饒小珍,林 崗,許友勤
(福建師范大學(xué)生命科學(xué)學(xué)院,福建省發(fā)育與神經(jīng)生物學(xué)重點實驗室,福州 350108)
海洋污損生物又稱海洋附著生物,是生長在船底和海中一切設(shè)施表面的動物、植物和微生物。當(dāng)污損生物大量繁衍且未能及時清除,會對海洋設(shè)施如碼頭、港口、運輸管道、船舶等造成極大的破壞并禍及水產(chǎn)養(yǎng)殖業(yè),給沿海各國的經(jīng)濟造成巨大損失[1-2]。蔓足類中的許多種類如藤壺、茗荷、鎧茗荷等均屬于污損生物,其中無柄蔓足類——藤壺屬節(jié)肢動物門(Arthropoda)、甲殼亞門(Crustacea)、蔓足下綱(Cirripedia)、圍胸總目(Thoracica)[3],具備特殊的形態(tài)結(jié)構(gòu)、生活史和種群生態(tài)特征,是最主要的海洋污損生物[4-9]。美國、英國、日本以及其它沿海國家對藤壺等污損生物的防除問題非常重視,以紋藤壺(Balanus amphitrite)為模型生物對藤壺的附著變態(tài)機制進行了大量研究[2,5,9-15],以期為海洋污損生物的防治特別是開發(fā)高效環(huán)保無毒的防污劑提供理論依據(jù)。
蔓足類的生活史通常要經(jīng)過營浮游生活的6期無節(jié)幼體(naupliar)、不攝食的金星幼蟲(cyprid)、固著的稚體和成體幾個發(fā)育階段[3,11,15-16]。浮游的金星幼蟲發(fā)育到固著的稚體階段,其形態(tài)結(jié)構(gòu)及生活習(xí)性發(fā)生了很大的變化。金星幼蟲是蔓足類生活史中的一個重要階段,其唯一的作用是選擇適宜附著的基質(zhì)并完成變態(tài)[6,16-17]。在附著變態(tài)過程中,金星幼蟲的游泳足快速劃動,以規(guī)律性的“步伐”在基質(zhì)表面行走,通過第一觸角探測附著基質(zhì),分泌臨時膠體形成足跡;如果基質(zhì)條件適宜,金星幼蟲即分泌永久膠體附著,進而變態(tài)為稚體,個體進入固著階段[17-19]。Lagersson等把金星幼蟲的固著行為分為5個分離的階段:游泳、基質(zhì)的探測、廣泛的探索、緊密的探索、白堊腺的分泌及永久附著[17]。自然狀態(tài)下金星幼蟲的固著行為包括兩個連續(xù)的過程,即附著和變態(tài)[11,16]。因此,浮游的金星幼蟲附著變態(tài)成固著的稚體是蔓足類發(fā)育過程中的一個關(guān)鍵環(huán)節(jié),如果金星幼蟲不能完成附著變態(tài),最終只有死亡。
一般認為自由游泳的金星幼蟲通過基質(zhì)表面的物理因子、化學(xué)因子和生物因子的誘導(dǎo)產(chǎn)生一種特別的行為反應(yīng),導(dǎo)致聚集固著的發(fā)生[6,9,16,20-21]。早期的研究主要側(cè)重于各種物理因子對金星幼蟲附著變態(tài)影響的探討,底質(zhì)類型[22]、顏色和光照、表面張力、溫度和鹽度[12,23]、表面濕度[24]、超聲波[25]等因子均能影響金星幼蟲的附著變態(tài)。進一步的研究表明,與物理因子相比化學(xué)和生物因子對金星幼蟲附著變態(tài)的影響更為顯著,近年來國外更多的研究集中在化學(xué)和生物因子方面[2,10,16,26-27]。同時金星幼蟲在附著變態(tài)過程中對外界因子的反應(yīng)程度還依賴于其內(nèi)在因子,即生理狀態(tài)(如能量儲量和年齡)[28-29]。本文概括了近年來藤壺附著變態(tài)生理機制和分子機制研究的進展,從成體提取物、水溶性信息素、足跡、神經(jīng)遞質(zhì)、激素、生物膜和金星幼蟲的生理狀態(tài)等對藤壺金星幼蟲附著變態(tài)的影響進行綜合闡述,希望能對我國相關(guān)工作的進一步開展提供借鑒與參考。
藤壺的聚集固著行為已被人們認識很久,實驗室和野外的實驗都表明金星幼蟲喜歡固著在同種個體的周圍,這一行為稱為聚集[30]。早在20世紀50—60年代就有實驗表明藤壺(Semibalanus balanoides)能誘導(dǎo)其金星幼蟲的附著變態(tài),人們把其中未知的誘導(dǎo)因子稱為節(jié)肢蛋白(與角質(zhì)層相聯(lián)系)[31];該因子的化學(xué)性質(zhì)類似于肌動蛋白,是一種粘性蛋白,但在水溶液中不能獨立誘導(dǎo)金星幼蟲的附著變態(tài),必須與基質(zhì)結(jié)合[16]。Larman等進一步指出S.balanoides的誘導(dǎo)因子是由5000—6000 Da和18000 Da亞基組成的多態(tài)蛋白[32],隨后更多的研究表明藤壺成體提取物能誘導(dǎo)金星幼蟲的附著變態(tài)[12,24],目前開展的各種因子對金星幼蟲附著變態(tài)影響的許多實驗也都是在成體提取物的誘導(dǎo)下進行的[2,10-11,27]。
近年從紋藤壺中分離純化出的“誘導(dǎo)固著蛋白復(fù)合物(SIPC)”是一種高分子量的糖蛋白,主要由分子量為76、88、98 kDa的3個亞基組成,每個亞基與整個SIPC一樣具有誘導(dǎo)金星幼蟲固著的活性[26]。藤壺成體粗提物[33]或純化物SIPC的亞基[26]中能與小扁豆凝集素結(jié)合的特殊糖鏈在金星幼蟲的附著變態(tài)中起重要作用,但環(huán)境中各種單糖和二糖對金星幼蟲附著變態(tài)的影響取決于糖的種類和濃度[10]。SIPC可在藤壺?zé)o節(jié)幼體發(fā)育過程中合成并積累在金星幼蟲體內(nèi),而后金星幼蟲分泌SIPC至第一觸角的附著盤[34]。SIPC是一種固著誘導(dǎo)信息素,SIPC(或類SIPC蛋白)在紋藤壺固著時參與了成體與幼蟲間及幼蟲與幼蟲間的相互作用[34-35]。
序列分析結(jié)果表明,SIPC與α2-巨球蛋白(α2-macroglobulin)家族有30%的相似性,其cDNA(5.2 kb)編碼包含1547個氨基酸的蛋白質(zhì)前體,可能是由一個α2-巨球蛋白基因的祖先復(fù)制進化而來;SIPC的mRNA不僅在成體的各個器官表達,也在稚體和幼蟲階段廣泛表達[35]。在幼蟲和成體角質(zhì)層中表達的糖蛋白與SIPC的mRNA同時出現(xiàn);表明SIPC由上表皮細胞產(chǎn)生并分泌到角質(zhì)層,SIPC在金星幼蟲的附著變態(tài)中作為接觸信息素起作用[36]。現(xiàn)在,一般認為早期命名的節(jié)肢蛋白就是現(xiàn)在的SIPC,它是一種角質(zhì)層糖蛋白[26,34,36]。
藤壺不同部位(外殼、軟體部、整體)提取物的誘導(dǎo)活性有所不同,一般整體提取物比外殼和軟體部提取物的誘導(dǎo)活性高[10]。不僅同種藤壺的提取物具有誘導(dǎo)作用,異種藤壺的提取物也表現(xiàn)出誘導(dǎo)作用[11,37]。SIPC樣的糖蛋白在藤壺中普遍存在,但是異種藤壺間SIPC的誘導(dǎo)活性有所不同[37]。采用成體粗提物和純化物SIPC[38]進行的實驗均表明金星幼蟲在附著變態(tài)中對同種提取物的反應(yīng)比異種提取物的強烈。因此,藤壺固著誘導(dǎo)信息素活性的強弱可以反映它們的系統(tǒng)親緣關(guān)系[24,37]。
