• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      陸源沉積巖物源分析研究進(jìn)展與發(fā)展趨勢(shì)①

      2013-04-01 22:17:14楊仁超李進(jìn)步樊愛(ài)萍
      沉積學(xué)報(bào) 2013年1期
      關(guān)鍵詞:物源沉積物礦物

      楊仁超 李進(jìn)步 樊愛(ài)萍 宗 敏 張 濤

      (1.中國(guó)石油化工股份有限公司石油勘探開(kāi)發(fā)研究院 北京 100083;2.山東科技大學(xué)地質(zhì)科學(xué)與工程學(xué)院 山東青島 266590;3.中國(guó)石油長(zhǎng)慶油田公司 西安 710021;4.中國(guó)石油化工股份有限公司華北石油局錄井公司 鄭州 450006)

      沉積物物源分析包括古侵蝕區(qū)的判別、古地貌特征的重塑、古河流體系的再現(xiàn)、物源區(qū)母巖的性質(zhì)的追蹤、氣候以及沉積盆地構(gòu)造背景的確定等,是盆地分析的重要內(nèi)容;隨著地質(zhì)科學(xué)理論的進(jìn)步和多種現(xiàn)代分析測(cè)試手段的提高,物源分析已成為沉積學(xué)研究的重點(diǎn)課題之一[1~6]。通過(guò)物源分析,既可了解物源區(qū)經(jīng)歷的地質(zhì)演化過(guò)程,借助單顆粒礦物同位素測(cè)年技術(shù),還可描述遺失的源區(qū)年代史[7]。確定物源區(qū)的地理位置、母巖性質(zhì)及其組合特征、沉積物搬運(yùn)路徑與距離,開(kāi)展物源分析研究,不僅是物源區(qū)大地構(gòu)造背景分析、地殼與大地構(gòu)造演化恢復(fù)、古環(huán)境與古氣候恢復(fù)的重要途徑[8~10],而且是沉積區(qū)巖相古地理重建、原型盆地恢復(fù)、沉積盆地分析、沉積礦床預(yù)測(cè)的重要依據(jù)[11~14]。物源分析還可作為連接沉積盆地與造山帶的紐帶和盆山耦合研究的切入點(diǎn)[15];因此,開(kāi)展陸源沉積巖物源分析具有重要的科學(xué)意義。

      1 物源分析方法研究現(xiàn)狀

      物源分析作為沉積地質(zhì)學(xué)研究的熱點(diǎn)問(wèn)題之一,多種分析方法在應(yīng)用中得以不斷改進(jìn)和創(chuàng)新。目前國(guó)內(nèi)外常用的物源分析方法主要有以下幾種:

      1.1 沉積學(xué)方法

      沉積學(xué)法主要依據(jù)沉積學(xué)原理,對(duì)碎屑巖進(jìn)行物源分析,如根據(jù)碎屑巖粒度由物源向盆地方向逐漸變細(xì)、地層厚度變大[16]、砂/地比值向盆地中心方向總體呈降低趨勢(shì);古流向測(cè)量及玫瑰花狀圖[17,18]、古地貌分析[19]、結(jié)合沉積相分析結(jié)果判斷物源。根據(jù)地層等厚圖、沉積相展布圖等相關(guān)圖件,可推斷出物源區(qū)的相對(duì)位置,結(jié)合巖性、成分、沉積體形態(tài)、粒度及古流向等資料,使物源區(qū)分析更可靠。但由于古流向具較大的分散度,故上述標(biāo)志均具有較大的局限性和不確定性,必須做大量的野外觀測(cè)和資料統(tǒng)計(jì),方能獲取較客觀的古水流與物源方向信息。沉積學(xué)方法的優(yōu)點(diǎn)是直接、有效、花費(fèi)小,但不足之處在于統(tǒng)計(jì)工作量較大,且僅能判斷物源的大致方向,不能確定物源區(qū)的具體位置、母巖性質(zhì)等具體信息。

      1.2 巖石學(xué)方法

      根據(jù)盆地陸源碎屑巖來(lái)自母巖的陸源碎屑組合可以推斷物源區(qū)母巖類(lèi)型。尤其是砂礫巖中的礫石成分,可反映基底和物源區(qū)母巖的成分,也反映磨蝕的程度、氣候條件以及構(gòu)造背景。因此,礫石的各種特征是判斷物源區(qū)、分析沉積環(huán)境的直接標(biāo)志[20,21]。Dickinson等依據(jù)大量的砂巖碎屑成分統(tǒng)計(jì)數(shù)據(jù),建立了砂質(zhì)碎屑礦物成分與物源區(qū)之間的系統(tǒng)關(guān)系,繪制了多個(gè)經(jīng)驗(yàn)判別三角圖解(Q—F—L,Qm—F—Lt,Qp—Lv—Ls,Qm—P—K 等)[22],至今仍然被廣泛應(yīng)用物源區(qū)的構(gòu)造背景分析[23,24],但是該方法未考慮混和物源以及風(fēng)化、搬運(yùn)和成巖作用等作用的影響,在應(yīng)用過(guò)程中也曾出現(xiàn)與實(shí)際情況不符的情況[15]。

      傳統(tǒng)的巖石學(xué)研究手段在物源分析中仍可發(fā)揮重要的作用,如偏光顯微鏡可直接鑒定沉積物中的巖屑,是物源的直接標(biāo)志之一。對(duì)巖石中主要造巖礦物發(fā)光性的研究有助于判別沉積環(huán)境和巖石的成因,碎屑顆粒的發(fā)光分析可用于物源分析,碎屑巖中常見(jiàn)的石英、長(zhǎng)石和巖屑多隨物源變化而具有不同的發(fā)光特征,故依據(jù)碎屑顆粒在陰極光激發(fā)下的顏色特征也可分析物源[25,26],但陰極發(fā)光對(duì)物源的判斷受到經(jīng)驗(yàn)和較多隨機(jī)因素影響。

      1.3 重礦物方法

      物源分析可用砂巖的重礦物組合、ATi(磷灰石/電氣石)—Rzi(Ti02礦物/鋯石)—MTi(獨(dú)居石/鋯石)—CTj(鉻尖晶石/鋯石)等重礦物特征指數(shù)、以及鋯石—電氣石—金紅石指數(shù)(ZTR指數(shù))來(lái)指示物源[27,28]。時(shí)代較老的沉積物,重礦物自保存至現(xiàn)今,會(huì)因溫度、埋深等條件的不同而使其種類(lèi)增多,含量分布較分散,保留源巖的信息減小,對(duì)判斷物源不利。因此,沉積物時(shí)代越新,利用重礦物判斷物源的準(zhǔn)確性會(huì)越高。同時(shí),水動(dòng)力會(huì)影響沉積時(shí)重礦物性質(zhì),重礦物組合分析法對(duì)源區(qū)的精確判別仍存在一定缺陷,對(duì)于碎屑重礦物組合在物源分析中的應(yīng)用,應(yīng)注意不穩(wěn)定重礦物的組成,因?yàn)樵谀撤N程度上,不穩(wěn)定重礦物才具有判別意義[29]。隨著電子探針的應(yīng)用,一些學(xué)者利用單礦物(如輝石、角閃石、電氣石、鋯石、石榴石等)的地球化學(xué)分異特征來(lái)判別物質(zhì)來(lái)源[30,31],如利用石榴石電子探針?lè)治鼋Y(jié)果來(lái)研究物源有其獨(dú)到的優(yōu)越性,可使水動(dòng)力或成巖作用的影響降低到最?。?2]。

