李慧鍇 綜述 李 強(qiáng) 審校
肝癌多藥耐藥機(jī)制研究進(jìn)展
李慧鍇 綜述 李 強(qiáng) 審校
原發(fā)性肝癌是我國(guó)常見(jiàn)的惡性腫瘤之一,化療是中晚期肝癌綜合治療的重要手段,但肝癌化療多藥耐藥現(xiàn)象嚴(yán)重阻礙了化療的效果。目前肝癌多藥耐藥的機(jī)制仍不明確,主要包括跨膜轉(zhuǎn)運(yùn)蛋白泵藥作用,細(xì)胞內(nèi)酶系統(tǒng)改變,MAPK信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)的激活,控制凋亡的基因和蛋白的改變,腫瘤微環(huán)境的影響等。近年隨著研究的不斷深入,又有新的相關(guān)機(jī)制報(bào)道,如內(nèi)質(zhì)網(wǎng)應(yīng)激和microRNA在肝癌耐藥中發(fā)揮著不可忽視的作用。本文就近年來(lái)肝癌多藥耐藥的相關(guān)研究進(jìn)展做簡(jiǎn)要綜述,為臨床提供新的思路。
原發(fā)性肝癌 多藥耐藥 化療
原發(fā)性肝癌是我國(guó)常見(jiàn)的惡性腫瘤之一,全世界每年約有50萬(wàn)例新發(fā)患者,其中50%發(fā)生在我國(guó),并呈逐年上升趨勢(shì)[1]。肝癌具有多血管、惡性程度高、生長(zhǎng)速度快、轉(zhuǎn)移范圍廣和復(fù)發(fā)率高等特點(diǎn),臨床治療效果不理想。治療原發(fā)性肝癌以手術(shù)切除為首選方法,但術(shù)后復(fù)發(fā)率較高,而且大多數(shù)患者就診時(shí)已喪失手術(shù)機(jī)會(huì),只能進(jìn)行輔助性綜合治療[2]?;熓侵型砥诟伟┚C合治療的重要手段,但肝癌化療多藥耐藥(multidrug resistance,MDR)現(xiàn)象嚴(yán)重阻礙了化療的效果,因此,研究引起肝癌MDR的相關(guān)因素、作用機(jī)制并逆轉(zhuǎn)MDR,提高肝癌化療效果成為亟待解決的問(wèn)題之一。
腫瘤MDR是指在腫瘤化療中細(xì)胞對(duì)于一種化療藥物產(chǎn)生耐受后,同時(shí)對(duì)其他同一或非同一類(lèi)型的化療藥物也產(chǎn)生耐藥。據(jù)統(tǒng)計(jì),90%以上的腫瘤患者化療失敗的原因都不同程度地與MDR有關(guān)。MDR的產(chǎn)生機(jī)制尚未闡明,目前認(rèn)為腫瘤化療MDR的主要分子生物學(xué)機(jī)制涉及以下幾個(gè)方面。
跨膜轉(zhuǎn)運(yùn)蛋白將化療藥物從腫瘤細(xì)胞中泵出,從而減少藥物在細(xì)胞中聚集。這類(lèi)蛋白屬于ATP結(jié)合盒(ATP-binding cassette,ABC)轉(zhuǎn)運(yùn)蛋白,主要包括P-糖蛋白(P-glycoprotein,P-gp)、MDR相關(guān)蛋白(multidrug resistance protein,MRP)以及乳腺癌耐藥相關(guān)蛋白(breast cancer resistance protein,BCRP)等。P-gp是一類(lèi)由MDR1基因編碼的跨膜糖蛋白,可將細(xì)胞內(nèi)多種抗腫瘤藥物泵出細(xì)胞外,使細(xì)胞內(nèi)藥量低而無(wú)法有效殺滅腫瘤細(xì)胞。它還可促使藥物在細(xì)胞內(nèi)再分布,積聚于與藥物作用無(wú)關(guān)的細(xì)胞器內(nèi),進(jìn)一步降低作用于靶點(diǎn)部位的藥物濃度,導(dǎo)致耐藥[3]。
還原型谷胱苷肽(reduced glutathione hormone,GSH)和谷胱苷肽巰基轉(zhuǎn)移酶(glutathione S-transfer-ase,GST)的活化,DNA拓?fù)洚悩?gòu)酶(Topoisomerase,TOPO)和蛋白激酶C(Protein Kinase C,PKC)的活性降低,都可能參與腫瘤細(xì)胞多藥耐藥的發(fā)生[4-6]。
絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是哺乳動(dòng)物細(xì)胞內(nèi)廣泛存在的一類(lèi)絲氨酸/蘇氨酸蛋白激酶,MAPK信號(hào)轉(zhuǎn)導(dǎo)通路是介導(dǎo)細(xì)胞外刺激到細(xì)胞內(nèi)反應(yīng)的重要信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng),調(diào)節(jié)著細(xì)胞的增殖、分化、凋亡和細(xì)胞間相互作用。資料顯示,MAPK通路在腫瘤化療耐藥中發(fā)揮著重要的作用,抗腫瘤藥物能夠引起MAPK信號(hào)轉(zhuǎn)導(dǎo)系統(tǒng)的激活及MDR的產(chǎn)生[7]。
多數(shù)化療藥物通過(guò)誘導(dǎo)腫瘤細(xì)胞凋亡來(lái)殺滅腫瘤細(xì)胞,細(xì)胞凋亡是一種由基因控制的細(xì)胞程序化死亡過(guò)程,腫瘤細(xì)胞MDR的產(chǎn)生也是抵抗和逃逸凋亡。隨著人們對(duì)腫瘤耐藥研究認(rèn)識(shí)的深入,更多的基因被發(fā)現(xiàn)與腫瘤耐藥密切相關(guān)。細(xì)胞凋亡有關(guān)因子及基因如 NF-κB、bcl-2、c-Jun、p53、erbB2/neu、c-myc等都參與腫瘤細(xì)胞的耐藥[8-9]。
大量和長(zhǎng)時(shí)間的的炎癥刺激和纖維化形成促進(jìn)了肝硬化和肝癌的形成和發(fā)展,其中基質(zhì)成分與癌細(xì)胞和信號(hào)通路間的相互作用是造成肝癌耐藥的重要原因之一。乏氧誘導(dǎo)因子1(hypoxia inducible factor 1,HIF-1)在缺氧條件下廣泛存在于人與動(dòng)物腫瘤細(xì)胞內(nèi),可調(diào)控MDR基因I(MDR1)的表達(dá),誘導(dǎo)MDR1/P-gp表達(dá)升高,同時(shí)通過(guò)促進(jìn)血管形成、紅細(xì)胞生成、糖代謝以及調(diào)節(jié)細(xì)胞凋亡、細(xì)胞周期等途徑,使細(xì)胞適應(yīng)乏氧微環(huán)境,是腫瘤預(yù)后差,易產(chǎn)生放療、化療耐受性的重要原因之一[8-9]。
P-gp分子量為150~180 kDa,為ABC轉(zhuǎn)運(yùn)蛋白家族中的典型代表,由MDR1基因編碼,通常認(rèn)為其定位于細(xì)胞膜,將化療藥物泵出,以降低細(xì)胞內(nèi)藥物濃度,使用抗P-gp核酶可逆轉(zhuǎn)肝癌細(xì)胞耐藥性[10-11]。P-gp還分布于阿霉素誘導(dǎo)的耐藥細(xì)胞系的細(xì)胞核膜表面,可使化療藥物從細(xì)胞核泵出[12]。但是P-gp在肝癌中的作用存在著爭(zhēng)議。P-gp在HCC中的表達(dá)個(gè)體差異比較大,有學(xué)者通過(guò)對(duì)人肝癌組織和實(shí)驗(yàn)大鼠肝腫瘤的研究發(fā)現(xiàn),P-gp過(guò)量表達(dá)與腫瘤進(jìn)展和生存減低密切相關(guān);而另有研究發(fā)現(xiàn)一部分HCC中P-gp的表達(dá)與腫瘤惡性分型和生存不相關(guān),聯(lián)合使用P-gp的調(diào)節(jié)劑維拉帕米并不能逆轉(zhuǎn)HCC的MDR。P-gp還可以調(diào)節(jié)細(xì)胞凋亡,首先P-gp把藥物和有毒物泵出胞外,然后影響caspase-3的激活,減少細(xì)胞凋亡[13]。