除了以SIPC為代表的接觸信息素(須與基質(zhì)表面結(jié)合)能對金星幼蟲產(chǎn)生誘導(dǎo)作用外,藤壺還可產(chǎn)生改變金星幼蟲行為的水溶性信息素[31],Rittschof率先證實了水溶性信息素的存在[39],認為紋藤壺體內(nèi)3000—5000 Da的多肽能誘導(dǎo)金星幼蟲的固著[39-40]。一般水溶性的信息素是指從藤壺體內(nèi)釋放的能誘導(dǎo)金星幼蟲附著行為和變態(tài)的分子量小于500 Da的多肽[16],它所含有的一個堿性羧基端和一個中性或堿性氨基端對其生物活性是重要的[40-41]。幾個具有這種結(jié)構(gòu)特征的二肽或三肽如甘氨酸-甘氨酸-精氨酸(GGR)具有類似的誘導(dǎo)能力[40]。雖然在野外GGR能誘導(dǎo)金星幼蟲的固著[42],但在實驗室內(nèi)并不能證實GGR的活性[43]。最近許多的研究表明水溶性的信息素在金星幼蟲的固著中起重要作用[44-46],它的生態(tài)作用可能是通過刺激金星幼蟲的附著行為進而促進浮游階段向固著階段的轉(zhuǎn)變,而不是與SIPC一樣直接誘導(dǎo)金星幼蟲的永久附著和變態(tài)[46]。從紋藤壺的成體提取物中還純化出另一種誘導(dǎo)蛋白,其分子量為(31600±500)Da,但與SIPC無關(guān);它能迅速誘導(dǎo)金星幼蟲的探索行為,這種誘導(dǎo)蛋白被認為可能是一種水溶性的信息素[47]。有關(guān)水溶性信息素的生態(tài)作用、來源以及理化特性等仍有許多工作要做。
Walker等發(fā)現(xiàn)S.balanoides的金星幼蟲在探測基質(zhì)時,在基質(zhì)表面會留下觸角分泌物——即蛋白質(zhì)“足跡”[48]。Nott等認為這種“足跡”是金星幼蟲的臨時膠體,由單細胞腺產(chǎn)生并分泌至第一觸角附著盤[18]。在紋藤壺的金星幼蟲中也證實了“足跡”的存在,其除了起臨時膠體的作用外,還有第二種功能即行使固著誘導(dǎo)信息素的作用[49]。一般認為“足跡”的存在可以提高基質(zhì)表面的吸引力,在基質(zhì)表面不存在同種成體的情況下,金星幼蟲也可以產(chǎn)生聚集固著[48-49]。免疫染色法顯示金星幼蟲的“足跡”含有SIPC,金星幼蟲整體免疫組織化學(xué)的實驗結(jié)果也證明了金星幼蟲的“足跡”與SIPC之間的化學(xué)關(guān)系,從而說明金星幼蟲的“足跡”為什么可以誘導(dǎo)金星幼蟲的固著[34]。使用SIPC的N-端與C-端多肽制備的多克隆抗體檢測金星幼蟲的“足跡”,同樣證明SIPC是足跡蛋白的一個成份或兩者是同樣的蛋白[50]。
總之,研究結(jié)果表明金星幼蟲“足跡”對其附著變態(tài)起誘導(dǎo)作用的物質(zhì)基礎(chǔ)仍是SIPC。
有關(guān)神經(jīng)遞質(zhì)和激素等信號傳導(dǎo)物質(zhì)在金星幼蟲附著變態(tài)中的作用一直受到人們的重視。Clare等認為第二信使(cAMP)參與金星幼蟲附著變態(tài)的調(diào)節(jié)[51]。乙酰膽堿和多巴胺通過參與紋藤壺金星幼蟲肌肉收縮及白堊腺膠體物質(zhì)的分泌進而調(diào)節(jié)金星幼蟲的附著變態(tài)[52-53];同樣,兒茶酚胺包括多巴胺是參與紅巨藤壺(Megabalanus rosa)金星幼蟲白堊腺膠體物質(zhì)的分泌而不是直接誘導(dǎo)附著變態(tài)的發(fā)生[54]。多巴胺能誘導(dǎo)紋藤壺金星幼蟲產(chǎn)生沒有附著的變態(tài)[55]或抑制金星幼蟲的附著變態(tài)[56],5-羥色胺的作用僅調(diào)節(jié)金星幼蟲的附著[56]或是誘導(dǎo)金星幼蟲附著和變態(tài)[53,55]。這兩種神經(jīng)遞質(zhì)對致密藤壺(B.improvisu)的效應(yīng)則截然不同,多巴胺能誘導(dǎo)其金星幼蟲的固著,而5-羥色胺卻抑制其金星幼蟲的固著[57]。去甲腎上腺素能誘導(dǎo)紋藤壺金星幼蟲產(chǎn)生沒有附著的變態(tài)且變態(tài)過程比自然過程延長許多,其機理是去甲腎上腺素能干擾金星幼蟲白堊腺膠體物質(zhì)的分泌,導(dǎo)致其放棄探索行為而不能粘附在基質(zhì)表面,進而直接變態(tài)成為稚體[7]。一些研究進一步從分子水平證明胞內(nèi)合成的5-羥色胺和多巴胺至少部分參與了金星幼蟲附著變態(tài)的調(diào)節(jié)[58]。
蛋白激酶C(PKC)在紋藤壺金星幼蟲的變態(tài)中可能起重要作用,但沒有參與其附著行為[59]。甲基法尼酯(methyl farnesoate)和保幼激素(juvenile hormone III)能誘導(dǎo)金星幼蟲產(chǎn)生沒有附著的變態(tài)即早熟變態(tài)[60-61],前者可能通過蛋白激酶C信號傳導(dǎo)系統(tǒng)誘導(dǎo)金星幼蟲的變態(tài)[60]或是在金星幼蟲體內(nèi)起保幼激素的作用[61]。20-羥基脫皮酮(20-hydroxyecdysone)在低濃度時能促進金星幼蟲的附著變態(tài),但在其高濃度的作用下金星幼蟲只附著卻不變態(tài)[62]。蛻皮激素類似物RH5849也能誘導(dǎo)金星幼蟲正常附著變態(tài)[63]。鈣調(diào)蛋白(CaM)是一種主要的胞內(nèi)鈣結(jié)合蛋白,可以調(diào)節(jié)鈣偶聯(lián)信號傳導(dǎo)途徑,在金星幼蟲附著變態(tài)中參與包括肌球蛋白輕鏈激酶和鈣調(diào)蛋白激酶在內(nèi)的酶促反應(yīng),也是金星幼蟲變態(tài)時的一種調(diào)節(jié)劑[64]。
生物膜往往是藤壺金星幼蟲在野外附著變態(tài)的先決條件,在金星幼蟲棲息地的選擇和固著中起重要作用[20-21,28,65-67]。研究生物膜對藤壺附著變態(tài)的影響主要通過單種細菌膜和自然生物膜兩種類型的實驗。在室驗室中許多工作研究了從自然生物膜中分離的在人工基質(zhì)上培養(yǎng)的單種細菌膜對金星幼蟲附著變態(tài)的影響[2,14,67-69]。單種細菌膜顯示了不同的效應(yīng)[20],由于細菌種類的不同可以是促進[66,68-70]、抑制[68-69,71-72]或不產(chǎn)生任何影響[73]。
在單種細菌膜的基礎(chǔ)上,人們還進一步研究了多種人工生物膜[27,67]及自然生物膜在野外[28,65,70,73-74]或在室驗室[2,66,68-69,74-75]對金星幼蟲附著變態(tài)的影響。自然生物膜對金星幼蟲附著變態(tài)的影響也是復(fù)雜的[20],可以是刺激作用[66,72]、抑制作用[28]或沒有效果[73]。生物膜的細菌群落結(jié)構(gòu)在決定生物膜對金星幼蟲的吸引力方面起重要作用[66,73],而生物膜的年齡則影響其細菌密度[66,73]、種類組成[68]、生理狀況及生長階段[20,66,69,73,75]等群落參數(shù)。因此,一般老化的生物膜對金星幼蟲的固著有促進作用而形成不久的生物膜卻起抑制作用。這是由于細菌密度的增加、細菌多樣性的增加以及生物膜代謝活力的變化引起的[69],但也有完全相反的效應(yīng)[21,28],這取決于生物膜的來源[73-74]。另外,自然生物膜附著的基質(zhì)[68]、環(huán)境條件(水溫和鹽度[75]、底質(zhì)特性[21])、潮位(群落結(jié)構(gòu)在生物量、豐度、多樣性等方面不同)[66]等均影響生物膜的效應(yīng)。雖然表面濕度和生物膜的群落組成在金星幼蟲的固著過程中起關(guān)鍵作用[21,76],但不論在哪種濕度的基質(zhì)上老化的生物膜均能誘導(dǎo)金星幼蟲的固著,說明表面濕度并不能改變自然生物膜在金星幼蟲固著中的積極作用[68]。