      1.4 元素地球化學(xué)方法

      元素地球化學(xué)已成為地質(zhì)構(gòu)造復(fù)雜地區(qū)研究的有效手段[33],元素地球化學(xué)法已被國(guó)內(nèi)外學(xué)者廣泛運(yùn)用,包括常量元素、特征元素及其比值法、微量元素(含稀土元素)法[34~37]。一些元素在母巖風(fēng)化、剝蝕、搬運(yùn)、沉積及成巖過(guò)程中不易遷移,幾乎被等量地轉(zhuǎn)移到碎屑沉積物中,故可被作為沉積物物源的示蹤物,如 Th、Sc、Al、Co、Zr、Hf、Ti、Ga、Nb 及稀土元素(REE)等,尤其是其中的REE因其具有特殊的地球化學(xué)性質(zhì)而在物源示蹤中運(yùn)用很廣[38]。

      保存在沉積物(巖)中的環(huán)境和物源信息,可用多種元素地球化學(xué)方法釋讀,如通過(guò)研究元素的組成、組合、相對(duì)含量、分布規(guī)律、比值關(guān)系、多元圖解、配分模式,以及元素與同位素的關(guān)系等,進(jìn)行物源示蹤。作為古環(huán)境分析的替代性指標(biāo),研究元素在表生環(huán)境下的地球化學(xué)行為,可在示蹤古氣候、沉積物來(lái)源、沉積環(huán)境和古海洋學(xué)事件等領(lǐng)域發(fā)揮有效的指示作用[39]。在某種程度上,沉積物成分特征和地球化學(xué)特征是物源和沉積盆地大地構(gòu)造背景的函數(shù)[7],通過(guò)對(duì)砂巖的研究,提出一系列常量、微量元素地球化學(xué)端元判別圖及稀土元素地球化學(xué)模式判別圖,用來(lái)鑒別不同源區(qū)的構(gòu)造背景,這些方法已被我國(guó)學(xué)者廣泛運(yùn)用于大地構(gòu)造背景的判別。

      近年來(lái),一些學(xué)者還利用電子探針、激光剝蝕等離子體質(zhì)譜儀(LA—ICP—MS)、激光感生火化電感耦合等離子體質(zhì)譜(LINA—ICP—MS)、電子順磁共振(EPR)等成分分析儀器,測(cè)得重礦物中的常量元素、石英顆粒微量元素[40,41],根據(jù)礦物元素的組成、相對(duì)含量、元素的組合,建立多元圖解和配分模式,用于物源分析和大地構(gòu)造背景判別及沉積環(huán)境分析[42~44]。大多數(shù)特征元素均受成巖作用的影響,導(dǎo)致物源判別結(jié)果出現(xiàn)多解性,而選擇化學(xué)性質(zhì)相近、相關(guān)性強(qiáng)、在沉積成巖過(guò)程中富集程度相似的特征元素比值作為物源示蹤指標(biāo),能夠有效地避免成巖作用的影響[45]。

      在不發(fā)生重結(jié)晶的情況下,石英在搬運(yùn)、沉積和成壤過(guò)程中,它的氧同位素比值(δ18O)不發(fā)生改變,能夠保存源巖形成環(huán)境等信息[46],因此沉積物中石英的δ18O值可以用來(lái)探討石英的形成環(huán)境、追蹤物源區(qū)和母巖的特征[47]。

      元素地球化學(xué)分析物源兼具有效、經(jīng)濟(jì)、定量等優(yōu)點(diǎn),既適用于富含基質(zhì)的砂巖和頁(yè)巖,又可確定物源的年齡和地球化學(xué)演化歷史[11];并可有效的避免水動(dòng)力因素的影響[38]。元素地球化學(xué)分析建立在沉積物對(duì)母巖的主元素組合的繼承性基礎(chǔ)上。但應(yīng)該注意到主元素的活動(dòng)性和可遷移性,原則上只是在短距離搬運(yùn)和化學(xué)風(fēng)化很弱的條件下才具有較好的可比性?;瘜W(xué)變異指數(shù)(CIA)提供了一種定量硅酸鹽礦物風(fēng)化度的方法[48~51]。同時(shí)在進(jìn)行元素組合分析時(shí),還要考慮到搬運(yùn)過(guò)程中的稀釋作用,即應(yīng)注意相對(duì)含量而非絕對(duì)含量。

      1.5 地質(zhì)年代學(xué)方法

      單顆粒碎屑礦物的同位素測(cè)年在物源分析中的應(yīng)用方面,目前應(yīng)用的方法主要有:碎屑顆粒的(磷灰石、鋯石)裂變徑跡測(cè)年法[52]、含鈾微相(鋯石、獨(dú)居石和榍石)U—Pb測(cè)年法[53~55]、(碎屑云母和角閃石)40Ar/39Ar 測(cè)年 法[56]、Rb—Sr 法[57]、Sm—Nd法[58,59]、Sr—Nd 法[60]、87Sr/86Sr 法[61]、207Pb/206Pb[62]法等。

      裂變徑跡法分析物源區(qū)是利用磷灰石、鋯石中所含的微量鈾雜質(zhì)裂變時(shí)在晶格中產(chǎn)生的輻射損傷,經(jīng)一系列化學(xué)處理后,形成徑跡,通過(guò)觀測(cè)徑跡的密度、長(zhǎng)度等分布,并對(duì)其加以統(tǒng)計(jì)分析,從中提供與物源區(qū)的年齡及構(gòu)造演化有關(guān)的信息。在物源研究方面,不僅可以利用同位素之間的相互關(guān)系來(lái)判別物源區(qū),如利用綠簾石中的Nd和Sr同位素比值進(jìn)行物源判別(幔源或殼源),更重要的是通過(guò)沉積物年齡的測(cè)定來(lái)判別物源[63]。

      1.6 地球物理學(xué)方法

      地球物理學(xué)在物源分析中的應(yīng)用主要有測(cè)井地質(zhì)學(xué)法和地震地層學(xué)法[64]。測(cè)井地質(zhì)學(xué)法主要利用自然伽馬曲線分形維數(shù)、地層傾角測(cè)井來(lái)判斷物源方向[65,66];利用地震地層學(xué)確定物源和古水流方向也有成功的案例[18],如利用地震反射特征勾繪進(jìn)積方向,詳細(xì)刻畫(huà)了北塘凹陷古近系沙三段古物源體系[67]。

