劉德友,牛九肖
(燕山大學(xué) 理學(xué)院,河北 秦皇島066004)
常見(jiàn)的二次規(guī)劃問(wèn)題
其中:x∈Rn是決策變量;c∈Rn;Ω∈Rm是閉的凸集.約束二次規(guī)劃已經(jīng)應(yīng)用于許多科學(xué)和工程領(lǐng)域,如回歸分析、信號(hào)和圖像的處理、制造業(yè)、優(yōu)化控制和模式識(shí)別等.在過(guò)去的十年里,神經(jīng)網(wǎng)絡(luò)被認(rèn)為是解決二次規(guī)劃問(wèn)題的一種最有前景的方法[1-5].目前,已經(jīng)有一些投影神經(jīng)網(wǎng)絡(luò)技術(shù)解決了二次優(yōu)化問(wèn)題.然而,以往所研究的二次規(guī)劃僅僅停留在凸二次規(guī)劃上,即矩陣Q為正定或者半正定的[6-7],而在許多情況下,二次規(guī)劃并不是凸的,也就是說(shuō)矩陣Q可能不是正定或半正定的.此外,在許多實(shí)際應(yīng)用中,最優(yōu)化問(wèn)題還有一個(gè)自然時(shí)變亟待解決,時(shí)間延時(shí)可能導(dǎo)致震動(dòng)現(xiàn)象或者網(wǎng)絡(luò)的不穩(wěn)定.本文研究一類新的二次規(guī)劃問(wèn)題最優(yōu)解的穩(wěn)定性,推廣了以往所研究的凸二次規(guī)劃問(wèn)題,
所研究的二次規(guī)劃問(wèn)題為
式(1)中:x∈Rn是決策變量;Q∈Rn×n是亞(半)正定矩陣;c∈Rn;Ω∈Rm是閉的凸集.
為了方便討論,給出亞(半)正定矩陣的定義.
式(10)中:τ≥0是時(shí)間延遲;φ(t)在[-τ,0]上是連續(xù)的.
顯然,神經(jīng)網(wǎng)絡(luò)式(10)的平衡點(diǎn)和二次規(guī)劃問(wèn)題(1)的解是一致的.因此,時(shí)滯神經(jīng)網(wǎng)絡(luò)在其平衡點(diǎn)是穩(wěn)定的,那么網(wǎng)絡(luò)的輸出就是式(1)的解.
下面給出一些相關(guān)的定義和引理.
引理1Q為對(duì)稱的亞正定矩陣,當(dāng)且僅當(dāng)Q為正定矩陣.
由此可見(jiàn),以前所研究的嚴(yán)格凸的二次規(guī)劃是本文所研究二次規(guī)劃的一種特例.
根據(jù)引理2可以得到‖x(t)‖≤((1+τ)‖φ‖+β1‖x*‖T)exp(β1t),t∈[0,T].所以,x(t)在[0,T]上是有界的.根據(jù)引理4,式(10)在區(qū)間[0,+∞)上存在一個(gè)連續(xù)解x(t).
定理2 時(shí)滯神經(jīng)網(wǎng)絡(luò)(10)全局漸近穩(wěn)定于二次優(yōu)化(1)的解,當(dāng)矩陣Q是一個(gè)亞(半)正定矩陣.
證明 假設(shè)x*是(10)的平衡點(diǎn),考慮如下的李亞普諾夫函數(shù)
例1 考慮如下二次規(guī)劃問(wèn)題
利用5個(gè)初始值來(lái)測(cè)驗(yàn)神經(jīng)網(wǎng)絡(luò),所有的結(jié)果顯示出神經(jīng)網(wǎng)絡(luò)收斂到問(wèn)題的最優(yōu)解,仿真結(jié)果如圖1所示.對(duì)時(shí)滯神經(jīng)網(wǎng)絡(luò)和非時(shí)滯的神經(jīng)網(wǎng)絡(luò)進(jìn)行了對(duì)比,結(jié)果如圖2所示.
