陳 取,趙力挽,單風(fēng)平
(1.中國(guó)醫(yī)科大學(xué)臨床醫(yī)學(xué)七年制,遼寧沈陽(yáng) 110001;2.中國(guó)醫(yī)科大學(xué)臨床醫(yī)學(xué)五年制,遼寧沈陽(yáng) 110001;3.中國(guó)醫(yī)科大學(xué)免疫學(xué)教研室,遼寧沈陽(yáng) 110001)
蛋氨酸腦啡肽(Methionine enkephalin,MENK)是一種由5個(gè)氨基酸組成的五肽類物質(zhì)。人們?cè)趯?duì)MENK的臨床研究中發(fā)現(xiàn)了其對(duì)于神經(jīng)內(nèi)分泌以及免疫系統(tǒng)的調(diào)節(jié)活性,除此之外MENK對(duì)于腫瘤細(xì)胞的生長(zhǎng)也起到了抑制作用。作為一種重要的免疫調(diào)節(jié)信號(hào)分子,MENK通過(guò)結(jié)合在阿片受體(主要是δ-阿片受體),從而對(duì)于樹(shù)突狀細(xì)胞,自然殺傷細(xì)胞(NK細(xì)胞)、巨噬細(xì)胞等一系列的免疫細(xì)胞起到調(diào)節(jié)作用,例如提高鼠脾細(xì)胞數(shù)量的增殖以及 IL-2、IL-4、IFN-γ的分泌[1-2]。MENK的上述作用主要通過(guò)存在于細(xì)胞表面的阿片受體,激活其下游一系列的通路和蛋白激酶,從而實(shí)現(xiàn)對(duì)于靶細(xì)胞形態(tài)與功能的調(diào)節(jié),而這其中又以調(diào)節(jié)樹(shù)突狀細(xì)胞 (DC Dendritic cells,DC)的意義最為重大。樹(shù)突狀細(xì)胞是人體內(nèi)的一種抗原呈遞細(xì)胞(Antigen presenting cell,APC),同時(shí)也是抗原呈遞能力最強(qiáng)的APC[3]。作為機(jī)體免疫應(yīng)答的重要參與者,DC對(duì)于機(jī)體免疫中B細(xì)胞與T細(xì)胞的免疫反應(yīng)至關(guān)重要。主要表現(xiàn)在DC能夠通過(guò)表達(dá)CD80與CD86等共同刺激分子,以及干擾素-α和IL-12等細(xì)胞因子,參與到B細(xì)胞與T細(xì)胞的征集、擴(kuò)增與維持。
MENK通過(guò)與免疫細(xì)胞上的阿片受體相結(jié)合發(fā)揮免疫調(diào)節(jié)作用。研究表明,能夠與MENK結(jié)合的阿片受體廣泛存在于免疫系統(tǒng)的淋巴細(xì)胞、單核細(xì)胞、巨噬細(xì)胞、粒細(xì)胞中。在人、鼠的DC細(xì)胞表面存在大量的阿片受體[4-6]。MENK通過(guò)與這些細(xì)胞表面的阿片受體作用,雙向調(diào)控胞內(nèi)cAMP-蛋白激酶 A(cAMP-PKA)、Ca2+-鈣調(diào)蛋白、蛋白激酶C(PKC)的水平。這些物質(zhì)作為細(xì)胞內(nèi)信號(hào)通路的重要組成者,參與到下游基因的表達(dá)與調(diào)控。
MENK能夠下調(diào)cAMP-PKA信號(hào)通路的表達(dá)[7],參與到DC內(nèi)細(xì)胞因子的產(chǎn)生,以及 DC自身的成熟與抗原提呈能力的發(fā)揮等過(guò)程中。Oliveira CJ等[8]通過(guò)研究紅扇頭蜱(Rhipicephalus sanguineus)的唾液,發(fā)現(xiàn)該物質(zhì)能夠發(fā)揮抑制DC中細(xì)胞因子合成的作用,而且該物質(zhì)的作用機(jī)制類似于前列腺素E2(PGE2),即通過(guò)誘導(dǎo)DC細(xì)胞內(nèi)cAMP-PKA信號(hào)通路的表達(dá),以及抑制成熟DC表達(dá)CD40而發(fā)揮作用。