      1.7 粘土礦物學(xué)方法

      泥巖的滲透率一般低于砂巖,在成巖過(guò)程中不易受到外來(lái)流體和物質(zhì)的影響,故其在確定物源方面可能比砂巖有用。另外,碎屑粘土是泥巖中的獨(dú)特組分,在確定物源和古氣候方面有很大的應(yīng)用潛力,尤其是在淺層沉積物的物源示蹤及第四紀(jì)以來(lái)的氣候變化研究方面應(yīng)用廣泛[68,69];還可利用 Al/Ca或高嶺石/蒙脫石比值來(lái)判斷物源方向和預(yù)測(cè)儲(chǔ)層[70]。

      1.8 化石及生標(biāo)化合物方法

      借助于沉積物中微體化石的分析,以及泥質(zhì)區(qū)正構(gòu)烷烴、姥鮫烷、植烷、藿烷和甾烷等生物標(biāo)志物的特征來(lái)判斷有無(wú)陸源高等植物的輸入[71],通過(guò)不同來(lái)源和成熟度的生物標(biāo)志物,來(lái)判斷沉積有機(jī)質(zhì)與碎屑沉積物的來(lái)源。

      2 物源分析新技術(shù)與新方法

      2.1 磁性礦物學(xué)方法

      磁性礦物學(xué)在物質(zhì)來(lái)源鑒別方面發(fā)揮著重要作用,通過(guò)對(duì)環(huán)境物質(zhì)進(jìn)行磁性測(cè)量,分析磁性礦物的類(lèi)型、組合、含量、粒度和晶疇等特征,可有效揭示物源信息[72]。與傳統(tǒng)的研究方法相比,磁學(xué)手段具有樣品用量少、靈敏度高、簡(jiǎn)單快速、非破壞性、信息量大等優(yōu)點(diǎn)[73],而得以發(fā)展和應(yīng)用。

      2.2 礦物顆粒微形貌分析方法

      近年來(lái),重礦物顆粒表面結(jié)構(gòu)分析對(duì)物源的指示意義也逐漸被重視。重礦物顆??梢耘c石英一樣進(jìn)行礦物顆粒表面結(jié)構(gòu)分析,借助掃描電鏡可以揭示顆粒表面不同的結(jié)構(gòu)組合,研究重礦物顆粒表面的形態(tài)可以確定物源及其運(yùn)移過(guò)程[74]。因此不但可以通過(guò)礦物微區(qū)探針、化學(xué)組成和示蹤元素來(lái)分析物源,而且可以由礦物表面形態(tài)判定沉積物在源區(qū)至沉積區(qū)搬運(yùn)過(guò)程中的不同階段并闡明影響礦物顆粒的不同過(guò)程。Cardona等[74]發(fā)現(xiàn)重礦物顆粒晶體表面的晶紋和形態(tài)不僅可進(jìn)一步證實(shí)通過(guò)探針、地球化學(xué)和裂變徑跡等方法獲得的物源信息,而且還可以區(qū)分出重礦物的演化階段并闡明礦物從開(kāi)始搬運(yùn)直到最終沉積,影響礦物顆粒的不同過(guò)程,并在研究Guadalete河流階地時(shí)得到應(yīng)用。

      3 物源分析發(fā)展趨勢(shì)

      隨著先進(jìn)分析手段的使用,沉積物所攜帶的物源信息被大量挖掘,物源區(qū)資料的應(yīng)用前景變得更為廣闊,未來(lái)的發(fā)展呈現(xiàn)如下趨勢(shì):

      3.1 從傳統(tǒng)方法向現(xiàn)代分析測(cè)試技術(shù)的轉(zhuǎn)化

      早期的物源分析主要依靠沉積學(xué)、地層學(xué)、巖石學(xué)、重礦物等方法;雖然傳統(tǒng)的方法依然有效,但現(xiàn)在更多的依賴(lài)于掃描電鏡、陰極發(fā)光、X衍射、電子探針、能譜分析、電子探針及激光剝蝕等離子體質(zhì)譜儀(LA—ICP—MS)、激光感生火化電感耦合等離子體質(zhì)譜(LINA—ICP—MS)、電子自旋共振(ESR)測(cè)年、電子順磁共振(EPR)等現(xiàn)代分析測(cè)試技術(shù)的綜合運(yùn)用[75~80]。

      3.2 從單一方法到多方法的綜合運(yùn)用

      物源分析正從早期單一方法到多方法的綜合運(yùn)用、從單一學(xué)科走向多學(xué)科聯(lián)合交叉轉(zhuǎn)變,如巖石特征—重礦物—全巖主量元素—微量元素—稀土元素組合[81],巖石學(xué)數(shù)據(jù)—古水流數(shù)據(jù)—巖石化學(xué)[82]組合、重礦物—元素地球化學(xué)—同位素年代地質(zhì)學(xué)組合[83~86]、同位素地球化學(xué)—粘土礦物學(xué)的組合[58]、重礦物—石榴石地球化學(xué)—古流向的綜合運(yùn)用等[87]。在地質(zhì)工作者不懈的努力和探索中,隨著現(xiàn)代測(cè)試技術(shù)的不斷提高,物源分析方法將會(huì)更加完善和豐富.由定性分析走向定量分析,由單一方法走向多學(xué)科多方法的綜合運(yùn)用,這將是物源體系分析的未來(lái)發(fā)展方向[88]。

      3.3 從定性判斷到定量分析

      定量物源分析(QPA:quantitative provenance a-nalysis)是定量地評(píng)價(jià)從可識(shí)別的物源區(qū)到盆地充填過(guò)程中的碎屑物質(zhì)類(lèi)型、數(shù)量及供給速率[89]。隨著先進(jìn)分析手段,如電子探針、離子探針、等離子質(zhì)譜技術(shù)以及同位素測(cè)年等的應(yīng)用,從定性到定量是物源分析的必然趨勢(shì)。現(xiàn)代分析測(cè)試技術(shù)、數(shù)學(xué)定量模型[90]和計(jì)算機(jī)技術(shù)的提高[91]為定量物源分析提供了發(fā)展機(jī)遇[92~93]。沉積物(特別是單顆粒礦物)所攜帶的物源信息的大量挖掘變得可行,物源區(qū)資料的應(yīng)用前景也更為廣泛。

      在定量研究方面,已發(fā)展出兩個(gè)分支:一是模式識(shí)別,如判別分析、模糊聚類(lèi)、神經(jīng)網(wǎng)絡(luò)識(shí)別[94];另一分支則基于“質(zhì)量守衡”原理,通過(guò)數(shù)理統(tǒng)計(jì)方法實(shí)現(xiàn)物源的定量識(shí)別[89],提出了物源定量識(shí)別的非線性規(guī)劃數(shù)學(xué)模型,并利用模型計(jì)算了東海陸架北部表層沉積物細(xì)粒級(jí)部分之長(zhǎng)江、黃河物源的貢獻(xiàn)量。