圖1 神經(jīng)網(wǎng)絡(luò)仿真結(jié)果Fig.1 Simulation results of the neural network
圖2 神經(jīng)網(wǎng)絡(luò)的軌跡對(duì)比Fig.2 Comparison of the trajectory of neural network
例2 考慮如下二次規(guī)劃問(wèn)題:
令時(shí)間延遲t=0.25,根據(jù)定理3,神經(jīng)網(wǎng)絡(luò)(10)的平衡點(diǎn)是全局漸近穩(wěn)定的,并且收斂于二次規(guī)劃的最優(yōu)解x*.因此,利用7個(gè)初始值來(lái)測(cè)驗(yàn)神經(jīng)網(wǎng)絡(luò),所有的結(jié)果顯示出神經(jīng)網(wǎng)絡(luò)收斂到問(wèn)題的最優(yōu)解,其仿真結(jié)果如圖3所示.相應(yīng)的,對(duì)時(shí)滯神經(jīng)網(wǎng)絡(luò)和非時(shí)滯的神經(jīng)網(wǎng)絡(luò)進(jìn)行對(duì)比,結(jié)果如圖4所示.
圖3 神經(jīng)網(wǎng)絡(luò)仿真結(jié)果Fig.3 Simulation results of the neural network
圖4 神經(jīng)網(wǎng)絡(luò)的軌跡對(duì)比Fig.4 Comparison of the trajectory of neural network
研究一種新的二次規(guī)劃最優(yōu)解的穩(wěn)定性,是對(duì)以前凸規(guī)劃的進(jìn)一步深入推廣,給出了解決此類問(wèn)題的投影時(shí)滯神經(jīng)網(wǎng)絡(luò)模型,以及鞍點(diǎn)定理與最優(yōu)解的關(guān)系.同時(shí),文中給出了判定平衡點(diǎn)全局指數(shù)穩(wěn)定的充分條件,并借助李亞普諾夫函數(shù)給出系統(tǒng)全局漸近穩(wěn)定的新的充分條件.最后,用數(shù)值舉例說(shuō)明了所給系統(tǒng)的有效性.
[1] XIA You-shen,F(xiàn)ENG Gang,WANG Jun.A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J].Neural Networks,2004,17(7):1003-1015.
[2] XUE Xiao-ping,BIAN Wei.A project neural network for solving degenerate convex quadratic program[J].Neurocomputing,2007,70(13/15):2449-2459.
[3] LIU Qing-shan,CAO Jin-de,Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints[J].Neurocomputing,2011,74(17):3494-3501.
[4] TAO Qing,CAO Jin-de,Demin Sun.Neural network for quadratic programming problems[J].Applied Mathematics and Computation,2001,124(2):251-260.
[5] HASAN G O,NEZAM M A.An efficient simplified neural network for solving linear and quadratic programming problems[J].Applied Mathematics and Computation,2006,175(1):452-464.
[6] 李潔坤,丁明智,虞繼敏.非線性時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)穩(wěn)定性分析[J].鄭州大學(xué)學(xué)報(bào):理學(xué)版,2010,42(3):54-58.
[7] 楊華芬,楊有,尚晉.一種改進(jìn)的進(jìn)化神經(jīng)網(wǎng)絡(luò)優(yōu)化設(shè)計(jì)方法[J].鄭州大學(xué)學(xué)報(bào):工學(xué)版,2010,31(5):116-120.
[8] YANG Yong-qing,CAO Jin-de.A feedback neural network for solving convex constraint optimization problems[J].Applied Mathematics and Computation,2008,201(1/2):340-350.
[9] BERTSEKAS D P.Parallel and distributed computation:Numerical methods[M].Englewood Cliffs:Prentice-Hall,1989.
[10] HALE J K,VERDUYN-LUNEL S M.Introduction to functional differential equations[M].New York:Springer,1993.