進(jìn)一步的研究發(fā)現(xiàn)[9-11],PGE2,cAMP-PKA 對(duì)于骨髓源性DC的抑制作用,主要是借助存在于DC細(xì)胞膜上的激酶錨定蛋白(A-kinase anchoring proteins,AKAPs)而發(fā)揮的。AKAPs主要分布在細(xì)胞膜的磷脂筏中[10],通過(guò)使用 AKAPs的抑制性多肽,如 Ht31與 AKAP-IS,并借助測(cè)定 CD4(+)T細(xì)胞分泌的干擾素-γ來(lái)間接判斷DC細(xì)胞功能,研究人員發(fā)現(xiàn)抗原的提呈能力下降了30%~50%[9],但其下游機(jī)制尚不清楚。此外,PGE2通過(guò)調(diào)高cAMP-PKA信號(hào)通路表達(dá)的方式[11],最終下調(diào)了DC細(xì)胞內(nèi)IL-12等關(guān)鍵性細(xì)胞因子的分泌,起到了拮抗DC在局部炎癥中的破壞作用。綜上所述,PGE2通過(guò)一種依賴cAMP-PKA的途徑,而實(shí)現(xiàn)對(duì)下游AKAPs的調(diào)節(jié),從而一同參與了抑制DC的抗原提呈、細(xì)胞因子分泌、以及DC本身的成熟的整個(gè)過(guò)程之中,但其具體機(jī)制尚不明確,文獻(xiàn)報(bào)道極少。而對(duì)DC使用MENK,通過(guò)抑制前述中的cAMP-PKA信號(hào)通路,有效地拮抗了前述機(jī)制對(duì)于DC的抑制作用,達(dá)到了調(diào)高DC活性的作用。
MENK通過(guò)激活阿片受體起到了提高Ca2+-鈣調(diào)蛋白含量的作用[7],進(jìn)而激活了下游的Ca2+-鈣調(diào)蛋白依賴性蛋白激酶(calcium/calmodulin-dependent protein kinase,CaMK),而其中最為重要的一員CaMKⅡ,是一種重要的DC細(xì)胞成熟與功能的調(diào)節(jié)劑,研究人員[12-13]發(fā)現(xiàn),CaMKⅡα能夠促進(jìn)TOLL樣受體(Toll Like Receptor,TLR)激發(fā)的促炎細(xì)胞因子和IFN的表達(dá),這一過(guò)程所表達(dá)的細(xì)胞因子包括 IL-12,IL-6,TNF-α 以及 IFN-β 等。除此之外,激活 CaMKⅡ使得 DC表達(dá) MHC-Ⅱ[14],并上調(diào)由DC誘導(dǎo)的T細(xì)胞的增殖,以及與免疫穩(wěn)態(tài)和免疫調(diào)制有關(guān)的DC細(xì)胞的抗原提呈能力。CaMKⅡ通過(guò)影響轉(zhuǎn)錄、轉(zhuǎn)錄后以及翻譯后這3個(gè)階段的進(jìn)行,實(shí)現(xiàn)對(duì)于MHC-Ⅱ的含量與定位到DC細(xì)胞膜的能力的調(diào)節(jié)。而這一機(jī)制與DC在炎癥中的作用調(diào)節(jié)密切相關(guān)。
此外有文獻(xiàn)報(bào)道[15],CaMKⅣ可以作為 Toll樣受體4(TLR4)的激動(dòng)劑,激活的TLR4可以磷酸化cAMP效應(yīng)因子結(jié)合蛋白(cAMP response element-binding protein,pCREB),進(jìn)而激活下游的Bcl-2基因,構(gòu)成一個(gè) CaMKⅣ-pCREB-Bcl-2的作用機(jī)制,而這一機(jī)制對(duì)于DC細(xì)胞的存活至關(guān)重要,消除TLR4受體的小鼠表現(xiàn)出DC數(shù)目的下降與存活時(shí)間的縮短。但該機(jī)制尚有許多細(xì)節(jié)未能闡述清楚。
