分別是焓, 熵, Gibbs自由能和絕對溫度, k0是吸附平衡常數(shù)L/mol,R是氣體常數(shù),8.314×10-3kJ/(mol·K),根據(jù)方程式(7), lnk0對1/T繪圖可得直線,由斜率與截距得到 ΔH = -22.49kJ/mol,ΔS=-60.25J/(mol·K). ΔH為負,說明杯芳烴修飾樹脂吸附DCF是放熱過程.由方程式(8),得到288,298,308,318K下的Gibbs自由能ΔG分別為-5.0537,-4.6606,-3.9358,-3.2749kJ/mol. ΔG為負說明修飾樹脂對DCF吸附是自發(fā)過程,而且隨溫度升高 ΔG的絕對值變小,也證明低溫利于修飾樹脂對DCF的吸附.
關于低溫有利于杯[4]芳烴修飾樹脂對DCF吸附的原因,可能是當溶液中的吸附質在固體表面上吸附后,吸附質分子從原來的三維自由運動變成限制在表面層上的二維運動.根據(jù)熱力學第二定律,運動自由能的減少意味著熵的減少(ΔS<0).由計算得到吸附過程中 Gibbs自由能減少(ΔG<0),在等溫下,根據(jù)熱力學的基本關系式:ΔG = ΔH-TΔS,也可以推知ΔH<0(放熱過程),由此可知降低溫度對吸附過程有利.
3.1 不同的3種吸附劑對DCF的吸附結果表明,杯[4]芳烴修飾樹脂對 DCF有最大的吸附容量,原因是杯[4]芳烴與樹脂的偶聯(lián)使得杯芳烴的優(yōu)勢構象得以固定,促進了修飾樹脂對水中 DCF的去除.在最佳條件下,杯[4]芳烴修飾樹脂對DCF去除率達到92.8%.
3.2 溶液pH值對吸附過程有很大影響,溶液pH為1到6,杯[4]芳烴修飾樹脂對DCFD的去除率超過90%,隨pH值增大,DCF 的–COOH變成負電荷離子(–COO–),而且吸附劑中杯[4]芳烴的酚羥基(–OH)脫質子也形成負電荷(–O–),DCF負離子與吸附劑負電荷位點之間的靜電排斥力使DCF的去除率迅速減少,到pH=9,DCF去除率僅有1.1%.
3.3 根據(jù)準一級與準二級速度方程式對吸附數(shù)據(jù)進行了回歸分析,得到了不同溫度下的吸附速度常數(shù)和平衡吸附量,在298K,2個速度方程的回歸系數(shù)都達到 97%以上,而且準二級模型比準一級模型更準確地反映了吸附動力學.
3.4 等溫實驗表明,Langmuir 和 Freundlich 等溫線與實驗數(shù)據(jù)均有很好的擬合度,并且表明降低溫度有利于杯芳烴修飾樹脂對DCF的吸附.
3.5 熱力學參數(shù)的計算與理論分析表明ΔG<0,表明杯[4]芳烴修飾Amberlite XAD-4樹脂對DCF的吸附是自發(fā)的,這意味著 ΔS<0,進而推知 ΔH<0,預示吸附是一個放熱過程,溫度低對吸附有利.
[1] Zhang Y J, Gei?en S U, Carmen G. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies [J]. Chemosphere, 2008,73(8):1151-1161.
[2] Klamerth N, Rizzo L, Malato S. et al. Degradation of ffteen emerging contaminants at μg/L initial concentrations by mild solar photo-Fenton in MWTP effuents [J]. Water Research, 2010, 44(2):545-554.
[3] Scheurell M, Franke S, Shah R M, et al. Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan [J]. Chemosphere, 2009,77(6):870-876.
[4] Gloria T, Lucila C, Karim T, et al. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain) [J]. Science of The Total Environment, 2010,408(17):3584-3595.
[5] 于萬祿,熊振湖,馬華繼. Photo-Fenton法降解水中新型污染物雙氯芬酸及降解產物的毒性評價 [J]. 環(huán)境科學學報, 2009, 29(10):2070-2075.