腫瘤微環(huán)境指細(xì)胞外基質(zhì)中的瘤樣復(fù)合物,包括基質(zhì)細(xì)胞和其所分泌的蛋白,這些物質(zhì)促進(jìn)腫瘤進(jìn)展。肝癌微環(huán)境由肝癌細(xì)胞及其周?chē)馨图?xì)胞、肝星狀細(xì)胞、纖維母細(xì)胞、特異性免疫細(xì)胞,腫瘤血管和淋巴管等構(gòu)成。這些細(xì)胞維持肝癌的增殖、逃逸生長(zhǎng)抑制,誘導(dǎo)血管形成,促進(jìn)侵襲和轉(zhuǎn)移以及進(jìn)行免疫破壞等。腫瘤內(nèi)血供差減少了化療藥物與腫瘤細(xì)胞的接觸使其耐藥。肝臟有豐富的血供,但異常新生血管是功能異常而局部缺氧,局部的缺血缺氧使得化療藥物作用降低,因?yàn)樵S多化療藥物需要與氧分子發(fā)生反應(yīng)產(chǎn)生細(xì)胞毒素后發(fā)揮作用。肝癌細(xì)胞缺氧微環(huán)境可誘導(dǎo)核轉(zhuǎn)錄因子HIF-1的表達(dá),在轉(zhuǎn)錄水平調(diào)控多藥耐藥相關(guān)基因的表達(dá),從而誘導(dǎo)肝癌多藥耐藥表型的形成,因此HIF-1α的表達(dá)上調(diào)是微環(huán)境誘導(dǎo)肝癌多藥耐藥形成的中心環(huán)節(jié)[14]。缺氧微環(huán)境下,肝癌細(xì)胞發(fā)生上皮-間葉轉(zhuǎn)化(epithelial-mesenchymal transition,EMT),細(xì)胞侵襲和遷移能力增強(qiáng),對(duì)藥物敏感性明顯降低。而間質(zhì)細(xì)胞、胞外基質(zhì)和腫瘤細(xì)胞自身通過(guò)與腫瘤細(xì)胞直接接觸,以粘附分子為介質(zhì)誘導(dǎo)耐藥[15-16]。
microRNA是一類(lèi)長(zhǎng)度在22nt左右的非編碼RNA基因產(chǎn)物,通過(guò)與mRNA的3’UTR結(jié)合而介導(dǎo)翻譯水平的調(diào)控。研究表明在肝癌細(xì)胞中某些microRNA表達(dá)異常,其通過(guò)調(diào)節(jié)很多重要的腫瘤相關(guān)基因影響肝癌細(xì)胞的生物學(xué)功能。miR-106b在肝癌細(xì)胞中明顯上調(diào),靶向作用APC(adenomatous polyposis coli),激活Wnt/β-catenin信號(hào)通路,影響G1/S期,促進(jìn)肝癌細(xì)胞的增殖。miR-490-3p在肝癌細(xì)胞表達(dá)增高,通過(guò)靶向作用ERGIC3調(diào)節(jié)細(xì)胞生長(zhǎng)和促使上皮細(xì)胞向間葉細(xì)胞分化。miR-122是肝特異性miRNA,在肝癌細(xì)胞中過(guò)表達(dá)可增加細(xì)胞對(duì)化療藥物阿霉素和長(zhǎng)春新堿的敏感性,并且能夠影響細(xì)胞周期,使G2/M期延長(zhǎng)[17-19]。
內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)是真核細(xì)胞中蛋白質(zhì)合成、折疊與分泌的重要細(xì)胞器。內(nèi)質(zhì)網(wǎng)具有極強(qiáng)的內(nèi)穩(wěn)態(tài)體系,但仍然有很多因素可導(dǎo)致ER功能的內(nèi)穩(wěn)態(tài)失衡,形成內(nèi)質(zhì)網(wǎng)應(yīng)激(ER stress)。ER應(yīng)激時(shí)ER內(nèi)未折疊蛋白質(zhì)或錯(cuò)誤折疊蛋白的蓄積,稱(chēng)為未折疊蛋白反應(yīng)(unfolded protein response,UPR),從根本上講ER應(yīng)激是細(xì)胞為適應(yīng)環(huán)境變化而做出的一系列代償性保護(hù)應(yīng)答。ER應(yīng)激首先啟動(dòng)生存途徑,通過(guò)增強(qiáng)蛋白質(zhì)的正確折疊,減少蛋白質(zhì)的合成,清除錯(cuò)誤折疊的蛋白使ER穩(wěn)態(tài)恢復(fù)平衡;如果ER功能紊亂持續(xù),細(xì)胞將最終啟動(dòng)凋亡程序[20]。使用UPR誘導(dǎo)劑GRP78處理后的肝癌細(xì)胞中P-gp轉(zhuǎn)錄激活,表達(dá)增加,進(jìn)而影響藥物的敏感性[21]。
合并乙肝病毒感染的HCC對(duì)化療藥物敏感性差,可能與乙肝病毒中HBV X基因編碼蛋白有關(guān)。HBX編碼蛋白是主要的功能蛋白,可直接或間接促進(jìn)肝炎向肝癌發(fā)展。在肝癌細(xì)胞系HepG2中過(guò)表達(dá)HBX,可使細(xì)胞產(chǎn)生MDR,凋亡明顯減少;且NF-κB活性明顯增強(qiáng)[22]。