MENK可以提高中性粒細(xì)胞內(nèi)蛋白激酶C(PKC)的含量,使用PKC的抑制劑N-feruloylserotonin[16],通過(guò)抑制 PKC,導(dǎo)致 MENK 對(duì)于中性粒細(xì)胞的調(diào)節(jié)作用被完全封閉。Hamdorf M[17]在造血干細(xì)胞的研究中發(fā)現(xiàn),PKC對(duì)于骨髓造血干細(xì)胞的分化至關(guān)重要。在使用粒細(xì)胞集落刺激因子(MG-CSF)與白細(xì)胞介素-4(IL-4)誘導(dǎo)骨髓造血干細(xì)胞分化為DC的過(guò)程中,激活了大量的激酶,包括細(xì)胞外信號(hào)調(diào)節(jié)激酶(Extracellular-signalregulated kinase,ERK)、PKC 與兩面神激酶(Janus Kinase,JAK);其中PKCδ被發(fā)現(xiàn)可以磷酸化在骨髓造血干細(xì)胞分化為DC過(guò)程中的關(guān)鍵轉(zhuǎn)錄因子PU.1,進(jìn)一步研究表明PKCδ在骨髓造血干細(xì)胞分化為DC的過(guò)程扮演了重要角色。
PKC在DC中作用還表現(xiàn)在對(duì)于IL-12等重要細(xì)胞因子的影響之中[18],進(jìn)一步的研究還揭示了PKCδ(-/-)的老鼠體內(nèi)DC細(xì)胞所產(chǎn)生的IL-12p40 與 IL-12p70 的量明顯減少[19]。PKC-α 對(duì)于干擾素調(diào)節(jié)因子3(Interferon Regulatory Factor-3,IRF-3)依賴性的IL-12p35和IL-27p28,及其下游的Toll樣受體-3(TLR-3)與Toll樣受體-4(TLR-4)的基因表達(dá)均有控制作用,這一點(diǎn)已經(jīng)在PKCα(-/-)的老鼠體內(nèi)被證實(shí)[20]。
MENK通過(guò)與阿片受體相結(jié)合,通過(guò)前述的3條途徑,激活了大量免疫細(xì)胞的活性,而其中又以在免疫調(diào)節(jié)過(guò)程扮演關(guān)鍵角色的DC的變化最為重要。Liu J等[21]通過(guò)體內(nèi)及試管內(nèi)的實(shí)驗(yàn)發(fā)現(xiàn)MENK可以促進(jìn)骨髓源性的DC的成熟。在使用MENK治療之后,骨髓源性DC細(xì)胞表面的MHC-Ⅱ類分子和主要的免疫相關(guān)分子的表達(dá)都增加了。并通過(guò)RT-PCR驗(yàn)證了MENK可以增加骨髓源性DC細(xì)胞表面的δ和κ阿片受體的表達(dá)。同時(shí),MENK可以促進(jìn)骨髓源性DC細(xì)胞分泌高水平的促炎癥細(xì)胞因子,如IL-12p70和腫瘤壞死因子(TNF-α)。此外,早期的研究也發(fā)現(xiàn),經(jīng)MENK作用后,小鼠脾來(lái)源的DC迅速分化成熟,其表面可高度表達(dá) MHC-Ⅱ,CD86、CD80、CD40,同時(shí)高分泌 IL-12、IL-2 與 IL-4[22-24]。激活后的 DC 在腫瘤的免疫反應(yīng)過(guò)程中的關(guān)鍵作用主要表現(xiàn)為:DC能募集和擴(kuò)增T細(xì)胞的免疫特異性,進(jìn)而通過(guò)FAS受體或釋放細(xì)胞因子的方法,促進(jìn)腫瘤細(xì)胞的凋亡或者壞死;同時(shí)DC細(xì)胞參與到了T細(xì)胞長(zhǎng)期免疫狀態(tài)的維持之中。