[6] Antigoni A, Evroula H, Nikolaos P,et al. Factors affecting diclofenac decomposition in water by UV-A/TiO2photocatalysis [J]. Chemical Engineering Journal, 2010,161(1/2):53-59.
[7] Fernando J B, Almudena A, Juan F, et al. Kinetic modelling of TOC removal in the photocatalytic ozonation of diclofenac aqueous solutions [J]. Applied Catalysis B: Environmental, 2010, 100(1/2):289-298.
[8] An F, Gao B J, Feng X Q. Adsorption of 2,4,6-trinitrotoluene on a novel adsorption material PEI/SiO2[J]. Journal of Hazardous Materials, 2009,166(2/3):757-761.
[9] Zhu H S, Yang X J, Mao Y P, et al. Adsorption of EDTA on activated carbon from aqueous solutions [J]. Journal of Hazardous Materials, 2011,185(2/3):951-957.
[10] 周巖梅,張 瓊,刁曉華,等.硝基苯和西維因在活性炭上的吸附效果及動力學研究 [J]. 中國環(huán)境科學, 2010,30(9):1177-1182.
[11] 熊振湖,王 璐,周建國,等.磁性多壁碳納米管吸附水中雙氯芬酸及吸附過程的熱力學與動力學 [J]. 物理化學學報, 2010, 26(11):2890-2898.
[12] Zhang S J, Shao T, Tanju K. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes [J]. Water Research, 2011,45(3):1378-1386.
[13] Kazem D S, Yones M O. Functionalisation of the upper rim of calyx [4] arene via alcoholysis and hydrosilylation reactions [J]. Journal of Organometallic Chemistry, 2010,695(4):505-511.
[14] Mevlüt B, ?eref E, Mustafa Y. Synthesis of di-substituted calyx [4] arene-based receptors for extraction of chromate and arsenate anions [J]. Tetrahedron, 2009,65(38):7963–7968.
[15] Serkan E, Müfit B, Mustafa Yz. Extraction of carcinogenic aromatic amines from aqueous solution using calix[n]arene derivatives as carrier [J]. Journal of Hazardous Materials, 2009, 168(2/3):1170-1176.
[16] Muhammad A K, Imam B S, Sherazi S T, et al. A highly efficient calyx [4] arene based resin for the removal of azo dyes [J]. Desalination, 2011,268(1-3):83-89.
[17] Aydan Y, Elif Y, Mustafa Y, et al. Removal of azo dyes from aqueous solutions using calyx [4] arene and β-cyclodextrin [J]. Dyes and Pigments, 2007,74(1):54-59.
[18] Elsellami L, Chartron V, Vocanson F, et al. Coupling process between solid–liquid extraction of amino acids by calixarenes and photocatalytic degradation [J]. Journal of Hazardous Materials, 2009,166(2/3):1195–1200.
[19] Serkan S, Fatih O, Mustafa Y. Synthesis and evaluation of chromate and arsenate anions extraction ability of a N-methylglucamine derivative of calix[4]arene immobilized onto magnetic nanoparticles [J]. Journal of Hazardous Materials, 2010, 178(1-3):312-319.
[20] Huang H Y, Zhao C D, Ji Y S, et al. Preparation, characterization and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves [J]. Journal of Hazardous Materials, 2010, 178(1-3):680-685.
[21] Sibghatullah M, Najma M, Shahabuddin M, et al. An efficient calyx [4] arene based silica sorbent for the removal of endosulfan from water [J]. Journal of Hazardous Materials, 2011,186(2/3): 1696-703.
[22] Tatsuya O, Ryota S, Kaoru O, et al. Adsorption of amino acid derivatives on calixarene carboxylic acid impregnated resins [J]. Reactive and Functional Polymers, 2009,69(2):105–110.
[23] 徐清萍,朱廣存.XAD-16大孔樹脂分離甘草黃酮的研究 [J].河南工業(yè)大學學報 (自然科學版), 2010,31(1):49-52.
[24] Imam B S, Shahabuddin M, Bhanger M I. Removal of fuoride from aqueous environment by modifed Amberlite resin [J]. Journal of Hazardous Materials, 2009, 171(1-3):815-819.