綜上,肝癌MDR的產(chǎn)生是多基因、多因素、多途徑、多步驟綜合作用的復(fù)雜過(guò)程,研究引起肝癌MDR的相關(guān)因素、作用機(jī)制及逆轉(zhuǎn)MDR,提高肝癌化療效果成為目前肝癌研究的熱點(diǎn)。
1 Ferenci P,Fried M,Labrecque D,et al.Hepatocellular carcinoma(HCC):a global perspective.J Clin Gastroenterol[J].J Clin Gastroenterol,2010,44(4):239-245.
2 Qiang L,Huikai L,Butt K,et al.Factors associated with disease survival after surgical resection in Chinese patients with hepatocellular carcinoma[J].World J Surg,2006,30(3):439-445.
3 Martelli C,Dei S,Lambert C,et al.Inhibition of P-glycoprotein-mediated Multidrug Resistance(MDR)by N,N-bis(cyclohexanol)amine aryl esters:Further restriction of molecular flexibility maintains high potency and efficacy[J].Bioorg Med Chem Lett,2010.
4 Burg D,Riepsaame J,Pont C,et al.Peptide-bond modified glutathione conjugate analogs modulate GSTpi function in GSH-conjugation,drug sensitivity and JNK signaling[J].Biochem Pharmacol,2006,71(3):268-277.
5 Perez-Sayans M,Somoza-Martin JM,Barros-Angueira F,et al.Multidrug resistance in oral squamous cell carcinoma:The role of vacuolar ATPases[J].Cancer Lett,2010,295(2):135-143.
6 Sun LR,Zhong JL,Cui SX,et al.Modulation of P-glycoprotein activity by the substituted quinoxalinone compound QA3 in adriamycin-resistant K562/A02 cells[J].Pharmacol Rep,2010,62(2):333-342.
7 Ling X,He X,Apontes P,et al.Enhancing effectiveness of the MDR-sensitive compound T138067 using advanced treatment with negative modulators of the drug-resistant protein survivin[J].Am J Transl Res,2009,1(4):393-405.
8 Gillet JP,Gottesman MM.Mechanisms of multidrug resistance in cancer[J].Methods Mol Biol,2010,596:47-76.
9 Kutuk O,Basaga H.Bcl-2 protein family:implications in vascular apoptosis and atherosclerosis[J].Apoptosis,2006,11(10):1661-1675.