除了生物膜本身的作用外,細菌分泌的胞外產(chǎn)物也能影響金星幼蟲的固著行為[13,65,71,76]。細菌分泌的產(chǎn)物如培養(yǎng)上清液[2,13,67,69]和胞外多糖[2,67,72,76]在金星幼蟲附著變態(tài)中的效應(yīng)也被廣泛研究,但胞外產(chǎn)物的效應(yīng)還受到許多其他因素的影響。不同種類的細菌[13,72]或不同培養(yǎng)基培養(yǎng)的同種細菌[2,67]分泌的胞外產(chǎn)物效應(yīng)不同;不同的鹽度條件[67]、成體提取物存在與否[67]同一胞外產(chǎn)物的效應(yīng)有所不同;同種細菌產(chǎn)生的表面結(jié)合的誘導(dǎo)物和水溶性的誘導(dǎo)物的效應(yīng)也不同[67]。另外在凝集素的作用下細菌膜的效應(yīng)會發(fā)生變化,凝集素能從兩個方向改變誘導(dǎo)信號[72]。凝集素通過與胞外產(chǎn)物特定的糖分子反應(yīng)能調(diào)節(jié)細菌膜的效應(yīng),在引導(dǎo)金星幼蟲趨向固著終點上起重要作用[72]。特別是小扁豆凝集素能阻斷細菌膜的促進作用,說明細菌膜產(chǎn)生的胞外產(chǎn)物可能含有一種類似于藤壺成體提取物SIPC特性的特殊糖鏈[72]。
以往對生物膜的研究多集中于細菌,近年也有一些研究關(guān)注生物膜中的其它生物類群(如硅藻)[77-78]。不同種類的硅藻對金星幼蟲的效應(yīng)不同,有的抑制、有的促進、有的沒有明顯作用[77]。研究表明對金星幼蟲固著起促進作用的硅藻含有與小扁豆凝集素結(jié)合的糖鏈,說明硅藻中能與小扁豆凝集素結(jié)合的糖鏈化合物可能與從藤壺成體中分離純化的SIPC的作用相似[77]。
金星幼蟲對外界因子或誘導(dǎo)信號的反應(yīng)程度還依賴于其生理狀態(tài)(如能量儲量和年齡),金星幼蟲的生理狀態(tài)影響它對基質(zhì)的選擇和最終變態(tài)的成功[28-29,79]。
金星幼蟲的能量儲量是其生理狀態(tài)的一個決定因子,是其附著變態(tài)能否成功的保證,它取決于無節(jié)幼體生長經(jīng)歷的條件(特別是食物藻類的數(shù)量和質(zhì)量)[79]。通常采用脂類、核酸、蛋白質(zhì)的含量作為金星幼蟲的營養(yǎng)指標(biāo),指示金星幼蟲的能量狀況。金星幼蟲將儲存能量的38%—58%用于變態(tài),其中脂類占55%—65%、蛋白質(zhì)占34%—44%、碳水化合物占 <2%[80]。
脂類的含量如三酰甘油/固醇(TAG/ST)的比率可指示金星幼蟲的能量狀況,三酰甘油含量的高低反映了金星幼蟲固著成功的可能性[29]。無節(jié)幼體食物(藻類)的脂類(三酰甘油TAG)含量和金星幼蟲總的能量儲量間存在顯著的正相關(guān)[79]。金星幼蟲TAG/DNA的比率可作為能量儲量的另一個指標(biāo),這個指標(biāo)可表示金星幼蟲變態(tài)能力的大小[79,81]。根據(jù)TAG/DNA的比率可將金星幼蟲分為高、中、低3個營養(yǎng)等級,在缺乏成體誘導(dǎo)物時,營養(yǎng)等級高的金星幼蟲變態(tài)率高于營養(yǎng)等級低的金星幼蟲[79,81-82]。
核酸RNA/DNA的比率也可作為營養(yǎng)狀況的指標(biāo)。無節(jié)幼體的經(jīng)歷可通過RNA/DNA這一比率的高低,最終決定金星幼蟲的附著變態(tài)能力;在同樣條件下20℃培養(yǎng)的無節(jié)幼體其RNA的含量比在30℃培養(yǎng)的明顯低,無節(jié)幼體RNA含量的大小決定了金星幼蟲在5℃老化時的存活能力及附著變態(tài)能力[83]。
金星幼蟲的生理狀態(tài)還與“金星幼蟲主要蛋白”(cyprid major protein,CMP)有關(guān),在金星幼蟲附著變態(tài)過程中,CMP是內(nèi)源的能量來源[84]。紋藤壺CMP的分子量為170 kDa,與卵黃蛋白重鏈的分子量相同,其生化和免疫特性與卵黃蛋白相似[84-85]。在幼蟲發(fā)育中CMP含量隨著無節(jié)幼體的發(fā)育不斷增加,到金星幼蟲階段CMP含量達到最高,而后隨著金星幼蟲蟲齡的增大其含量顯著下降[84]。
金星幼蟲的生理狀況不僅由無節(jié)幼體的攝食歷史還由其生理年齡[79]和環(huán)境條件[11,80]決定。Harder等[86]發(fā)現(xiàn)金星幼蟲的年齡影響其附著變態(tài)能力,具有相同油脂含量的3個年齡(0、3 d和6 d)的金星幼蟲的固著率間有顯著差異;年幼的金星幼蟲固著率與其油脂含量間有顯著的正相關(guān),而年老的金星幼蟲兩者間的關(guān)系較弱。在20℃培養(yǎng)的金星幼蟲在5℃保存2—4 d能成功變態(tài),而30℃培養(yǎng)的金星幼蟲在5℃保存長達8—16 d也能成功變態(tài)[83]。金星幼蟲體內(nèi)的CMP含量變化與保存溫度密切相關(guān),在25、20、15℃ 中金星幼蟲CMP含量隨時間的延長顯著下降,在5℃時金星幼蟲CMP的含量保持穩(wěn)定;但不論在哪個溫度組,都以3天蟲齡的金星幼蟲變態(tài)率最高,之后隨金星幼蟲蟲齡的增大變態(tài)率降低[87],因此金星幼蟲的保存溫度影響其固著能力。長期以來多認為低溫(5、15℃)比高溫(20、25℃)有利于維持其固著能力[87],也有結(jié)果表明高溫(23℃)比低溫(6℃)更有利于保持其固著能力[11]。一般認為剛出生的金星幼蟲(0d)不具有附著變態(tài)能力,金星幼蟲的附著變態(tài)能力與年齡的關(guān)系為:前期隨蟲齡的增大附著變態(tài)能力逐漸提高,后期隨蟲齡的增大附著變態(tài)能力逐漸減弱[11,87]。如0—3 d的金星幼蟲以第3天幼蟲的固著率最高,隨后隨蟲齡的增大固著率降低[87];0—10 d的金星幼蟲以第10天幼蟲的固著率最高,隨后固著率降低,至14—15 d喪失附著變態(tài)能力[11]。一般來說金星幼蟲需要一個固著能力獲得的時期(剛出生的金星幼蟲雖然CMP含量最高,但不具有固著能力),之后隨時間的延長其脂類或CMP含量下降,固著能力逐漸喪失,最終不足以支持附著變態(tài)[11,29,87-88]。因此,金星幼蟲的生理年齡也與其附著變態(tài)能力息息相關(guān),剛誕生的金星幼蟲尚未獲得固著能力,而蟲齡較大的金星幼蟲多已喪失固著能力。
在金星幼蟲附著變態(tài)的過程中,藤壺金星幼蟲特異基因bcs-1和 bcs-2的mRNAs的表達降低,而bcs-3,bcs-4,bcs-5和bcs-6的mRNAs的表達增加[89]。在誘導(dǎo)物和抑制物的作用下,這6個bcs基因的表達不同,其中誘導(dǎo)物強烈促進bcs-6的表達[90-91],而某些抑制物抑制bcs-6的表達[90],表明這些化學(xué)物質(zhì)通過調(diào)節(jié)bcs基因,特別是bcs-6的表達參與金星幼蟲的附著變態(tài)和基質(zhì)的選擇,并在金星幼蟲附著變態(tài)的調(diào)節(jié)中起關(guān)鍵作用[90-91]。