[25] Geoffrey D, Catherine B, André Ma, et al. Synthesis and applications of XAD-4-DAN chelate resin for the separation and determination of Se (IV) [J]. Reactive and Functional Polymers, 2009,69(12):877-883.
[26] Sudhir R D, Harjinder K, Shobhana K M. Selective solid-phase extraction of rare earth elements by the chemically modified Amberlite XAD-4 resin with azacrown ether [J]. Reactive and Functional Polymers, 2010,70(9):692-698
[27] 李書軍,張德華,呂漢清,等.杯[4]芳烴合成路線的探討 [J]. 湖北師范學院學報(自然科學版), 2007,27(4):71-74.
[28] 王浩華,胡小安,羅永剛,等.杯[4]芳烴的合成與表征 [J]. 楚雄師范學院學報, 2007,22(9):42-45.
[29] Imam B S, Shahabuddin M, Bhanger M I. Synthesis and application of a highly effcient tetraester calyx [4]arene based resin for the removal of Pb2+from aqueous environment [J]. Analytica Chimica Acta, 2009,638(2):146-153.
[30] Muhammad A K, Imam B S, et al. Synthesis and application of calix[4]arene based resin for the removal of azo dyes [J]. Journal of Hazardous Materials, 2009,172(1):234-239.
[31] Bernadette S C, Denis F D, John M. Coordination chemistry of calix[4]arene derivatives with lower rim functionalisation and their applications [J]. Coordination Chemistry Reviews, 2009, 253(7/8):893-962.
[32] Kazem D S, Yones M O. Functionalisation of the upper rim of calyx [4] arene via alcoholysis and hydrosilylation reactions [J]. Journal of Organometallic Chemistry, 2010,695(4):505-511.
[33] Carmelo S, Carmela B, Fabio G G, et al. Inclusion of aromatic and aliphatic anions into a cationic water-soluble calix[4]arene at different pH values [J]. Tetrahedron Letters, 2009,50(14):1610-1613.
Removal of diclofenac on calyx [4] arene based Amberlite XAD-4 resin from aqueous solutions.
WANG Yue1, XIONG Zhen-hu1*, ZHOU Jian-guo2(1.Tianjin Key Laboratory of Aquatic Science and Technology, Department of Environmental and Municipal Engineering, Tianjin 300384,China;2.Department of Material Science and Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, China). China Environmental Science, 2012,32(1):81~88
The calyx [4] arene was synthesized and connected to Amberlite XAD-4 resin covalently through a diazotization bound. The structure of Amberlite XAD-4 resin base on calyx [4] arene was characterized using FT-IR, SEM and TG/DTA. The sorption results showed that Amberlite XAD-4 resin base on calyx [4] arene had much better removal to the diclofenac in aqueous solutions than Amberlite XAD-4 resin and calyx [4] arene which were presence alone in aqueous solutions. The removal rate of diclofenac increased rapidly with the calyx [4] arene modified Amberlite XAD-4 resin dosage. In the condition of DCF concentration was 20mg/L, when the Amberlite XAD-4 resin base on calyx [4] arene dosage came up to 80mg/L, the removal rate of diclofenac was 92.8% and reached equilibrium, the corresponding amount adsorbed was 34.02mg/g. Kinetic analyses were conducted using pseudo first-order and second-order models. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined, and the results revealed that Langmuir and Freundlich isotherm were ftted the experimental data well. The thermodynamic parameters calculated indicated, ΔH and ΔG were negative, which predicated adsorption process of diclofenac on f Amberlite XAD-4 resin base on calyx [4] arene resin was exothermic and spontaneous.
calyx[4]arene;Amberlite XAD-4 resin;modification;diclofenac;adsorption
2011-04-10
國家自然科學基金資助項目(50878138)
* 責任作者, 教授, zhenhu.xiong@126.com
X703.5
A
1000-6923(2012)01-0081-08
王 月(1985-),女,天津市人,天津城市建設學院碩士研究生,主要從事水中有機污染物化學控制的研究.發(fā)表論文3篇.