復(fù)旦大學(xué)附屬腫瘤醫(yī)院泌尿外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
端粒維持基因多態(tài)性與膀胱癌易感性的關(guān)系
顧成元 朱耀 綜述 葉定偉 審校
復(fù)旦大學(xué)附屬腫瘤醫(yī)院泌尿外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
端粒維持基因在保持端粒穩(wěn)定、維護染色體完整方面起重要作用,端粒功能紊亂將會導(dǎo)致腫瘤發(fā)生。在維持端粒穩(wěn)定的基因中,已經(jīng)發(fā)現(xiàn)多種基因存在單核苷酸多態(tài)性。隨著研究的深入,越來越多的證據(jù)表明,個體間端粒穩(wěn)定性及長度的差異主要取決于端粒維持基因的多態(tài)性。端粒維持基因單核苷酸多態(tài)性可能是導(dǎo)致端粒長度及穩(wěn)定性存在個體差異及增加腫瘤易感性的主要因素之一。本文就端粒維持基因多態(tài)性與膀胱癌易感性關(guān)系的研究進展作一綜述。
端粒維持基因;多態(tài)性;膀胱癌;易感性
端粒位于染色體的末端,是由多重復(fù)的非轉(zhuǎn)錄序列(TTAGGG)及一些結(jié)合蛋白組成的特殊結(jié)構(gòu)[1]。端粒可通過折疊形成t環(huán)緊湊結(jié)構(gòu),或者與端粒保護蛋白結(jié)合,從而防止染色體降解、避免末端融合[2],與細胞分化、組織再生、DNA修復(fù)、細胞的衰老和死亡以及惡性腫瘤的發(fā)生都有密切的關(guān)系。
端粒長度在15~50 kB之間,隨著年齡的增長而逐漸縮短。端粒長度主要受基因控制[3],存在非常大的個體差異[4-5]。雙生子和家族研究顯示,白細胞端粒長度的遺傳度在44%~88%之間[6]。炎癥反應(yīng)、氧化應(yīng)激和不健康的生活方式也與端??s短有關(guān)[7-9]。
在DNA聚合酶的作用下,體細胞中端粒DNA不完全復(fù)制,端粒隨著有絲分裂逐漸縮短[10]。當端粒長度變得非常短時,由于失去端粒的保護作用,細胞開始衰老,發(fā)生細胞凋亡。在染色體末端觸發(fā)DNA損傷應(yīng)答,發(fā)生雙鍵斷裂[10]。但如果能繞開端??s短機制,細胞就能避免產(chǎn)生DNA降解。腫瘤細胞就是通過端粒酶的異常激活避免端??s短從而實現(xiàn)無限增殖[11]。人類端粒酶是由模板RNA(telomerase RNA component,TERC)、人端粒酶逆轉(zhuǎn)錄亞單位(telomerase reverse transcriptase,TERT)和端粒酶相關(guān)蛋白1(telomerase-associated protein 1,TEP1)3個亞單位組成。端粒酶在惡性腫瘤發(fā)生中的作用是通過引物特異識別位點,以自身核糖核酸(ribonucleic acid,RNA)為模板,在染色體末端合成端粒DNA,使端粒得以延長。正常情況下人類體細胞端粒酶的檢測結(jié)果是陰性的,但在85%的腫瘤中能檢測到端粒酶活性[12]。
除了端粒酶,端粒還通過與一系列蛋白(如Shelterin復(fù)合體等)結(jié)合或者相互作用來維持完整性,避免端粒降解和錯誤的DNA修復(fù)[13]。許多重要的端粒相關(guān)蛋白和復(fù)合體會與端粒DNA序列相互作用,包括涉及DNA修復(fù)的蛋白如減數(shù)分裂重組11同族體A(meiotic recombination 11 homolog A,MRE11A),涉及解旋酶的蛋白如RecQ蛋白(RecQ protein-like,RECQL)等[3]。在染色體末端有大量的蛋白直接或間接地相互作用,調(diào)節(jié)蛋白-蛋白、蛋白-DNA相互作用,發(fā)揮蛋白轉(zhuǎn)運和其他端粒特異功能。
端粒對維持基因組的穩(wěn)定性和完整性起著至關(guān)重要的作用,失去端粒功能和無限增殖會導(dǎo)致細胞發(fā)生端端融合、染色體降解、斷裂-融合-橋循環(huán)和遺傳不穩(wěn)定,導(dǎo)致基因變化的細胞獲得進一步生長優(yōu)勢,最終發(fā)展成腫瘤細胞[14]。在結(jié)腸癌[15]、肺癌[16]、皮膚癌[17]、乳腺癌[18]、骨肉瘤[19]中都已報道上述各種通路中端粒維持基因的多態(tài)性會增加腫瘤發(fā)生的風(fēng)險。在表1中按照功能通路分類總結(jié)了與端粒穩(wěn)定相關(guān)的基因[3,6,9-11,13]。
2.1 TEP1