芳香族L-氨基酸脫羧酶能分別促進5-羥色氨酸、3、4-二羥基苯丙氨酸合成5-羥色胺、多巴胺。5-羥色胺和成體提取物能明顯提高芳香族L-氨基酸脫羧酶基因mRNA在金星幼蟲中的表達,說明胞內(nèi)合成的5-羥色胺和多巴胺至少部分參與金星幼蟲附著變態(tài)的調(diào)節(jié)[58]。通過比較Ⅱ期無節(jié)幼體、浮游階段的金星幼蟲、剛附著的金星幼蟲和已變態(tài)的金星幼蟲的蛋白質(zhì)圖譜,可見浮游階段金星幼蟲的蛋白質(zhì)圖譜明顯不同于其它階段[92]。分化表達的蛋白質(zhì)主要包括信號轉(zhuǎn)導(dǎo)蛋白(腺苷酸環(huán)化酶和鈣調(diào)蛋白)和保幼激素結(jié)合蛋白,這些蛋白質(zhì)在金星幼蟲的基質(zhì)選擇,例如信號識別、信號傳導(dǎo)和放大以及幼體組織的準備中起關(guān)鍵作用[92]。
蛋白質(zhì)的磷酸化作用是調(diào)節(jié)許多胞內(nèi)快速反應(yīng)最重要的分子轉(zhuǎn)換機制。研究表明,金星幼蟲變態(tài)的蛋白質(zhì)組反應(yīng)主要變化是蛋白質(zhì)的磷酸化而不是重新合成蛋白質(zhì),對金星幼蟲的固著而言,去磷酸化作用是必要的過程,來自適宜基質(zhì)的誘導(dǎo)信號能激活金星幼蟲的磷酸酯酶,最終導(dǎo)致一系列生化變化和隨后的附著變態(tài)[93]。蛋白質(zhì)組和磷酸化蛋白質(zhì)組分析表明,剛形成的金星幼蟲(0h)和老化的金星幼蟲(24h)的蛋白質(zhì)表達和翻譯后的修飾是高度動態(tài)的,與壓力和與能量代謝相關(guān)的兩組蛋白在金星幼蟲的發(fā)育中分化表達,表明參與壓力調(diào)節(jié)和能量代謝的蛋白質(zhì)在金星幼蟲附著變態(tài)的調(diào)節(jié)中起重要作用[94]。
我國海域遼闊,海岸線綿長,海洋環(huán)境復(fù)雜多樣,每年污損生物(包括無柄蔓足類)對我國海洋經(jīng)濟活動和國防建設(shè)造成的損失難以估算。國內(nèi)對無柄蔓足類的種類組成、區(qū)系分布、生態(tài)特點和防除等方面已有許多研究[4,95-96]。自70年代末以來,我國科研人員在藤壺生物學(xué)方面也做了一些工作,包括幼蟲培養(yǎng)[97-98]、發(fā)育[99]、附著[100-101]和藤壺膠[102-103]等方面,但有關(guān)藤壺附著變態(tài)的生理機制研究較少[97,104]。希望更多的學(xué)者能涉及這方面的工作,揭示無柄蔓足類附著變態(tài)的機制,為解決蔓足類生物污損這一難題提供理論依據(jù),促進我國海洋經(jīng)濟活動的健康持續(xù)發(fā)展。
以往海洋污損生物的防除通常是采用化學(xué)防污劑手段,由于傳統(tǒng)的有機錫類防污涂料對海洋生態(tài)系統(tǒng)的污染,目前已被禁止使用,深入了解蔓足類附著變態(tài)的機制,開發(fā)新型、高效、環(huán)保防污劑已成為污損生物防除的一個亟待解決的問題。國外雖然對藤壺金星幼蟲附著變態(tài)的生理和生態(tài)機制進行了多年的研究,明確了藤壺金星幼蟲的附著變態(tài)需要在各種物理、化學(xué)、生物因子的介導(dǎo)及適宜的生理狀態(tài)下才有可能完成,但有關(guān)金星幼蟲附著變態(tài)機制仍有許多工作需要開展,包括以下幾個方面:
(1)藤壺成體提取物和金星幼蟲足跡均能誘導(dǎo)金星幼蟲的附著變態(tài),其中起決定作用的物質(zhì)是特殊的糖鏈,某些凝集素能抑制它的效應(yīng)。深入研究成體提取物和凝集素之間的相互作用和關(guān)系,利用某些凝集素作為防污劑,有可能為我們提供一種新的污損生物防除方法。
(2)金星幼蟲的固著由附著、變態(tài)兩個連續(xù)的過程組成,各種神經(jīng)遞質(zhì)和激素等信號傳導(dǎo)物質(zhì)在金星幼蟲附著和變態(tài)中所起的作用是不同的,有的參與白堊腺物質(zhì)的分泌、有的參與附著、有的參與變態(tài)、有的促進最終的固著過程。因此,干擾或阻斷這些信號傳導(dǎo)物質(zhì)在金星幼蟲附著、變態(tài)或固著中的作用,可為開發(fā)新的無毒防污劑提供一個方向。
(3)生物膜及分泌的胞外產(chǎn)物雖然在金星幼蟲附著變態(tài)中起重要作用,但這種作用是復(fù)雜的,其中起具體作用的物質(zhì)往往難以確定,應(yīng)進一步加強有關(guān)細菌及其分泌產(chǎn)物對金星幼蟲附著變態(tài)影響及機制的研究。另外,許多海洋生物如藻類、海綿和珊瑚等的有機提取物及次生代謝產(chǎn)物都被證明對藤壺等主要污損生物幼蟲具有明顯的抑制作用,這可為天然海洋防污產(chǎn)物的篩選提供另外一個途徑。
(4)深入對藤壺膠體的合成、結(jié)構(gòu)組成及固化作用機制的研究。有可能通過人為干擾抑制液態(tài)膠的交聯(lián)聚合過程,阻斷其從液態(tài)到固態(tài)的轉(zhuǎn)變過程,阻礙幼蟲的永久固著,從而達到防除污損生物的目標(biāo)。
(5)目前,從分子水平對金星幼蟲附著變態(tài)的研究剛剛起步,今后應(yīng)更多從分子水平(轉(zhuǎn)錄組學(xué)、代謝組學(xué)、蛋白組學(xué)途徑)追蹤影響金星幼蟲基質(zhì)選擇的分子路徑。從分子水平對各種神經(jīng)遞質(zhì)和激素的信號通路進行深入的研究,探討阻斷其中某一環(huán)節(jié)的途徑,使金星幼蟲不能完成正常的附著變態(tài),可為開發(fā)新型、友好、高效的防污劑提供分子靶標(biāo)和理論依據(jù)。
總之,要徹底了解藤壺金星幼蟲的附著變態(tài),需要從生態(tài)、生理以及分子水平綜合入手,闡明藤壺金星幼蟲的附著變態(tài)機制及其所需條件,通過與物理、化學(xué)及材料學(xué)等學(xué)科的交叉和滲透,期待能開發(fā)出高效、環(huán)保、無毒的防污技術(shù),最終徹底解決生物污損這一難題。
[1] Li J,Yan T,Cao W H,Chen C,Chen R J.Advances in research of marine fouling in offshore areas.Marine Science Bulletin,2010,29(1):113-119.
[2] Khandeparker L,Kumar SK.Significance of biofilm proteins in modulating cyprid metamorphosis of Balanus amphitrite(Cirripedia:Thoracica).Marine Ecology,2011,32(4):509-520.
[3] Liu R Y,Ren X Q.Fauna Sinica Invertebrata,Vol.42(Crustacea,Cirripedia,Thoracica).Beijing:Science Press,2007:6-71.