MENK在體內(nèi)還被稱為阿片生長(zhǎng)因子(opioid growth factor,OGF),故而阿片受體又被稱為阿片生長(zhǎng)因子受體(opioid growth factor receptor,OGFr),夠成了一個(gè)OGF(MENK)-OGFr通路。在對(duì)自身免疫性疾病的研究中,人們發(fā)現(xiàn) OGF(MENK)-OGFr通路在T細(xì)胞中表現(xiàn)為抑制細(xì)胞的增殖過(guò)程,而且這一抑制作用有明顯的劑量依賴性[25]。但是在小鼠脾來(lái)源的DC使用常規(guī)的OGFr抑制劑納曲酮(NTX),使用針對(duì)OGF多肽的抗體,又或者使用小干擾 RNA(siRNA)干擾OGFr的合成(包括 μ、δ,κ 等三類受體),并不能影響OGF對(duì)于T細(xì)胞增殖的抑制作用。而使用針對(duì)p16或p21基因的siRNA,卻能夠使得OGF無(wú)法起效[25]。故有學(xué)者認(rèn)為OGF可能直接通過(guò)與p16、p21這一類周期素依賴性蛋白激酶抑制物(cyclin dependent kinase inhibitors,CDKI)相互作用,而在細(xì)胞分裂的G1期參與調(diào)節(jié),最終抑制細(xì)胞增殖。但具體機(jī)制尚未明確。此外,在針對(duì)多發(fā)性硬化與腦脊髓炎的研究中[26],OGF可以通過(guò)抑制細(xì)胞生長(zhǎng)起到控制病情惡化的臨床作用,這從一個(gè)側(cè)面支持了OGF對(duì)于細(xì)胞增殖潛在的抑制作用。
MENK可以激活免疫細(xì)胞(主要是樹(shù)突狀細(xì)胞)發(fā)揮抗腫瘤的作用,與此同時(shí)OGF-OGFr通路,也已被證明與多種腫瘤的發(fā)生密切相關(guān),這為通過(guò)增強(qiáng)OGF-OGFr通路表達(dá),而發(fā)揮抗腫瘤作用提供了新思路。不同于OGF與CDKI之間存在的,無(wú)法用阿片受體阻斷劑阻止的抑制細(xì)胞增殖的未知機(jī)制。在腫瘤細(xì)胞中OGF-OGFr通路的抑制腫瘤細(xì)胞生長(zhǎng)的作用,可以為阿片受體阻斷劑所抑制。具體表現(xiàn)為,在胰腺癌細(xì)胞中[27],OGFOGFr通路構(gòu)成了調(diào)節(jié)腫瘤細(xì)胞生長(zhǎng)的抑制機(jī)制,OGF作為唯一一種能夠抑制癌癥細(xì)胞生長(zhǎng)的阿片肽類物質(zhì),通過(guò)使用其抑制劑納曲酮可以抑制OGF的這一作用,從而證明OGF-OGFr通路抑制胰腺癌細(xì)胞生長(zhǎng)的作用。在鱗狀細(xì)胞癌[28]、宮頸癌[29]、肝母細(xì)胞癌[30]、肝細(xì)胞癌[31]、濾泡源性的甲狀腺癌[32]等腫瘤中均發(fā)現(xiàn)了類似的作用。OGF-OGFr通路中的借助核轉(zhuǎn)運(yùn)蛋白實(shí)現(xiàn)對(duì)于DNA合成的抑制,DNA下降大約34% ~46%左右[32-33],從而實(shí)現(xiàn)對(duì)于腫瘤生長(zhǎng)的抑制作用,并抑制腫瘤血管的形成,使其失去營(yíng)養(yǎng)供給。OGFOGFr通路作為一種抑制腫瘤細(xì)胞生長(zhǎng)的非毒性且高效的治療方案,其臨床價(jià)值已被發(fā)現(xiàn)。