TEP1是核糖核蛋白復(fù)合體的組成部分,與端粒酶結(jié)合,被認為是端粒酶活性的調(diào)節(jié)亞單位。體外實驗表明,在端粒替代延長機制(alterative lengthening of telomere,ALT)中,TEP1與布魯姆蛋白(bloom syndrome protein,BLM)有強烈的相互作用,在端粒DNA解旋的初始階段影響B(tài)LM的解旋酶活性,且不依賴DNA和RNA的調(diào)控,能有效將人類端粒RNA與端粒DNA的基質(zhì)結(jié)合起來[20]。Andrew等[21]報道,TEP1基因上的位點rs1760897 A>G的轉(zhuǎn)換與患膀胱癌風(fēng)險增加相關(guān)。后有研究發(fā)現(xiàn),TEP1基因上有7個位點(rs2228041、rs2228026、rs2228026、rs2297615、rs2229101、rs2104978、rs1713440)與患膀胱癌風(fēng)險有關(guān),其中rs2228041可以顯著增加患膀胱癌風(fēng)險(P=0.0023),堿基A>G的改變很可能影響了蛋白的結(jié)構(gòu)和功能[22]。
表 1 與端粒穩(wěn)定相關(guān)的通路及基因Tab. 1 Genes and pathways associated with telomere stability
2.2 內(nèi)源性端粒酶抑制基因(PIN2/TERF1 interacting telomerase inhibitor 1,PINX1)
PINX1具有調(diào)節(jié)端粒酶的功能,直接與TERT結(jié)合,與端粒酶的活性調(diào)節(jié)有關(guān)。PINX1的抑制可以增加端粒酶的活性,而PINX1的過度表達可以抑制端粒酶的活性[23]。PINX1蛋白通過與人端粒重復(fù)序列結(jié)合因子1(telomeric repeat binding factor 1,TRF1)蛋白互相作用附加到端粒上,Soohoo等[24]的研究顯示,PINX1的抑制導(dǎo)致異常的端粒酶活化和端粒延長,損害端粒功能從而導(dǎo)致染色體不穩(wěn)定。表明PINX1通過調(diào)節(jié)端粒酶活性起到抑制腫瘤的作用。目前發(fā)現(xiàn)PINX1基因上有7個位點(rs1469557、rs17152584、rs6995541、rs9657541、rs11250080、rs7826180、rs2409655)是膀胱癌的保護因素,可能與端粒酶活性抑制有關(guān)[22]。
2.3 皮層E3泛素蛋白連接酶家族2(pellino E3 ubiquitin protein ligase family member 2,PELI2)
Gu等[25]利用全基因組關(guān)聯(lián)分析(genomewide association study,GWAS)方法發(fā)現(xiàn),位于20q11.22的rs6028466、位于1p34.2的rs621559、位于14q21的rs398652和位于6q22.1的rs654128這4個位點與端粒增長有顯著關(guān)聯(lián),其后在大規(guī)模的對照研究中驗證這4個位點與膀胱癌的關(guān)系,發(fā)現(xiàn)位于14q21的rs398652可以顯著減少患膀胱癌的風(fēng)險。距離rs398652最近的是PELI2基因(編碼pellino-2蛋白),Moynagh[26]研究發(fā)現(xiàn),在TOLL樣受體(toll-likereceptor,TLR)信號轉(zhuǎn)導(dǎo)通路中,Pellino蛋白通過其C端環(huán)樣結(jié)構(gòu)域激活E3泛素連接酶,催化白介素-1受體激酶1(interleukin-1 receptor-associated kinase 1,IRAK)和其他TOLL樣受體信號轉(zhuǎn)導(dǎo)分子多聚泛素化,從而激活依賴TOLL樣受體和白介素-1受體的核轉(zhuǎn)錄因子κB(nuclear factor kappa B,NF-κB)和分裂酶原蛋白激活酶通路及下游基因。TOLL樣受體在固有免疫系統(tǒng)和對外部病原體的初始免疫應(yīng)答中起著關(guān)鍵作用,超過1/4的腫瘤與慢性炎癥有關(guān),慢性炎癥會引起端粒損耗加快[27-28],PELI2在炎癥反應(yīng)中的作用可解釋rs398652與端粒長度之間關(guān)系的生物學(xué)合理性。
2.4 TERT