[4] Yan T,Li Z F,Hu Y F,Li X X,Cao W H,Luo W J,Cheng Z Q.A review on the balanomorph barnacles in the coastal waters of China.Acta Ecologica Sinica,2012,32(16):5230-5241.
[5] Aldred N,Scardino A,Cavaco A,Rocky de Nys,Clare A S.Attachment strength is a key factor in the selection of surfaces by barnacle cyprids(Balanus amphitrite)during settlement.Biofouling:The Journal of Bioadhesion and Biofilm Research,2010,26(3):287-299.
[6] Maruzzo D,Conlan S,Aldred N,Clare A S,H?eg JT.Video observation of surface exploration in cyprids of Balanusamphitrite:the movements of antennular sensory setae.Biofouling:The Journal of Bioadhesion and Biofilm Research,2011,27(2):225-239.
[7] Gohad N V,Aldred N,Orihuela B,Clare A S,Rittschof D,Mount A S.Observations on the settlement and cementation of barnacle(Balanus amphitrite)cyprid larvae after artificial exposure to noradrenaline and the locations of adrenergic-like receptors.Journal of Experimental Marine Biology and Ecology,2012,416-417:153-161.
[8] Maréchal JP,Hellio C.Antifouling activity against barnacle cypris larvae:do target species matter(Amphibalanus amphitrite versus Semibalanus balanoides)?International Biodeterioration& Biodegradation,2011,65:92-101.
[9] Anil A C,Khandeparker L,Desai D V,Baragi L V,Gaonkar C A.Larval development,sensory mechanisms and physiological adaptations in acorn barnacles with special reference to Balanus amphitrite.Journal of Experimental Marine Biology and Ecology,2010,392(1/2):89-98.
[10] Khandeparker L,Anil A C.Role of conspecific cues and sugars in the settlement of cyprids of the barnacle,Balanus amphitrite.Journal of Zoology,2011,284(3):206-214.
[11] Maréchal J P,Matsumura K,Conlan S,Hellio C.Competence and discrimination during cyprid settlement in Amphibalanus amphitrite.International Biodeterioration& Biodegradation,2012,72:59-66.
[12] Pradhan N N,Gohad N V,Orihuela B,Burg T C,Birchfield ST,Rittschof D,Mount A S.Development of an automated algorithm for tracking and quantifying Barnacle cyprid settlement behavior.Journal of Experimental Marine Biology and Ecology,2011,410:21-28.
[13] Anil A C,Khandeparkar R D S.Influence of bacterial exopolymers,conspecific adult extract and salinity on the cyprid metamorphosis of Balanus amphitrite(Cirripedia:Thoracica).Marine Ecology,1998,19(4):279-292.
[14] Maki JS,Yule A B,Rittschof D,Mitchell R.The effect of bacterial films on the temporary adhesion and permanent fixation of cypris larvae,Balanus amphitrite Darwin.Biofouling:The Journal of Bioadhesion and Biofilm Research,1994,8(2):121-131.
[15] Khandeparker L,Anil A C.Underwater adhesion:the barnacle way.International Journal of Adhesion & Adhesives,2007,27(2):165-172.
[16] Clare A S,Matsumura K.Nature and perception of barnacle settlement pheromones.Biofouling:The Journal of Bioadhesion and Biofilm Research,2000,15(1/3):57-71.
[17] Lagersson N C,H?eg J T.Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite(Crustacea:Thecostraca:Cirripedia).Marine Biology,2002,141(3):513-526.
[18] Nott J A,F(xiàn)oster B A.On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides(L.).Philosophical Transactions of the Royal Society of London(B),1969,256(803):115-133.