目前認(rèn)為,上述的抗腫瘤作用與OGF-OGFr通路被激活之后細(xì)胞內(nèi)DNA合成的減少有關(guān),與CDKI等組成的調(diào)往通路的關(guān)系尚不明確[25,34]。此外咪喹莫特(imiquimod)可以通過(guò)激活OGFOGFr通路而發(fā)揮抑制腫瘤細(xì)胞生長(zhǎng)的作用,但咪喹莫特本身并不是阿片受體的激動(dòng)劑或抑制劑,也不會(huì)參與到誘導(dǎo)細(xì)胞凋亡的過(guò)程中[35]。
通過(guò)探討MENK激活免疫細(xì)胞(離不開(kāi)DC關(guān)鍵性的免疫調(diào)節(jié)作用)發(fā)揮抗腫瘤作用的機(jī)制,為腫瘤的自身免疫療法提供了有力的理論依據(jù),并在一些與免疫系統(tǒng)相關(guān)的疾病的治療中具有重要臨床價(jià)值,如艾滋?。?6]、多發(fā)性硬化癥[26]和腦脊髓膜炎[26]。MENK作為一種內(nèi)源性分泌物,在不具有細(xì)胞毒性的同時(shí),表現(xiàn)出較強(qiáng)的抑制腫瘤生長(zhǎng)的能力,且抗腫瘤譜極寬(凡表達(dá)OGFr的腫瘤細(xì)胞均有效)。近年美國(guó)食品及藥品管理局已經(jīng)批準(zhǔn)了基于DC的抗腫瘤疫苗的研發(fā)。但是,探討如何克服腫瘤微環(huán)境對(duì)于免疫細(xì)胞生長(zhǎng)、分化的抑制作用[37],探討如何克服腫瘤細(xì)胞分泌的前列腺素 E[38]、血管內(nèi)皮生長(zhǎng)因子(VEGF)[39]對(duì)于DC抗腫瘤機(jī)制的抑制作用,探討如何應(yīng)對(duì)某些特殊情況下,由DC參與的腫瘤生長(zhǎng)與免疫逃逸等一系列負(fù)面過(guò)程包括DC參與的某些延淋巴擴(kuò)散的腫瘤的穩(wěn)定[40],以及DC通過(guò)穩(wěn)定內(nèi)皮細(xì)胞而與腫瘤細(xì)胞共同完成的腫瘤內(nèi)皮屏障的形成等過(guò)程[41]),諸多問(wèn)題都是研究所遇到的瓶頸。綜上所述,研究MENK的激活免疫細(xì)胞抗腫瘤的活性有著重大的科學(xué)與臨床價(jià)值,但也存在諸多問(wèn)題需要深入研究。
[1] Campbell AM,Zagon IS,McLaughlin PJ.Astrocyte proliferation is regulated by the OGF-OGFr axis in vitro and in experimental autoimmune encephalomyelitis[J].Brain Res Bull,2013,90:43-51.
[2] Liu J,Chen W,Meng J,et al.Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin(MENK)[J].Cancer Immunol Immunother,2012,61(10):1699-1711.
[3] Reizis B,Bunin A,Ghosh HS,et al.Plasmacytoid dendriticcells:recent progress and open questions[J].Annual review of immunology,2011,29:163-183.
[4] Bénard A,Boué J,Chapey E,et al.Delta opioid receptors mediate chemotaxis in bone marrow-derived dendritic cells[J].Neuroimmunol,2008,15,197(1):21-28.
[5] Roozendaal R,Mebius RE.Stromal cell-immune cell interactions[J].Annu Rev Immunol,2011,29:23-43.