TERT基因結(jié)構(gòu)分為N末端、端粒酶特異區(qū)、反轉(zhuǎn)錄區(qū)和C末端。N末端為被保留的功能區(qū),端粒酶特異區(qū)為被保留的端粒酶特異區(qū)。在TERT基因的參與下,端粒的延長需要經(jīng)過成熟、加工、TERC積聚、核轉(zhuǎn)運、TERT轉(zhuǎn)錄后的修飾等過程。在正常細胞中TERT啟動子無活性,而在腫瘤細胞中卻被激活,是端粒酶活性激活的關(guān)鍵步驟和調(diào)節(jié)位點,在端粒維持和細胞永生上起著關(guān)鍵的作用。此前已經(jīng)發(fā)現(xiàn)TERT基因多態(tài)性與結(jié)腸癌[15]、肺癌[16]、膠質(zhì)瘤[29]、宮頸癌[30]等多種腫瘤有關(guān)。rs2736098和rs2736100位于TERT基因的內(nèi)含子區(qū)5p15上,rs2736100在中國和高加索人群的對比試驗中都呈現(xiàn)出與膀胱癌的顯著相關(guān)(OR=1.23;95%CI:1.02~1.48),并且這種相關(guān)在較年輕的人群中更為顯著[31]。
2.5 端錨聚合酶基因(tankyrase,TNKS)
TNKS與NAD-ADP核苷核糖基轉(zhuǎn)移的活性有關(guān),與端粒逆轉(zhuǎn)錄酶作用形成端粒逆轉(zhuǎn)錄酶復(fù)合體。TNKS對維持端粒長度和基因組穩(wěn)定性起重要作用。Gelmini等[32]研究顯示,TNKS是一種ADP核糖聚合酶,通過修飾TERF1來正向調(diào)節(jié)端粒長度。過程包括解除TERF1抑制、允許端粒酶結(jié)合并使端粒DNA序列延長。TNKS的過度表達在癌癥啟動階段發(fā)揮作用,并且對端粒長度的維持在腫瘤的進展階段持續(xù)體現(xiàn)。在乳腺癌與端粒相關(guān)基因關(guān)系的研究中發(fā)現(xiàn),TNKS基因上有9個位點與端粒長度有顯著的關(guān)聯(lián)[33]。通過對1 606例的對照研究發(fā)現(xiàn),TNKS基因rs7825818、rs10503380處的替代和缺失使膀胱癌相對危險性升高[22]。表2總結(jié)了近年來報道的與膀胱癌易感性有關(guān)SNP位點[21-22,25,34]。
除了以上單個基因?qū)Χ肆5挠绊懲?,多個不同通路基因多態(tài)性可能會產(chǎn)生交互作用。當突變的基因型增加時可觀察到非常顯著的劑量效應(yīng)(P<0.01),證實這些與膀胱癌風(fēng)險相關(guān)的位點會產(chǎn)生累積效應(yīng)。根據(jù)攜帶突變基因的數(shù)量將患者分成3組,與患攜帶野生基因型的個體相比,隨著突變位點的增多,患膀胱癌的風(fēng)險逐漸增加。攜帶1個突變基因型的OR值為1.2(95%CI:0.92~1.62),攜帶2~3個突變基因型的OR值為1.64(95%CI:1.22~2.21),而攜帶4~5個突變基因型的OR值上升到2.57(95%CI:1.62~4.09)[22]。
表 2 經(jīng)證實的與膀胱癌易感性有關(guān)聯(lián)的端粒維持基因SNP位點Tab. 2 SNPs identified in recent association studies and their association with bladder cancer
綜上所述,端粒在維持基因組完整性方面起著舉足輕重的作用,相關(guān)基因所編碼產(chǎn)物在維持端粒穩(wěn)定性中發(fā)揮著重要作用,而這些基因多態(tài)性可通過對端粒長度、穩(wěn)定性和活性等的調(diào)節(jié)而參與膀胱癌的發(fā)生、發(fā)展。迄今為止的研究證實了端粒維持基因與膀胱癌之間存在明顯的相關(guān)性,并且涉及多條通路。但目前確定的變異僅僅解釋了端粒基因遺傳的一小部分,更多的區(qū)域有待確認。研究重點有望在端粒維持各個不同通路基因多態(tài)性間展開, 分析各通路中不同功能基因多態(tài)性單獨及聯(lián)合與膀胱癌易感性的關(guān)系。而更完善的序列定位和高通量測序有助于進一步闡明端粒維持基因多態(tài)性與膀胱癌的關(guān)系及致癌機制,更有望為腫瘤治療提供有效的靶點。
[1] MOON I K,JARSTFER M B. The human telomere and its relationship to human disease, therapy, and tissue engineering[J]. Front Biosci, 2007, 12: 4595-4620.