[19] Nott J A.Settlement of barnacle larvae:surface structure of the antennular attachment disc by scanning electron microscopy.Marine Biology,1969,2(3):248-251.
[20] Wieczorek SK,Todd C D.Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues.Biofouling:The Journal of Bioadhesion and Biofilm Research,1998,12(1/3):81-118.
[21] Faimali M,Garaventa F,Terlizzi A,Chiantore M,Cattaneo-Vietti R.The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin,1854 larval settlement.Journal of Experimental Marine Biology and Ecology,2004,306(1):37-50.
[22] O'Connor N J,Richardson D L.Comparative attachment of barnacle cyprids(Balanus amphitrite Darwin 1854;B.improvisus Darwin 1854;& B.eburneus Gould,1841)to polystyrene and glass substrata.Journal of Experimental Marine Biology and Ecology,1994,183(2):213-225.
[23] Nasrolahi A,Pansch C,Lenz M,Wah M.Being young in a changing world:how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus.Marine Biology,2012,159(2):331-340.
[24] Dahlstr?m M,Jonsson H,Jonsson P R,Elwing H.Surface wettability as a determinant in the settlement of the barnacle Balanus improvisus(DARWIN).Journal of Experimental Marine Biology and Ecology,2004,305(2):223-232.
[25] Guo SF,Lee H P,Khoo SC.Inhibitory effect of ultrasound on barnacle(Amphibalanus amphitrite)cyprid settlement.Journal of Experimental Marine Biology and Ecology,2011,409(1/2):253-258.
[26] Matsumura K,Nagano M,F(xiàn)usetani N.Purification of a larval settlement-inducing protein complex(SIPC)of the barnacle,Balanus amphitrite.The Journal of Experimental Zoology,1998,281(1):12-20.
[27] De Gregoris T B,Khandeparker L,Anil A C,Mesbahi E,Burgess J G,Clare A S.Characterisation of the bacteria associated with barnacle,Balanus amphitrite,shell and their role in gregarious settlement of cypris larvae.Journal of Experimental Marine Biology and Ecology,2012,413:7-12.
[28] Olivier F,Tremblay R,Bourget E,Rittschof D.Barnacle settlement:field experiments on the influence of larval supply,tidal level,biofilm quality and age on Balanus amphitrite cyprids.Marine Ecology Progress Series,2000,199:185-204.
[29] Tremblay R,Olivier F,Bourget E,Rittschof D.Physiological condition of Balanus amphitrite cyprid larvae determines habitat selection success.Marine Ecology Progress Series,2007,340:1-8.
[30] Knight-Jones E W.Laboratory experiments on gregariousness during setting in Balanusbalanoides and other barnacles.The Journal of Experimental Biology,1953,30(4):584-599.
[31] Crisp D J,Meadows P S.The chemical basis of gregariousness in Cirripedes.Proceedings of the Royal Society of London.Series B,Biological Sciences,1962,156(965):500-520.
[32] Larman V N,Gabbot P A,East J.Physico-chemical properties of the settlement factor proteins from the barnacle,Balanus balanoides.Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1982,72(3):329-338.
[33] Matsumura K,Mori S,Nagano M,F(xiàn)usetani N.Lentil lectin inhibits adult extract-induced settlement of the barnacle,Balanus amphitrite.The Journal of Experimental Zoology,1998,280(3):213-219.
[34] Matsumura K,Nagano M,Kato-Yoshinaga Y,Yamazaki M,Clare A S,F(xiàn)usetani N.Immunological studies on the settlement-inducing protein complex(SIPC)of the barnacle Balanus amphitrite and its possible involvement in larva-larva interactions.Proceedings of the Royal Society B:Biological Sciences,1998,265(1408):1825-1830.
[35] Dreanno C,Matsumura K,Dohmae N,Takio K,Hirota H,Kirby R R,Clare A S.Anα2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite.Proceedings of the National Academy of Sciences of the United States of America,2006,103(39):14396-14401.
[36] Dreanno C,Kirby R,Clare A.Locating the barnacle settlement pheromone:spatial and ontogenetic expression of the settlement-inducing protein complex of Balanus amphitrite.Proceedings of the Royal Society B:Biological Sciences,2006,273(1602):2721-2728.
[37] Kato-Yoshinaga Y,Nagano M,Mori S,Clare A S,F(xiàn)usetani N,Matsumura K.Species specificity of barnacle settlement-inducing proteins.Comparative Biochemistry and Physiology,2000,125(4):511-516.
[38] Dreanno C,Kirby R,Clare A.Involvement of the barnacle settlement-inducing protein complex(SIPC)in species recognition at settlement.Journal of Experimental Marine Biology and Ecology,2007,351(1/2):276-282.
[39] Rittschof D.Oyster drills and the frontiers of chemical ecology:Unsettling ideas.American Malacological Bulletin.Special Edition,1985,1:111-116.
[40] Tegtmeyer K,Rittschof D.Synthetic peptide analogs to barnacle settlement pheromone.Peptides,1989,9(6):1403-1406.
[41] Rittschof D,Cohen JH.Crustacean peptide and peptide-like pheromones and kairomones.Peptides,2004,25(9):1503-1516.
[42] Browne K A,Zimmer R K.Controlled field release of a waterborne chemical signal stimulates planktonic larvae to settle.Biological Bulletin,2001,200(1):87-91.
[43] Clare A S,Yamazaki M.Inactivity of glycyl-glycyl-arginine and two putative(QSAR)peptide analogues of barnacle waterborne settlement pheromone.Journal of the Marine Biological Association of the United Kingdom,2000,80(5):945-946.
[44] Elbourne P D,Veater R A,Clare A S.Interaction of conspecific cues in Balanus amphitrite Darwin(Cirripedia)settlement assays:Continued argument for the single-larva assay.Biofouling:The Journal of Bioadhesion and Biofilm Research,2008,24(2):87-96.
[45] Hadfield M G,Koehl M A R.Rapid behavioral responses of an invertebrate larva to dissolved settlement cue.Biological Bulletin,2004,207(1):28-43.
[46] Elbourne P D,Clare A S.Ecological relevance of a conspecific,waterborne settlement cue in Balanus amphitrite(Cirripedia).Journal of Experimental Marine Biology and Ecology,2010,392(1/2):99-106.
[47] Endo N,Nogata Y,Yoshimura E,Matsumura K.Purification and partial amino acid sequence analysis of the larval settlement-inducing pheromone from adult extracts of the barnacle,Balanus amphitrite(=Amphibalanus amphitrite).Biofouling:The Journal of Bioadhesion and Biofilm Research,2009,25(5):429-434.
[48] Walker G,Yule A B.Temporary adhesion of the barnacle cyprid:the existence of an antennular adhesive secretion.Journal of the Marine Biological Association of the United Kingdom,1984,64(3):679-686.
[49] Clare A S,F(xiàn)reet R K,Mcclary M J.On the antennular secretion of the cyprid of Balanus amphitrite amphitrite,and its role as a settlement pheromone.Journal of the Marine Biological Association of the United Kingdom,1994,74(1):243-250.
[50] Dreanno C,Kirby R R,Clare A S.Smelly feet are not always a bad thing:the relationship between cyprid footprint protein and the barnacle settlement pheromone(SIPC).Biology Letters,2006,2(3):423-425.