      3.4 新技術(shù)新方法不斷涌現(xiàn)

      在國(guó)內(nèi)外廣大學(xué)者的不斷探索和實(shí)踐中,有關(guān)物源分析的新技術(shù)新方法層出不窮。如最新的研究結(jié)果顯示,Hf同位素[2,3]與斑脫土化學(xué)特征[95]被作為物源變化的標(biāo)志首次應(yīng)用于物源分析;磁性礦物包裹體及磁學(xué)手段被不斷發(fā)展和應(yīng)用[72,73];近年來(lái),石英顆粒[96]及重礦物[74,97]的顯微晶面形貌特征對(duì)物源的指示意義也被成功應(yīng)用。

      4 影響因素與問(wèn)題討論

      構(gòu)造運(yùn)動(dòng)對(duì)物源位置、物質(zhì)成分及結(jié)構(gòu)、搬運(yùn)路徑、甚至最終的沉積位置等方面有明顯影響,構(gòu)造抬升可以使物源區(qū)發(fā)生變化,可造成地層巖石碎屑組分及年齡分布范圍加大;走滑斷層可使某一時(shí)期沉積物與源巖發(fā)生長(zhǎng)距離側(cè)向位移,造成沉積體系的不連續(xù)及其與源區(qū)的分離;逆沖推覆作用可使源巖消失殆盡或僅留殘片[7],都會(huì)增加物源分析的難度,故物源分析必須結(jié)合其構(gòu)造背景、構(gòu)造運(yùn)動(dòng)的特點(diǎn)。

      雖然物源分析在上述各個(gè)方面取得了重要的進(jìn)展,但目前仍然存在一些問(wèn)題尚待解決,如:哪種沉積物或元素對(duì)環(huán)境的變化最為靈敏?如何確定再旋回石英顆粒的物源?搬運(yùn)路徑中的沉積體系構(gòu)型較少涉及;機(jī)械沉積分異作用和化學(xué)沉積分異作用對(duì)母巖和沉積巖(物)造成的成分差異未被評(píng)估;在每個(gè)沉積階段,母巖在被風(fēng)化侵蝕過(guò)程中,礦物種類(lèi)、組分的改變或溶解對(duì)物源分析所造成的影響需要評(píng)估;這些因素對(duì)物源分析結(jié)果均會(huì)產(chǎn)生一定影響,如何量化這些因素,目前的研究基礎(chǔ)較薄弱。物源區(qū)分析往往是基于碎屑組分、化學(xué)成分或年齡等與可能物源區(qū)的對(duì)比,往往僅具有統(tǒng)計(jì)意義。因此,深入了解區(qū)域地質(zhì)背景,把握物源區(qū)與沉積區(qū)的構(gòu)造活動(dòng)和演化歷程,大量收集可能的物源區(qū)的地質(zhì)信息,在此基礎(chǔ)上,結(jié)合一定數(shù)量的樣品測(cè)試,進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,才能得出理想的物源分析結(jié)果。

      5 結(jié)語(yǔ)

      作為沉積盆地分析的重要內(nèi)容之一,陸源沉積巖物源分析不僅是古地貌的重塑、巖相古地理重建、原型盆地恢復(fù)、沉積盆地演化再現(xiàn)、盆地沉積格局與沉積體系分析、沉積礦產(chǎn)預(yù)測(cè)、油氣儲(chǔ)層預(yù)測(cè)、母巖性質(zhì)追蹤的重要依據(jù),而且是物源區(qū)大地構(gòu)造背景分析、地殼與大地構(gòu)造演化恢復(fù)、古環(huán)境與古氣候恢復(fù)的重要途徑,還可作為連接沉積盆地與造山帶的紐帶和盆山耦合研究的切入點(diǎn)。陸源沉積巖物源分析將在未來(lái)的地質(zhì)研究、沉積礦產(chǎn)預(yù)測(cè)和勘探中發(fā)揮重要的作用,并倍受大地質(zhì)工作者關(guān)注。在科學(xué)理論不斷進(jìn)步、科學(xué)儀器日新月異、新技術(shù)方法層出不窮的新時(shí)代,陸源沉積巖物源分析也必將邁入快速發(fā)展的新紀(jì)元。

      References)

      1 Rodrigues J B,Pimentel M M,Dardenne M A,et al.Age,provenance and tectonic setting of the Canastra and Ibiá Groups(Bras lia Belt,Brazil):implications for the age of a Neoproterozoic glacial event in central Brazil[J].Journal of South American Earth Sciences,2010,29(2):512-521

      2 Bahlburg H,Vervoort J D,Dufrane S A.Plate tectonic significance of Middle Cambrian and Ordovician siliciclastic rocks of the Bavarian Facies,Armorican Terrane Assemblage,Germany-U-Pb and Hf isotope evidence from detrital zircons[J].Gondwana Research,2010,17(2-3):223-235

      3 Xiaoping Long,Chao Yuan,Min Sun,et al.Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai,NW China:New constrains on depositional age,provenance and tectonic evolution[J].Tectonophysics,2010,480(1-4):213-231

      4 Jimin Sun,Xiangkun Zhu.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters,2010,290(3-4):438-447

      5 Deru Xu,Xuexiang Gu,Pengchun Li,et al.Mesoproterozoic-Neoproterozoc transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China[J].Journal of Asian Earth Sciences,2007,29:637-650

      6 Udo Z,Luis A.Spalletti.Provenance of the Lower Paleozoic Balcarce Formation(Tandilia System,Buenos Aires Province,Argentina):Im-plications for paleogeographic reconstructions of SW Gondwana[J].Sedimentary Geology,2009,219(1-4):7-23

      7 徐亞軍,杜遠(yuǎn)生,楊江海.沉積物物源分析研究進(jìn)展[J].地質(zhì)科技情報(bào),2007,26(3):26-32[Xu Yajun,Du Yuansheng,Yang Jianghai.Prospects of sediment provenance analysis[J].Geological Science and Technology Information,2007,26(3):26-32]

      8 汪正江,陳洪德,張錦泉.物源分析的研究與展望[J].沉積與特提斯地質(zhì),2000,20(4):104-110[Wang Zhengjiang,Cheng Hongdei,Zhang Jinquan.Formerly sedimentary facies and palaeogeography[J].Sedimentary Geology and Tethyan Geology,2000,20(4):104-110]

      9 李曰俊,孫龍德,龔福華,等.藏北查桑上三疊統(tǒng)復(fù)理石沉積大地構(gòu)造背景的初步探討[J].巖石學(xué)報(bào),2000,16(3):443-448[Li Yuejun,Sun Longdei,Gong Fuhua,et al.A preliminary study on the tectonic setting of Upper Triassic flysch at Chasang,North Tibet[J].Acta Petrologica Sinica,16(3):443-448]