[2] GRIFFITH J, COMEAU L, ROSENFIELD S, et al. Mammalian telomeres end in a large duplex loop[J]. Cell, 1999, 97(4):503-514.
[3] AUBERT G, LANSDORP P. Telomeres and aging[J]. Physiol Rev, 2008, 88(2): 557-579.
[4] AVIV A, CHEN W, GARDNER J, et al. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study[J]. Am J Epidemiol, 2009, 169(3):323-329.
[5] NORDFJALL K, SVENSON U, NORRBACK K F, et al. The individual blood cell telomere attrition rate is telomere length dependent[J]. PLoS Genet, 2009, 5(2): e1000375.
[6] NJAJOU O, CAWTHON R, DAMCOTT C, et al. Telomere length is paternally inherited and is associated with parental lifespan[J]. Proc Natl Acad Sci U S A, 2007, 104(29):12135-12139.
[7] MIRABELLO L, HUANG W, WONG J, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer[J]. Aging Cell, 2009, 8(4): 405-413.
[8] AMSELLEM V, GARY B G, MARCOS E, et al. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2011, 184(12): 1358-1366.
[9] BABIZHAYEV M A, SAVELYEVA E L, MOSKVIN S N , et al. Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior[J]. Am J Ther, 2011, 18(6): e209-e226.
[10] VERFAILLIE C M, PERA M F, LANSDORP P M. Stem cells:hype and reality[J]. Hematology Am Soc Hematol Educ Program, 2002, 676: 369-391.
[11] HIYAMA E, HIYAMA K. Telomerase as tumor marker[J]. Cancer Lett, 2003, 194(2): 221-233.
[12] GREIDER C W. Telomerase activity, cell proliferation, and cancer[J]. Proc Natl Acad Sci USA, 1998, 95(1): 90-92.
[13] PALM W, LANGE T. How shelterin protects mammaliantelomeres[J]. Annu Rev Genet, 2008, 42: 301-334.
[14] LIN T T, LETSOLO B T, JONES R E, et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis[J]. Blood, 2010, 116(11): 1899-1907.
[15] JONES A M, BEGGS A D, CARVAJAL C L, et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres[J]. Gut, 2012 , 61(2): 248-254.
[16] HOSGOOD H D 3RD, CAWTHON R, HE X, et al. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility[J]. Lung Cancer, 2009, 66(2):157-161.
[17] NAN H, QURESHI A A, PRESCOTT J, et al. Genetic variants in telomere-maintaining genes and skin cancer risk[J]. Hum Genet, 2011, 129(3): 247-253.
[18] SHENh J, GAMMON M D, TERRY M B, et al. Genetic polymorphisms in telomere pathway genes, telomere length, and breast cancer survival[J]. Breast Cancer Res Treat, 2012, 134(1): 393-400.
[19] MIRABELLO L, RICHARDS E G, DUONG L M, et al. Telomere length and variation in telomere biology genes in individuals with osteosarcoma[J]. Int J Mol Epidemiol Genet, 2011 , 2(1): 19-29.