[6] Bénard A,Cavaillès P,Boué J,et al.mu-Opioid receptor is induced by IL-13 within lymph nodes from patients with Sézary syndrome[J].Invest Dermatol,2010,130(5):1337-1344.
[7] Schillace RV,Miller CL,Carr DW.AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells[J].Immunol Cell Biol,2011,89(5):650-658.
[8] Oliveira CJ,Sá-Nunes A,F(xiàn)rancischetti IM,et al.Deconstructing tick saliva:non-protein molecules with potent immunomodulatory properties[J].Biol Chem,2011,286(13):10960-10969.
[9] Schillace RV,Miller CL,Pisenti N,et al.A-kinase anchoring in dendritic cells is required for antigen presentation[J].PLoS One,2009,4(3):e4807.
[10]Schillace RV,Miller CL,Carr DW.AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells[J].Immunol Cell Biol,2011,89(5):650-658.
[11]Kalim KW,Groettrup M.Prostaglandin E2 inhibits IL-23 and IL-12 production by human monocytes through down-regulation of their common p40 subunits[J].Mol Immunol,2013,53(3):274-282.
[12]LIU X,ZHAN Z,XU L,et al.MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKⅡα[J].Immunol,2010,185(12):7244-7251.
[13]Hong B,Lee SH,Song XT,et al.A super TLR agonist to improve efficacy of dendritic cell vaccine in induction of anti-HCV immunity[J].PLoS One,2012,7(11):e48614.
[14]Herrmann TL,Agrawal RS,Connolly SF,et al.MHC Class Ⅱlevels and intracellular localization in human dendritic cells are regulated by calmodulin kinase Ⅱ[J].Leukoc Biol,2007,82(3):686-699.
[15]Illario M,Giardino-Torchia ML,Sankar U,et al.Calmodulindependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells[J].Blood,2008,111(2):723-731.
[16]Nosá R,Pere ko T,Jan inová V,et al.Naturally appearing N-feruloylserotonin isomers suppress oxidative burst of human neutrophils at the protein kinase C level[J].Pharmacol Rep,2011,63(3):790-798.
[17]Hamdorf M,Berger A,Schüle S,et al.PKCδ-induced PU.1 phosphorylation promotes hematopoietic stem cell differentiation to dendritic cells[J].Stem Cells,2011,29(2):297-306.
[18]Anel A,Aguiló JI,Catalán E,et al.Protein Kinase C-θ (PKC-θ)in Natural Killer Cell Function and Anti-Tumor Immunity[J].Front Immunol,2012,3:187.
[19] Guler R,Afshar M,Arendse B,et al.PKCδ regulates IL-12p40/p70 production by macrophages and dendritic cells,driving a type 1 healer phenotype in cutaneous leishmaniasis[J].Immunol,2011,41(3):706-715.
[20]Johnson J,Molle C,Aksoy E,et al.A conventional protein kinase C inhibitor targeting IRF-3-dependent genes differentially regulates IL-12 family members[J].Mol Immunol,2011,48(12-13):1484-1493.
[21] Liu J,Chen W,Meng J,et al.Induction on differentiation and modulation of bone marrow progenitor of dendritic cell by methionine enkephalin(MENK)[J].Cancer Immunol Immunother,2012,61(10):1699-1711.
[22]Morandi F,Chiesa S,Bocca P,et al.Tumor mRNA-transfected dendritic cells stimulate the generation of CTL that recognize neuroblastoma-associated antigens and kill tumor cells:immunotherapeutic implications[J].Neoplasia,2006,8(10):833-842.
[23]Shan F,Xia Y,Wang N,et al.Functional modulation of the pathway between dendritic cells(DCs)and CD4+T cells by the neuropeptide:methionine enkephalin(MENK)[J].Peptides,2011,32(5):929-937.
[24]Li W,Meng J,Li X,et al.Methionine enkephalin(MENK)improved the functions of bone marrow-derived dendritic cells(BMDCs)loaded with antigen[J].Hum Vaccin Immunother,2012,8(9):1236-1242.