      10 李雙應(yīng),李任偉,王道軒,等.大別山北緣鳳凰臺(tái)組礫石地球化學(xué)特征及源區(qū)構(gòu)造環(huán)境[J].沉積學(xué)報(bào),2005,23(3):380-388[Li Shuangying,Li Renwei,Wang Daoxuan,et al.Geochemistry of the conglomerates and the tectonic setting of their provenance in Fenghuangtai Formation in the north margin of the Dabie Mountains[J].Acta Sedimentologica Sinica,2005,23(3):380-388]

      11 楊江海,杜遠(yuǎn)生,朱杰.甘肅省景泰正路下志留統(tǒng)復(fù)理石雜砂巖沉積地球化學(xué)特征[J].地質(zhì)科技情報(bào),2006,25(5):27-31[Yang Jianghai,Du Yuagsheng,Zhu Jie.Geochemical characteristics of the Lower Silurian Flysch Greywacke in Zhenglu,Jingtai County,Gansu Province[J].Geological Science and Technology Information,2006,25(5):27-31]

      12 趙紅格,劉池洋.物源分析方法及研究進(jìn)展[J].沉積學(xué)報(bào),2003,21(3):409-415[Zhao Hongge,Liu Chiyang.Approaches and prospects of provenance analysis[J].Acta Sedimentologica Sinica,2003,21(3):409-415]

      13 林暢松.沉積盆地的構(gòu)造地層分析——以中國(guó)構(gòu)造活動(dòng)盆地研究為例[J].現(xiàn)代地質(zhì),2006,20(2):185-194[Lin Changsong.Tectono-stratigraphic analysis of sedimentary basins:a case study on the inland tectonically active basins in China[J].Geoscience,2006,20(2):185-194]

      14 王世虎,焦養(yǎng)泉,吳立群,等.鄂爾多斯盆地西北部延長(zhǎng)組中下部古物源與沉積體空間配置[J].地球科學(xué),2007,32(2):201-208[Wang Shihu,Jiao Yangquan,Wu Yangqun,et al.Spatial combination of paleoprovenance and depositional lobe of Mid-Lower Yanchang Formation in the northwest of Ordos Basin[J].Earth Science,2007,32(2):201-208]

      15 王國(guó)燦.沉積物源區(qū)剝露歷史分析的一種新途徑——碎屑鋯石和磷灰石裂變徑跡熱年代學(xué)[J].地質(zhì)科技情報(bào),2002,21(4):35-40[Wang Guocan.A new approach to determine the exhumation history of the sediment provenance:detrital zircon and apatite fissiontrack thermochronology[J].Geological Science and Technology Information,2002,21(4):35-40]

      16 薛云韜,羅順社,雷傳玲,等.泌陽(yáng)凹陷南部陡坡帶核二段物源及古水流研究[J].長(zhǎng)江大學(xué)學(xué)報(bào),2009,6(3):158-161[Xue Yuntao,Luo Shunshe,Lei Chuangling,et al.The study of material source and ancient water of Eh2in steep slope,south of Biyang Depression[J].Journal of Yangtze University,2009,6(3):158-16]

      17 胡宗全,朱筱敏,彭勇民.準(zhǔn)噶爾盆地西北緣車(chē)排子地區(qū)侏羅系物源及古水流分析[J].古地理學(xué)報(bào),2001,3(3):50-53[Hu Zongquan,Zhu Xiaomin,Peng Yongmin.Analysis of provenance and palaeocurrentdirection of Jurassic at chepaizi regionin northwest edge of Junggar basin[J].Journal of Palaeogeography,2001,3(3):50-53]

      18 姜在興,邢煥清,李任偉,等.合肥盆地中—新生代物源及古水流體系研究[J].現(xiàn)代地質(zhì),2005,19(2):247-252[Jiang Zaixing,Xie Huanqing,Li Renwei,et al.Research on provenance and paleocurrents in the Meso-Cenozoic Hefei Basin[J].Geoscience ,2005,19(2):247-252]

      19 鄧宏文,郭建宇,王瑞菊,等.陸相斷陷盆地的構(gòu)造層序地層分析[J].地學(xué)前緣,2008,15(2):1-7[Deng Hongwen,Guo Jianyu,Wang Ruiju,et al.Tectono-sequence stratigraphic analysis in continental faulted basins[J].Earth Science Frontiers,2008,15(2):1-7]

      20 Wandres A M,Bradshaw J D,et al.Provenance analysis using conglomerate clast lithologies:a case study from the Pahau terrane of New Zealand[J].Sedimentary Geology,2004,167(1-2):57-89

      21 Noda A,Takeuchi M,Adachi M.Provenance of the Murihiku Terrane,New Zealand:evidence from the Jurassic conglomerates and sandstones in Southland[J].Sedimentary Geology,2004,164(3-4):203-222

      22 Dickinson W R,Beard L S,Brakenridge G R,et al.Provenance of North American Phanerozoic sandstones in relation to tectonic setting[J].Geological Society of America,Bulletin,1983,94:225-235

      23 任鳳樓.合肥盆地中生界沉積物物源分析及構(gòu)造意義[J].地質(zhì)科技情報(bào),2008,27(2):25-33[Ren Fenglou.Provenance analysis of Mesozoic Hefei Basin and tectonic significance[J].Geological Science and Technology Information,2008,27(2):25-33]

      24 魏玉帥,王成善,李祥輝,等.藏南古近紀(jì)甲查拉組物源分析及其對(duì)印度-歐亞大陸碰撞啟動(dòng)時(shí)間的約束[J].礦物巖石.2006,26(3):46-55[Wei Yushuai,Wang Chengshan,Li Xianghui,et al.Provenance analysis of Paleogene Gyachala Formation in Southern Tibet:implication for the initiation of collision between India and Asia[J].Mineral Petrology,2006,26(3):46-55]

      25 G?tze J,Pl?tze M,Habermann D.Origin,spectral characteristics and practical applications of the cathodoluminescence of quartz-A review[J].Mineralogy and Petrology,2001,71:225-250

      26 Carita A,Heinrich B.Cathodoluminescence spectra of detrital quartz as provenance indicators for Paleozoic metasediments southern Andean Patagonia[J].Journal of South American Earth Sciences,2003,16:15-26

      27 Morton A C,Whitham A G,F(xiàn)anning C M.Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral,mineral chemical and zircon age data[J].Sedimentary Geology,2005,182:3-28

      28 Li Renwei,Li Zhong,Jiang Maosheng,et al.Compositions of Juras-sic detrital garnets in Hefei Basin and its implication to provenance reconstruction and stratigraphic correlation[J].Science in China:Series D,2000,30(s1):91-98

      29 石永紅,李忠,卜香萍,等.博興洼陷新生代砂巖碎屑石榴石的物源示蹤及對(duì)魯西隆起的指示[J].沉積學(xué)報(bào),2009,27(5):967-974[Shi Yonghong,Li Zhong,Bu Xiangping,et al.Detrital garnets from Cenozoic sandstones across Boxing Sag for provenace indicator and its implication for the Luxi Uplift[J].Acta Sedmentologica Sinica,2009,27(5):967-974]