[51] Clare A S,Thomas R F,Rittschof D.Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement.The Journal of Experimental Biology,1995,198(Pt_3):655-664.
[52] Faimali M,F(xiàn)alugi C,Gallus L,Piazza V,Tagliafierro G.Involvement of acetylcholine in settlement of Balanus amphitrite.Biofouling,2003,19(S1):213-220.
[53] Yamamoto H,Shimizu K,Tachibaba A,F(xiàn)usetani N.Roles of dopamine and serotonin in larval attachment of the barnacle,Balanus amphitrite.The Journal of Experimental Zoology,1999,284(7):746-758.
[54] Okano K,Shimizu K,Satuito C G,F(xiàn)usetani N.Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa.The Journal of Experimental Biology,1996,199(Pt_10):2131-2137.
[55] Kon-Ya K,Endo M.Catecholamines as settlement inducers of barnacle larvae.Journal of Marine Biotechnology,1995,2(2):79-81.
[56] Yamamoto H,Tachibana A,Kawaii S,Matsumura K,F(xiàn)usetani N.Serotonin involvement in larval settlement of the barnacle,Balanus amphitrite.The Journal of Experimental Zoology,1996,275(5):339-345.
[57] Zega G,Pennati R,Dhalstr?m M,Berntsson K,Sotgia C,De Bernardi F.Settlement of the barnacle Balanus improvisus:the roles of dopamine and serotonin.Italian Journal of Zoology,2007,74(4):351-361.
[58] Okazaki Y,Shizuri Y.Identification of the aromatic L-amino acid decarboxylase(AADC)gene and its expression in the attachment and metamorphosis of the barnacle,Balanus amphitrite.Development,Growth & Differentiation,2001,43(1):33-41.
[59] Yamamoto H,Tachibana A,Matsumura K,F(xiàn)usetani N.Protein kinase C(PKC)signal transduction system involved in larval metamorphosis of the barnacle,Balanus amphitrite.Zoological Science,1995,12(4):391-396.
[60] Yamamoto H,Okino T,Yoshimura E,Tachibana A,Shimizu K,F(xiàn)usetani N.Methyl farnesoate induces larval metamorphosis of the barnacle,Balanus amphitrite via protein kinase C activation.The Journal of Experimental Zoology,1997,278(6):349-355.
[61] Smith P A,Clare A S,Rees H H,Prescott M C,Wainwright G,Prescott M C.Identification of methyl farnesoate in the cypris larva of the barnacle,Balanus amphitrite,and its role as a juvenile hormone.Insect Biochemistry and Molecular Biology,2000,30(8/9):885-890.
[62] Yamamoto H,Kawaii S,Yoshimura E,Tachibana A,F(xiàn)usetani N.20-Hydroxyecdysone regulates larval metamorphosis of the barnacle,Balanus amphitrite.Zoological Science,1997,14(6):887-892.
[63] Clare A S,Rittschof D,Gerhart D JJr.Effects of the nonsteroidal ecdysone mimic RH 5849 on larval crustaceans.The Journal of Experimental Zoology,1992,262(4):436-440.
[64] Yamamoto H,Tachibana A,Saikawa W,Nagano M,Nagano M,Matsumura K,F(xiàn)usetani N.Effects of calmodulin inhibitors on cyprid larvae of the barnacle,Balanus amphitrite.The Journal of Experimental Zoology,1998,280(1):8-17.
[65] Zardus J D,Nedved B T,Huang Y,Tran C,Hadfield M G.Microbial biofilms facilitate adhesion in biofouling invertebrates.Biological Bulletin,2008,214(1):91-98.
[66] Thiyagarajan V,Lau SCK,Cheung SCK,Qian P Y.Cypris habitat selection facilitated by microbial films influences the vertical distribution of subtidal barnacle Balanus trigonus.Microbial Ecology,2006,51(4):431-440.
[67] Khandeparker L,Anil A C,Raghukumar S.Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite.FEMS Microbiology,Ecology,2006,58(3):425-438.
[68] Hung O S,Thiyagarajan V,Qian P Y.Preferential attachment of barnacle larvae to natural multi-species biofilms:does surface wettability matter?Journal of Experimental Marine Biology and Ecology,2008,361(1):36-41.
[69] Wieczorek SK,Clare A S,Todd C D.Inhibitory and facilitatory effects of microbial films on settlement of Balanus amphitrite amphitrite larvae.Marine Ecology Progress Series,1995,119:221-228.
[70] Khandeparker L,Anil A C,Raghukumar S.Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite.Aquatic Microbial Ecology,2002,28(1):37-54.
[71] O'Connor N J,Richardson D L.Attachment of barnacle(Balanus amphitrite Darwin)larvae:responses to bacterial films and extracellular materials.Journal of Experimental Marine Biology and Ecology,1998,226(1):115-129.
[72] Khandeparker L,Anil A C,Raghukumar S.Barnacle larval destination:piloting possibilities by bacteria and lectin interaction.Journal of Experimental Marine Biology and Ecology,2003,289(1):1-13.
[73] Qian P Y,Thiyagarajan V,Lau SC K,Cheung SC K.Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite.Aquatic Microbial Ecology,2003,33(3):225-237.
[74] Hung O S,Thiyagarajan V,Zhang R,Wu R S S,Qian P Y.Attachment of Balanus amphitrite larvae to biofilms originating from contrasting environments.Marine Ecology Progress Series,2007,333:229-242.
[75] Lau SCK,Thiyagarajan V,Cheung SCK,Qian P Y.Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates.Aquatic Microbial Ecology,2005,38(1):41-51.
[76] Maki JS,Ding L,Stokes J,Kavouras JH,Rittschof D.Substratum/Bacterial interactions and larval attachment:films and exopolysaccharides of Halomonas marina(ATCC 25347)and their effect on barnacle cyprid larvae,Balanusamphitrite Darwin.Biofouling,2000,16(2/4):159-170.
[77] Tomoyuki J,Cyril G S,Hitoshi K.Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle,Amphibalanus amphitrite.Marine Biology,2007,152(5):1065-1076.
[78] Patil J S,Anil A C.Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus Amphitrite.Marine Ecology Progress Series,2005,301:231-245.
[79] Miron G,Walters L J,Tremblay R,Bourget E.Physiological condition and barnacle larval behavior:a preliminary look at the relationship between TAG/DNA ratio and larval substratum exploration in Balanus amphitrite.Marine Ecology Progress Series,2000,198:303-310.
[80] Thiyagarajan V,Harder T,Qiu JW,Qian PY.Energy content at metamorphosisand growth rateof the early juvenile barnacle Balanusamphitrite.Marine Biology,2003,143(3):543-554.
[81] Thiyagarajan V,Harder T,Qian P Y.Relationship between cyprid energy reserves and metamorphosis in the barnacle Balanus amphitrite Darwin(Cirripedia;Thoracica).Journal of Experimental Marine Biology and Ecology,2002,280(1/2):79-93.
[82] Thiyagarajan V,Harder T,Qian P Y.Effects of TAG/DNA ratio and age of cyprids on post-metamorphic growth and survival in the barnacle Balanus amphitrite.Journal of the Marine Biological Association of the United Kingdom,2003,83(1):83-88.
[83] Anil A C,Desai D,Khandeparkar L.Larval development and metamorphosis in Balanus amphitrite Darwin(Cirripedia:Thoracica):significance of food concentration,temperature and nucleic acids.Journal of Experimental Marine Biology and Ecology,2001,263(2):125-141.