[20] BHATTACHARYYA S, KEIRSEY J, RUSSELL B, et al. Telomerase-associated protein 1, HSP90, and topoisomerase IIalpha associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates[J]. J Biol Chem, 2009, 284(22): 14966-14977.
[21] ANDREW A S, GUI J, SANDERSON A C, et al. Bladder cancer SNP panel predicts susceptibility and survival[J]. Hum Genet, 2009, 125(5-6): 527-539.
[22] CHANG J, DINNEY C P, HUANG M. Genetic variants in telomere-maintenance genes and bladder cancer risk[J]. PLoS One, 2012, 7(2): e30665.
[23] LU K P, ZHOU X Z. The Pin2/TRF1-interacting: Protein PinX1 is a potent telomerase inhibitor[J]. Cell, 2001, 107(3): 347-359.
[24] SOOHOO C Y, SHI R, LEE T H, et al. Telomerase inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere elongation[J]. J Biol Chem, 2011, 286(5): 3894-3906.
[25] GU J, CHEN M, SHETE S, et al. A genome-wide association study identifies a locus on chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of susceptibility for bladder cancer [J]. Cancer Prev Res (Phila), 2011, 4(4):514-521.
[26] MOYNAGH P N. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling [J]. Trends Immunol, 2009, 30: 33-42.
[27] MASI S, SALPEA K D, LI K, et al. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis[J]. Free Radic Biol Med, 2011, 50(6): 730-735.
[28] HOUBEN J M, MERCKEN E M, KETELSLEGERS H B, et al. Telomere shortening in chronic obstructive pulmonary disease[J]. Respir Med, 2009, 103: 230-236.
[29] ZHAO Y, CHEN G, ZHAO Y, et al. Fine-mapping of a region of chromosome 5p15.33 (TERT-CLPTM1L) suggests a novel locus in TERT and a CLPTM1L haplotype are associated with glioma susceptibility in a Chinese population[J]. Int J Cancer, 2012, 131(7): 1569-1576.
[30] WANG S, WU J, HU L, et al. Common genetic variants in TERT contribute to risk of cervical cancer in a Chinese population[J]. Mol Carcinog, 2012, 51 (Suppl 1):e118-e122.
[31] GAGO-DOMINGUEZ M, JIANG X, CONTI D V, et al. Genetic variations on chromosomes 5p15 and 15q25 and bladder cancer risk: findings from the Los Angeles-Shanghai bladder case-control study[J]. Carcinogenesis, 2011, 32(2):197-202.
[32] GELMINI S, QUATTRONE S, MALENTACCHI F, et al. Tankyrase-1 mRNA expression in bladder cancer and paired urine sediment: preliminary experience[J]. Clin Chem Lab Med, 2007, 45(7): 862-866.
[33] YANOWSKY K, BARROSO A, OSORIO A, et al. Mutational analysis of telomere genes in BRCA1/2-negative breast cancer families with very short telomeres[J]. Breast Cancer Res Treat, 2012, 134(3): 1337-1343.
[34] RAFNAR T, SULEM P, STACEY SN, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types[J]. Nat Genet, 2009, 41(2): 221-227.
The association of genetic variants in telomere maintenance genes with bladder cancer risk
GU Cheng-yuan, ZHU Yao, YE Ding-wei (Department of Urology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
YE Ding-wei E-mail: dwyeli@yahoo.com.cn
Telomere maintenance genes play an important role in maintaining the integrity of the telomere structure that protects chromosome ends, and telomere dysfunction may lead to tumorigenesis. Genetic variation in telomere maintenance genes has been confirmed. Cumulative evidence shows that the difference of telomere length and stability among the individual depends on the genetic variants of telomere maintenance genes. Genetic variants in telomere maintenance genes may affect telomere length and stability, thus the increased cancer risk. This review intends to summarize the association of genetic variants in telomere maintenance genes with bladder cancer risk.
Telomere maintenance genes; Polymorphism; Bladder cancer; Susceptibility
R737.14
:A
:1007-3639(2013)01-0059-05
2012-07-31
2012-10-28)
葉定偉 E-mail:dwyeli@yahoo.com.cn
DOI: 10.3969/j.issn.1007-3969.2013.01.011