      30 Morton A,Hallsworth C,Chalton B.Garnet compositions in Scottish and Norwegian basement terrains:a framework for interpretation of North Sea sandstone provenance[J].Marine and Petroleum Geology,2004,21(3):393-410

      31 Sabeen H,Ramanujam M N,Andrew C M.The provenance of garnet:constraints provided by studies of coastal sediments from southern India[J].Sedimentary Geology,2002,152(3-4):279-287

      32 楊叢笑,趙澄林.石榴石電子探針?lè)治鲈谖镌囱芯恐械膽?yīng)用[J].沉積學(xué)報(bào),1996,14(1):162-166[Yang Congxiao,Zhao Chenglin.Application of electron microprobe analysis of detrital garnet to provenance studies[J].Acta Sedientologica Sinica,1996,14(1):162-166]

      33 He Zhengjun,Li Jinzhi,Mo Shenguo,et al.Geochemical discriminations of sandstones from the Mohe Foreland basin,northeastern China:Tectonic setting and provenance[J].Science in China:Series D,2005,48(5):613-621

      34 Friis H,Poulsen M L K,et al.Discrimination of density flow deposits using elemental geochemistry:Implications for subtle provenance differentiation in a narrow submarine canyon,Palaeogene,Danish North Sea[J].Marine and Petroleum Geology,2007,24(4):221-235

      35 Yi Yan,Bin Xia,Ge Lin,et al.Geochemistry of the sedimentary rocks from the Nanxiong Basin,South China and implications for provenance,paleo-environment and paleoclimate at the K/T boundary[J].Sedimentary Geology,2007,197(1-2):127-140

      36 Kasanzu C,Maboko M A H,et al.Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group,NE Tanzania:Implications for provenance and source rock weathering[J].Precambrian Research,2008,164(3-4):201-213

      37 Dostal J,Keppie J D.Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico:Evidence for local provenance in felsic – intermediate igneous rocks[J].Sedimentary Geology,2009,222(3-4):241-253

      38 楊守業(yè),李從先,張家強(qiáng).蘇北濱海平原全新世沉積物物源研究——元素地球化學(xué)與重礦物方法比較[J].沉積學(xué)報(bào),1999,17(3):458-463[Yang Shouye,Li Congxian,Zhang Jiaqiang.Provenance study of Holocene sediments in Subei coastal plain:Comparison between elemental geochemistry and heavy mineral methods[J].Acta Sedimentologica Sinica,1999,17(3):458-463]

      39 金秉福,林振宏,季福武.海洋沉積環(huán)境和物源的元素地球化學(xué)記錄釋讀[J].海洋科學(xué)進(jìn)展,2003,23(1):99-106[Jin Bingfu,Lin Zhenhong,Ji Fuwu.Interpretation of element geochemical records of marine sedimentary environment and provenance[J].Advances in Marine Science,2003,23(1):99-106]

      40 Mcqueen K G,Pwa A,Van M J C.Geochemical and electron paramagnetic characteristics of quartz from a multi-stage vein environment,Cowarra gold deposit,New South Wales[J].Geochemical Exploration,2001,72:211-222

      41 Tibi M,Heumann K G.Determination of trace elements in quartz glass by use of LINA-Spark-ICP-MS as a new method for bulk analysis of solid samples[J].Fresenius Journal of Analytical Chemistry,2001,370:521-526

      42 Bhatia M R,Crook K A W.Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basin[J].Contributions to Mineralogy and Petrology,1986,92:181-193.

      43 Renata C,Sulovsky P,Bruce A P.Major and trace elements in pyrope almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm sediments,Drahany Uplands,Bohemian Massif[J].Lithos,2005,82:51-70

      44 Blanco G,Rajesh H M,Gaucher C,et al.Provenance of the Arroyo del Soldado Group(Ediacaran to Cambrian,Uruguay):Implications for the paleogeographic evolution of southwestern Gondwana[J].Precambrian Research,2009,171(1-4):57-73

      45 操應(yīng)長(zhǎng),王艷忠,徐濤玉,等.特征元素比值在沉積物物源分析中的應(yīng)用[J].沉積學(xué)報(bào),2007,25(2):230-238[Cao Yingchang,Wang Yanzhong,Xu Taoyu,et al.Application of the ratio of characteristic elements in provenance analysis[J].Acta Sedimentologica Sinica,2007,25(2):230-238]

      46 Clayton R N,Jackson M L,Sridhar K.Resistance of quartz silt to isotopic exchange under burial and intense weathering conditions[J].Geochimica et Cosmochimica Acta,1978,42(10):1517-1522

      47 Aleon J,Chaussidon M,Marty B,et al.Oxygen isotopes in single micrometer-sized quartz grains:Tracing the source of Saha-ran dust over long-distance atmospheric transport[J].Geochimica et Cosmochimica Acta,2002,66(19):3351-3365

      48 Wanas H A,Maguid N M.Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone,southwest Saudi Arabia:Implication for provenance and tectonic setting[J].Journal of Asian Earth Sciences,2006,27(4):416-429

      49 Das B K,AL-Mikhlafi A S,Kaur P.Geochemistry of Mansar Lake sediments,Jammu,India:Implication for source-area weathering,provenance,and tectonic setting[J].Journal of Asian Earth Sciences,2006,26(6):649-668

      50 Osae S,Asiedu D K,Banoeng-Yakubo B,et al.Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana:Evidence from geochemistry and detrital modes[J].Journal of African Earth Sciences,2006,44(1):85-96

      51 Getaneh W.Geochemistry provenance and depositional tectonic setting of the Adigrat Sandstone northern Ethiopia[J].Journal of African Earth Sciences,2002,35(2):185-98

      52 Emmel B,Geiger M,Jacobs J.Detrital apatite fission-track ages in Middle Jurassic strata at the rifted margin of W Madagascar:Indicator for a protracted resedimentation history[J].Sedimentary Geology,2006,186(1-2):27-38

      53 李忠,彭守濤,許承武,等.韓國(guó)太白山盆地古生界砂巖碎屑鋯石U-Pb年代及其區(qū)域構(gòu)造含義[J].巖石學(xué)報(bào),2009,25(1):182-192[Li Zhong,Peng Shoutao,Xu Chengwu,et al.U-Pb ages of the Paleozoic sandstone detrital zircons and their tectonic implications in the Tabeaksan basin,Korea[J].Acta Petrologica Sinica,2009,25(1):182-192]

      54 Balica B C,Ducea M N,et al.Late Cambrian Early Ordovician Gondwanan terranes in the Romanian Carpathians:A zircon U Pb provenance study[J].Gondwana Research,2009,16(1):119-133