[84] Shimizu K,Satuito C G,Saikawa W,F(xiàn)usetani N.Larval storage protein of the barnacle,Balanus amphitrite:biochemical and immunological similarities to vitellin.The Journal of Experimental Zoology,1996,276(2):87-94.
[85] Shimizu K,Saikawa W,F(xiàn)usetani N.Identification and partial characterization of vitellin from the barnacle Balanus amphitrite.Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1996,115(1):111-119.
[86] Harder T,Thiyagarajan V,Qian P Y.Combined effect of cyprid age and lipid content on larval attachment and metamorphosis of Balanus amphitrite Darwin.Biofouling:the Journal of Bioadhesion and Biofilm Research,2001,17(4):257-262.
[87] Satuito C G,Shimizu K,Natoyama K,Yamazaki M,F(xiàn)usetani N.Age-related settlement success by cyprids of the barnacle Balanus amphitrite,with special reference to consumption of cyprid storage protein.Marine Biology,1996,127(1):125-130.
[88] Satuito C G,Shimizu K,F(xiàn)usetani N.Studies on the factors influencing larval settlement in Balanus amphitrite and Mytilus galloprovincialis.Hydrobiologia,1997,358(1/3):275-280.
[89] Okazaki Y,Shizuri Y.Structures of six cDNAs expressed specifically at cypris larvae of barnacles,Balanusamphitrite.Gene,2000,250(1/2):127-135.
[90] Okazaki Y,Shizuri Y.Effect of inducers and inhibitors on the expression of bcs genes involved in cypris larval attachment and metamorphosis of the barnacles Balanus amphitrite.International Journal of Developmental Biology,2000,44(5):451-456.
[91] Li H L,Thiyagarajan V,Qian P Y.Response of cyprid specific genes to natural settlement cues in the barnacle Balanus(=Amphibalanus)amphitrite.Journal of Experimental Marine Biology and Ecology,2010,389(1/2):45-52.
[92] Thiyagarajan V,Qian P Y.Proteomic analysis of larvae during development,attachment,and metamorphosis in the fouling barnacle,Balanus amphitrite.Proteomics,2008,8(15):3164-3172.
[93] Thiyagarajan V,Wong T,Qian P Y.2D Gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates.Journal of Proteome Research,2009,8(6):2708-2719.
[94] Zang Y,Xu Y,Arellano SM,Xiao K,Qian P Y.Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle Balanus(=Amphibalanus)amphitrite.Journal of Proteome Research,2010,9(6):3146-3157.
[95] Cao W H,Yan T,Li J,Chen R J,Yang TX,Liu Y H.Ecological characteristics of fouling acorn barnacles in China-a review.Journal of Guangxi Academy of Sciences,2010,26(1):67-73.
[96] Chen C C,Xiang L Y,Liu H Q.Adhesion mechanism and prevention of marine biofouling barnacle.Marine Environmental Science,2012,31(4):621-624.
[97] Feng D Q,Ke C H,Lu C Y,Li S J.Laboratory rearing and settlement behavior of Banalus albicostatus cyprid-an model animal for screening natural antifouling agents.Oceanologia et Limnologia Sinica,2008,39(4):395-400.
[98] Yan T,Xie E Y,Cao WH,Liu SS,He M X,Dong Y,Yan W X.Collection and culture for larvae and spores of four common fouling species in coastal waters of southern China.Journal of Tropical Oceanography,2011,30(3):56-61.
[99] Yan W X,Chen X Q.Development of the larvae of Balanus reticulatus Utinomi//South China Sea Institute of Oceanology,Chinese Academy of Sciences.Nanhai Studia Marine Sinica(No.1).Beijing:Science Press,1980:125-134.
[100] Yan W X,Pang J L,Chen X Q.Settlement of Balanus reticulatus Utinomi//South China Sea Institute of Oceanology,Chinese Academy of Sciences.Nanhai Studia Marine Sinica(No.4).Beijing:Science Press,1983:65-73.
[101] Liang Z,Pang J L,Sun H L.Effects of copper and pH on larval attachment of barnacle Balauns reticulatus Utinomi.Acta Oceanologica Sinica,1983,5(4):526-529.
[102] Yan W X,Dong Y,Yin F.Comparison between the primary and secondary cements of Balanus reticulatus Uitnomi.Journal of Tropical Oceanography,1983,2(3):1-7.
[103] Yan T,F(xiàn)ang Z X,Zhang S,Yan WX.The separation of barnacle cement components.Journal of Tropical Oceanography,1996,15(3):61-66.
[104] Huang Y,Ke C H,Zhou SQ.Advancements in research on settlement of barnacles larvae.Marine Sciences,2001,25(3):30-32.
參考文獻:
[1] 李靜,嚴濤,曹文浩,陳池,陳如江.近海污損生物生態(tài)研究進展.海洋通報,2010,29(1):113-119.
[3] 劉瑞玉,任先秋.中國動物志——無脊椎動物第四十二卷(甲殼動物亞門,蔓足下綱,圍胸總目).北京:科學(xué)出版社,2007:6-71.
[4] 嚴濤,黎祖福,胡煜峰,李鑫渲,曹文浩,羅文佳,程志強.中國沿海無柄蔓足類研究進展.生態(tài)學(xué)報,2012,32(16):5230-5241.
[95] 曹文浩,嚴濤,李靜,陳如江,楊天笑,劉永宏.中國沿海污損性無柄蔓足類生態(tài)特點概述.廣西科學(xué)院學(xué)報,2010,26(1):67-73.
[96] 陳長春,項凌云,劉漢奇.海洋污損生物藤壺的附著與防除.海洋環(huán)境科學(xué),2012,31(4):621-624.
[97] 馮丹青,柯才煥,盧昌義,李少菁.白脊藤壺(Balanus albicostatus)應(yīng)用于天然海洋防污產(chǎn)物篩選模型的研究.海洋與湖沼,2008,39(4):395-400.
[98] 嚴濤,謝恩義,曹文浩,劉姍姍,何毛賢,董鈺,嚴文俠.華南沿海4種主要污損生物幼蟲和孢子的采集與培養(yǎng)技術(shù).熱帶海洋學(xué)報,2011,30(3):56-61.
[99] 嚴文俠,陳興乾.網(wǎng)紋藤壺的幼蟲發(fā)育 //中國科學(xué)院南海海洋研究所.南海海洋科學(xué)集刊(第1集).北京:科學(xué)出版社,1980:125-134.
[100] 嚴文俠,龐景梁,陳興乾.網(wǎng)紋藤壺的附著 //中國科學(xué)院南海海洋研究所.南海海洋科學(xué)集刊(第4集).北京:科學(xué)出版社,1983:65-73.
[101] 梁志,龐景梁,孫恢禮.銅和pH對網(wǎng)紋藤壺幼蟲附著的影響.海洋學(xué)報,1983,5(4):526-529.
[102] 嚴文俠,董鈺,尹芬.網(wǎng)紋藤壺初生膠和次生膠比較.熱帶海洋,1983,2(3):1-7.
[103] 嚴濤,方正信,張穗,嚴文俠.藤壺膠組分的分離制備.熱帶海洋,1996,15(3):61-66.
[104] 黃英,柯才煥,周時強.國外對藤壺幼體附著的研究進展.海洋科學(xué),2001,25(3):30-32.