[25]Zagon IS,Donahue RN,Bonneau RH,et al.T lymphocyte proliferation is suppressed by the opioid growth factor([Met(5)]-enkephalin)-opioid growth factorreceptor axis:implication for the treatment of autoimmune diseases[J].Immunobiology,2011,216(5):579-590.
[26]Campbell AM,Zagon IS,McLaughlin PJ.Opioid growth factor arrests the progression of clinical disease and spinal cord pathology in established experimental autoimmune encephalomyelitis[J].Brain Res,2012,7,1472:138-148.
[27]Zagon IS,Verderame MF,Hankins J,et al.Overexpression of the opioid growth factor receptor potentiates growth inhibition in human pancreatic cancer cells[J].Int J Oncol,2007,30(4):775-783.
[28]McLaughlin PJ,Verderame MF,Hankins JL,et al.Overexpression of the opioid growth factor receptor downregulates cell proliferation of human squamous carcinoma cells of the head and neck[J].Int J Mol Med,2007,19(3):421-428.
[29]Donahue RN,McLaughlin PJ,Zagon IS.Under-expression of the opioid growth factor receptor promotes progression of human ovarian cancer[J].Exp Biol Med(Maywood),2012,237(2):167-177.
[30] Rogosnitzky M,F(xiàn)inegold MJ,McLaughlin PJ,et al.Opioid growth factor(OGF)for hepatoblastoma:a novel non-toxic treatment[J].Invest New Drugs,2012,30.
[31]Avella DM,Kimchi ET,Donahue RN,et al.The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer[J].Am J Physiol Regul Integr Comp Physiol,2010,298(2):R459-466.
[32]Cheng F,McLaughlin PJ,Zagon IS.Regulation of cell proliferation by the opioid growth factor receptor is dependent on karyopherin beta and Ran for nucleocytoplasmic afficking[J].Exp Biol Med(Maywood),2010,235(9):1093-1101.
[33] McLaughlin PJ,Keiper CL,Verderame MF,et al.Targeted overexpression of OGFr in epithelium of transgenic mice suppresses cell proliferation and impairs full-thickness wound closure[J].Am J Physiol Regul Integr Comp Physiol,2012,302(9):R1084-1090.
[34]McLaughlin PJ,Zagon IS,Park SS,et al.Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor(OGF)-opioid growth factor receptor(OGFr)axis[J].BMC Cancer,2009,9:369.
[35]Diego M.Avella,1 Eric T.Kimchi,1 Renee N.Donahue,et al.The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer[J].Am J Physiol Regul Integr Comp Physiol,2010,298(2):R459-R466.
[36] McLaughlin PJ,Rogosnitzky M,Zagon IS.Inhibition of DNA synthesis in mouse epidermis by topical imiquimod is dependent on opioidreceptors[J].Exp Biol Med(Maywood),2010,235(11):1292-1299.
[37]Radford KJ,Caminschi I.New generation of dendritic cell vaccines[J].Hum Vaccin Immunother,2013,9(2):259-264.
[38]Oosterhoff D,Lougheed S,van de Ven R,et al.Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition[J].Oncoimmunology,2012,1(5):649-658.
[39]Ni YH,Wang ZY,Huang XF,et al.Effect of siRNA-mediated downregulation of VEGF in Tca8113 cells on the activity of monocyte-derived dendritic cells[J].Oncol Lett,2012,13(4):885-892.
[40]Tzeng TC,Chyou S,Tian S,et al.CD11chi dendritic cells regulate the re-establishment of vascular quiescence and stabilization after immune stimulation of lymph nodes[J].Journal of Immunology,2010,184(8):4247-4257.
[41]Cintolo JA,Datta J,Mathew SJ,et al.Dendritic cell-based vaccines:barriers and opportunities[J].Future Oncol,2012,8(10):1273-1299.