      55 Shouye Yang,Zhongbo Wang,Yun Guo,et al.Heavy mineral compositions of the Changjiang(Yangtze River)sediments and their provenance-tracing implication[J].Journal of Asian Earth Sciences,2009,35:56-65

      56 Chetel L M,(Toni)Simo J A,Singer S.40Ar/39Ar geochronology and provenance of detrital K-feldspars,Ordovician,Upper Mississippi Valley[J].Sedimentary Geology,2005,182(1-4):163-181

      57 Zhenbing She,Changqian Ma,Mason R,et al.Provenance of the Triassic Songpan Ganzi flysch,west China[J].Chemical Geology,2006,231(1-2):159-175

      58 Gesa K,Poppe L B,Rolf B P,et al.Provenance of Pliocene sediments and paleoenvironmental changes in the southern North Sea region using Samarium Neodymium(Sm/Nd)provenance ages and clay mineralogy[J].Sedimentary Geology,2004,171(1-4):205-226

      59 André W B,Ana M P M,Anderson J M,et al.Santa B rbara Formation(Early Paleozoic,Ca apava do Sul,southern Brazil):Petrographic and Sm Nd isotopic provenance parameters[J].Journal of South A-merican Earth Sciences,2008,26(4):485-497

      60 Spiegel C,Wolfgang S,Wolfgang F,et al.Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators:Implications for the reconstruction of the exhumation history of the Central Alps[J].Chemical Geology,2002,189:231-250

      61 孟憲偉,杜德文,陳志華,等.長(zhǎng)江、黃河流域泛濫平原細(xì)粒沉積物87Sr/86Sr空間變異的制約因素及其物源示蹤意義[J].地球化學(xué),2000,29(6):562-570[Meng Xianwei,Du Dewen,Chen Zhihua,et al.Factors controlling spatial variation of87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments[J].Ceochimica,2000,29(6):562-570]

      62 Marivaldo S N,Ana M G,Moacir J B M,et al.Provenance of Albian sandstones in the S?o Luís-Grajaú Basin(northern Brazil)from evidence of Pb-Pb zircon ages,mineral chemistry of tourmaline and palaeocurrent data[J].Sedimentary Geology,2007,201(1-2):21-42

      63 Yang Shouye,Jiang Shaoyong,Lin Hongfei,et al.Sr-Nd isotopic compositions of the Changjiang sediments:Implications for tracing sediment sources[J].Science in China:Series D,2007,50(10):1556-1565

      64 Lianhua Hou,Jinghong Wang,Lichun Kuang,et al.Provenance sediments and its exploration significance:A case from Member 1 of Qingshuihe Formation of Lower Cretaceous in Junggar Basin[J].Earth Science Frontiers,2009,16(6):337-348

      65 李昌,曹全斌,壽建峰,等.自然伽馬曲線分形維數(shù)在沉積物源分析中的應(yīng)用[J].天然氣地球科學(xué),2009,20(1):148-152[Li Chang,Cao Quanbin,Shou Jianfeng,et al.Application of fractal dimension of natural gamma logging curve in provenance analysis[J].Natural Gas Geoscience,2009,20(1):148-152]

      66 李軍,王貴文.高分辨率傾角測(cè)井在砂巖儲(chǔ)層中的應(yīng)用[J].測(cè)井技術(shù),1995,19(5):352-357[Li Jun,Wang Guiwen.Applications of high resolution dip log to the study of sand reservoir[J].Well Logging Technology,1995,19(5):352-357]

      67 黃傳炎,王華,周立宏,等.北塘凹陷古近系沙河街組三段物源體系分析[J].地球科學(xué),2009,39(6):975-984[Huang Chuanyan,Wang Hua,Zhou Lihong,et al.Provenance System Characters of the Third Member of Shahejie Formation in the Paleogene in Beitang Sag[J].Earth Science-Journal of China University of Geosciences,2009,39(6):975-984]

      68 Kairyté M,Stevens R L.Quantitative provenance of silt and clay within sandy deposits of the Lithuanian coastal zone(Baltic Sea)[J].Marine Geology,2009,257(1-4):87-93

      69 Boulay S,Colin C,Trentesaux A,et al.Sediment sources and East Asian monsoon intensity over the last 450 ky:mineralogical and geochemical investigations on South China Sea sediments[J].Palaeogeography,Palaeoclimatology Palaeoecology,2005,228:260-277

      70 呂俏鳳.利用親陸元素和陸源化合物研究物源與隱蔽儲(chǔ)層的新方法[J].中國(guó)海上油氣,2007,19(6):367-371[Lǚ Qiaofeng.A new method to study provenance and subtle reservoir using continental elements and terrigenous minerals[J].China Offshore Oil and Gas,2007,19(6):367-371]

      71 郭志剛,楊作升,陳致林,等.東海陸架泥質(zhì)區(qū)沉積有機(jī)質(zhì)的物源分析第[J].地球化學(xué),2001,30(5):416-424[Guo Zhigang,Yang Zuosheng,Chen Zhilin,et al.Source of sedimentary organic matter in the mud areas of the East China Sea shelf[J].Geochimica,2001,30(5):416-424]

      72 Mark W H,Andrew C M.Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates:Comparison with heavy mineral analysis[J].Sedimentary Geology,2004,171(1-4):13-36

      73 周晶,戴雪榮,付苗苗.沉積物磁性特征對(duì)物源指示作用的探討[J].土壤通報(bào),2008,39(5):1169-1172[Zhou Jing,Dai Xuerong,F(xiàn)u Miaomiao.Discussion of sediment magnetic signature to material sources'implication[J].Chinese Journal of Soil Science,2008,39(5):1169-1172]

      74 Moral C J P,Gutiérrez M J M,Bellón A S,et al.Surface textures of heavy-mineral grains:a new contribution to provenance studies[J].Sedimentary Geology,2005,174(3-4):223-235

      75 Ohta T.Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Basin,SW Japan:implication of factor analysis to sorting effects and provenance signatures[J].Sedimentary Geology,2004,171(1-4):159-180

      76 Rieser A B,Neubauer F,Yongjiang Liu,et al.Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin,western China:Tectonic vs.climatic control[J].Sedimentary Geology,2005,177(1-2):1-18

      77 Kutterolf S,Diener R,Schacht U,et al.Provenance of the Carboniferous Hochwipfel Formation(Karawanken,Austria/Slovenia):Geochemistry versus petrography[J].Sedimentary Geology,2008,203(3-4):246-266

      78 Roddaz M,Viers J,Brusset S,et al.Controls on weathering and provenance in the Amazonian foreland basin:Insights from major and trace element geochemistry of Neogene Amazonian sediments[J].Chemical Geology,2006,226(1-2):31-65

      79 Barbera G,Giudice A L,Mazzoleni P,et al.Combined statistical and petrological analysis of provenance and diagenetic history of mudrocks:Application to Alpine Tethydes shales(Sicily,Italy)[J].Sedimentary Geology,2009,213(1-2):27-40