10 Qia S,Wang H,Chen X.Reversal of HCC drug resistance by using hammerhead ribozymes against multidrug resistance 1 gene[J].J Huazhong Univ Sci Technolog Med Sci,2005,25(6):662-664.
11 Huesker M,Folmer Y,Schneider M,et al.Reversal of drug resistance of hepatocellular carcinoma cells by adenoviral delivery of anti-MDR1 ribozymes[J].Hepatology,2002,36(4 Pt 1):874-884.
12 Maraldi NM,Zini N,Santi S,et al.P-glycoprotein subcellular localization and cell morphotype in MDR1 gene-transfected human osteosarcoma cells[J].Biol Cell,1999,91(1):17-28.
13 Comerford KM,Wallace TJ,Karhausen J,et al.Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance(MDR1)gene[J].Cancer Res,2002,62(12):3387-3394.
14 Zhu H,Chen XP,Luo SF,et al.Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells[J].J Exp Clin Cancer Res,2005,24(4):565-574.
15 Solazzo M,Fantappie O,Lasagna N,et al.P-gp localization in mitochondria and its functional characterization in multiple drug-resistant cell lines[J].Exp Cell Res,2006,312(20):4070-4078.
16 Hernandez-Gea V,Toffanin S,Friedman SL,et al.Role of the Microenvironment in the Pathogenesis and Treatment of Hepatocellular Carcinoma[J].Gastroenterology,2013,144(3):512-527.
17 Shen G,Jia H,Tai Q,et al.miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma[J].Carcinogenesis,2013,34(1):211-219.
18 Xu Y,Xia F,Ma L,et al.MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arres[J].Cancer Lett,2011,310(2):160-169.
19 Zhang LY,Liu M,Li X,et al.miR-490-3p modulates cell growth and epithelial to mesenchymal transition of hepatocellular carcinoma cells by targeting endoplasmic reticulum-Golgi intermediate compartment protein 3(ERGIC3)[J].J Biol Chem,2013,288(6):4035-4047.
20 Kim R,Emi M,Tanabe K,et al.Role of the unfolded protein response in cell death[J].Apoptosis,2006,11(1):5-13.
21 Ledoux S,Yang R,Friedlander G,et al.Glucose depletion enhances P-glycoprotein expression in hepatoma cells:role of endoplasmic reticulum stress response[J].Cancer Res,2003,63(21):7284-7290.
22 Liu Y,Lou G,Wu W,et al.Involvement of the NF-kappaB pathway in multidrug resistance induced by HBx in a hepatoma cell line[J].J Viral Hepat,2011,18(10):e439-446.
(2013-05-13收稿)
(2013-06-20修回)
Mechanisms of Multidrug-resistance in hepatocellular carcinoma
Huikai Li;E-mail:tjchlhk@126.com
Department of Hepatobiliary Surgery,Tianjin Medical University Cancer Institute and Hospital,National Clinical Research Center of Cancer,Tianjin 300060,China
Hepatocellular carcinoma(HCC)is one of the common malignant tumors in China.The most important treatment for middle-late stage HCC is chemotherapy.However,the development of multidrug resistance(MDR)in HCC can dramatically reduce the efficacy of chemotherapeutic treatment.At present,the mechanisms regulating the development of MDR in HCC are still unknown.These mechanisms involve ATP-dependent drug efflux pump,enzymatic deactivation,the activation of MAPK signal pathway,apoptosis gene and protein changing,the influence of the tumor microenvironment,and so on.With the development of the research,some new mechanisms are found,such as the endoplasmic reticulum stress and the effect of microRNA,which cannot be ignored.This review aims to summarize the mechanisms of MDR in HCC and discuss potential therapeutic targets for anticancer intervention.
hepatocellular carcinoma,multidrug resistance,chemotherapy
10.3969/j.issn.1000-8179.20131377
天津醫(yī)科大學(xué)腫瘤醫(yī)院肝膽腫瘤科,國(guó)家腫瘤臨床醫(yī)學(xué)研究中心(天津市300060)
李慧鍇 tjchlhk@126.com
Huikai Li,Qiang Li
(本文編輯:賈樹(shù)明)