      80 Qingyu Guan,Baotian Pan,Hongshan Gao,et al.Geochemical evidence of the Chinese loess provenance during the Late Pleistocene[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,270(1-2):53-58

      81 王建剛,胡修棉,黃志誠(chéng).藏南桑單林地區(qū)晚白堊世—始新世砂巖物源區(qū)分析[J].地質(zhì)學(xué)報(bào),2008,82(1):92-103[Wang jiangang,Hu Xiuman,Huang Zhicheng.Provenance analysis of Late Cretaceous-Early Eocene sandstones in the Sangdanlin Area,Southern Tibet[J].Acta Geologica Sinica,2008,82(1):92-103]

      82 楊超,陳清華,呂洪波,等.南盤(pán)江盆地中三疊統(tǒng)復(fù)理石的物源和沉積構(gòu)造背景分析[J].中國(guó)石油大學(xué)學(xué)報(bào),2008,32(6):22-27[Yang Chao,Chen Qing-hua,Lv Hong-bo,et al.Provenance and tectonic setting of the middle Triassic flysch in Nanpanjiang Basin[J].Journal of China University of Petroleum,2008,32(6):22-27]

      83 Farmer G.L,Licht K,Swope R J,et al.Isotopic constraints on the provenance of fine-grained sediment in LGM tills from the Ross Embayment,Antarctica[J].Earth and Planetary Science Letters,2006,249(1-2):90-107

      84 Young Ji Joo,Yong Il Lee,Zhiquiang Bai.Provenance of the Qingshuijian Formation(Late Carboniferous),NE China:Implications for tectonic processes in the northern margin of the North China block[J].Sedimentary Geology,2005,177(1-2):97-114

      85 Damiani D,Giorgetti G.Provenance of glacial marine sediments under the McMurdo/Ross Ice Shelf(Windless Bight,Antarctica):Heavy minerals and geochemical data[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,260(1-2):262-283

      86 Fontanelli P D R,Ros L F D,Marcus Vinicius Dorneles Remus.Provenance of deep-water reservoir sandstones from the Jubarte oil field,Campos Basin,Eastern Brazilian Margin[J].Marine and Petroleum Geology,2009,26(7):1274-1298

      87 Hallsworth C R,Chisholm J I.Provenance of late Carboniferous sandstones in the Pennine Basin(UK)from combined heavy mineral,garnet geochemistry and palaeocurrent studies[J].Sedimentary Geology,2008,203(3-4):196-212

      88 黃傳炎,王華,周立宏,等.北塘凹陷古近系沙河街組三段物源體系分析[J].地球科學(xué),2009,34(6):975-984[Huang Cuanyan,Wang Hua,Zhou Lihong,et al.Provenance system characters of the Third Member of Shahejie Formation in the Paleogene in Beitang[J].Earth Science,2009,34(6):975-984]

      89 范德江,孫效功,楊作升,等.沉積物物源定量識(shí)別的非線性規(guī)劃模型——以東海陸架北部表層沉積物物源識(shí)別為例[J].沉積學(xué)報(bào),2002,20(1):29-33[Fan Dejiang,Sun Xiaogong,Yang Zuosheng,et al.A mathematical model on the quantitative provenance identification:Take the identification of the surface sediment sources from ECS as an example[J].Acta Sedimentologica Sinica,2002,20(1):29-33]

      90 王碩儒,范德江,汪丙柱.巖相識(shí)別的神經(jīng)網(wǎng)絡(luò)計(jì)算[J].沉積學(xué)報(bào),1996,14(4):154-160[Wang Souru,F(xiàn)an Dejiang,Wang Bingzhu.Facies recognition using the neural networks[J].Acta Sedimentologica Sinica,1996,14(4):154-160]

      91 Meinhold G,Anders B,Kostopoulos D,et al.Rutile chemistry and thermometry as provenance indicator:An example from Chios Island,Greece[J].Sedimentary Geology,2008,203(1-2):98-111

      92 Zack T,Eynatten H,Kronz A.Rutile geochemistry and its potential use in quantitative provenance studies[J].Sedimentary Geology,2004,171(1-4):37-58

      93 Weltje G J,Eynatten H V.Quantitative provenance analysis of sediments:review and outlook[J].Sedimentary Geology,2004,171(1-4):1-11

      94 林曉彤,杜樹(shù)杰,李巍然.東海外緣碎屑礦物的物源解釋——基于BP神經(jīng)網(wǎng)絡(luò)的判識(shí)分區(qū)[J].海洋科學(xué),2003,27(11):75-80[Lin Xiaotong,Du Shujie,Li Weiran.Zonation of Detrital sediments distribution on the outer East China Sea:Determined by using BP artificial neural network analysis[J].Marine Sciences,2003,27(11):75-80]

      95 Fanti F.Bentonite chemical features as proxy of late Cretaceous provenance changes:A case study from the Western Interior Basin of Canada[J].Sedimentary Geology,2009,217(1-4):112-127

      96 喬淑卿,楊作升.石英示蹤物源研究進(jìn)展[J].海洋科學(xué)進(jìn)展,2006,24(2):266-274[Qiao Shuqing,Yang Zuosheng.Advances in study on quartz as a tracer form material source[J].Advances in Marine Science,2006,24(2):266-274]

      97 Beerten K,Pierreux D,Stesmans A.Towards single grain ESR dating of sedimentary quartz:First results[J].Quaternary Science Reviews,2003,22:1329-1334

      猜你喜歡
      物源沉積物礦物
      晚更新世以來(lái)南黃海陸架沉積物源分析
      渤海油田某FPSO污水艙沉積物的分散處理
      海洋石油(2021年3期)2021-11-05 07:43:12
      水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
      煤泥水中煤與不同礦物相互作用的模擬研究
      我國(guó)首列106節(jié)重載列車(chē)抵達(dá)濟(jì)礦物流
      強(qiáng)震區(qū)泥石流物源演化指標(biāo)選取及規(guī)律分析
      基于NAIRS和PCA-SVM算法快速鑒別4種含鐵礦物藥
      中成藥(2018年2期)2018-05-09 07:19:55
      討論用ICP-AES測(cè)定土壤和沉積物時(shí)鈦對(duì)鈷的干擾
      南海北部陸架表層沉積物重礦物分布特征及物源意義
      物源對(duì)子洲氣田山2段儲(chǔ)層的影響
      新沂市| 安吉县| 沙田区| 正蓝旗| 崇明县| 通州区| 九龙坡区| 水富县| 九江市| 磐安县| 登封市| 聊城市| 宽甸| 大连市| 囊谦县| 公安县| 兴业县| 绿春县| 商丘市| 卢氏县| 仙游县| 霞浦县| 关岭| 大方县| 观塘区| 抚顺县| 屏边| 承德县| 宁河县| 灵丘县| 广德县| 长海县| 洛宁县| 新巴尔虎右旗| 儋州市| 济阳县| 泽普县| 云阳县| 新泰市| 藁城市| 辛集市|