• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米三氧化鎢復(fù)合催化劑的制備及對(duì)甲醇電催化性能

    2013-09-17 06:58:36劉委明胡仙超褚有群馬淳安
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:浙江工業(yè)大學(xué)淳安電催化

    周 陽 劉委明 胡仙超,3 褚有群 馬淳安,*

    (1浙江工業(yè)大學(xué)化工材料學(xué)院,綠色化學(xué)合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,科技部能源材料及應(yīng)用國(guó)際科技合作基地,杭州310032;2江西理工大學(xué)冶金與化學(xué)工程學(xué)院,江西贛州341000;3浙江工業(yè)大學(xué)分析測(cè)試中心,杭州310032)

    1 Introduction

    Direct methanol fuel cells(DMFCs)have recently attracted considerable attentions due to their excellent features such as high-energy density,convenient fuel storage,green emission,and ambient operating conditions etc.1,2However,DMFCs usually use lots of expensive platinum as anodic catalysts that tend to be poisoned by reaction intermediates such as COads.3Thus considerable efforts have been devoted to making metallic alloy,such as PtRu,4,5PtPd,6,7and PtRuSn8,9etc.,with low amount of platinum and high activity toward methanol oxidation.But the dissolution of transition metals in the alloys during the DMFC operation would be the main challenge since the dissolved transition metals may span the membrane and experience reduction on the cathode,finally leading to the unexpected performance degradation of DMFCs.10,11

    The second way to design Pt-based composite catalysts is metal oxides modified Pt particles,such as Pt/RuO2,12,13Pt/SnO2,14,15and Pt/MnO2,16etc.Tungsten trioxide(WO3)is known to be able to form a hydrogen tungsten bronze(HxWO3)compound in acid solution which is both nonstoichiometric and electrically conducting.The compound can facilitate dehydrogenation during methanol oxidation and lighten the CO poisoning of Pt catalyst.Previous studies have shown that Pt and PtRu catalysts supported on WO3have extremely high activity towards the electro-oxidation of CO,17methanol,18-21ethanol,22and formic acid.23,24However,WO3has a low specific surface area and conductivity,which limits its application in DMFC.

    Recently WO3/C hybrid material was used as the support of Pt-WO3/C catalysts.25,26Compared with Vulcan XC-72 carbon black,carbon nanotubes(CNTs)have better specific surface area and conductivity.Rajesh et al.27reported a composite catalyst of methanol electro-oxidation by depositing Pt nanoparticles on WO3-modified CNT,in which CNT was synthesised by the template carbonisation of polypyrrole on alumina membrane.In this paper CNT was further disposed by strong acid so that Pt and WO3nanoparticles were homogenously deposited on the surface of CNT.Results show that WO3-modification improves significantly electrocatalytic activity towards methanol oxidation.

    2 Experimental

    2.1 Preparation of WO3modified acid treated CNTs

    Carbon nanotubes(Shenzhen Nanoharbor Co.,China)were functionalized in nitric acid(65%-68%)under refluxing at 150°C for 5 h,washed by distilled water and dried in vacuum at 85°C.28WO3-modified carbon nanotubes(WO3-CNTs)were prepared by the conventional means with sodium tungstate as the precursor.Briefly,50 mg of CNTs was added into 5 mmol·L-1aqueous solution of sodium tungstate.After ultrasonic dispersed for 30min,the solution were stirred vigorously at 60°C for 1 h,then excessive 1 mol·L-1hydrochloric acid was dropwised into the above solution.After the reaction proceeded for 6 h,the suspension was filtered,washed and dried at 80°C in a vacuum oven.The resultant was transferred into a tubular oven and heat-treated at 500°C for 6 h under the protection of a nitrogen atmosphere.The ideal ratio of WO3to CNTs was calculated as 25%(w),but for comparison,ratio of WO3to CNTs with 10%,25%,50%,and 75%(w)were also prepared following same procedures as above.

    2.2 Synthesis of Pt nanoparticles on WO3-CNTs

    Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.In brief,5.7 mL of 5 mmol·L-1chloroplatinic acid was well mixed with 15 mL ethylene glycol(EG)in a special reaction tube,and then 50.0 mg of as-prepared WO3/CNTs was added into the mixture.After the pH of the mixture was adjusted to 10 using 1.0 mol·L-1NaOH aqueous,well-dispersed slurry was obtained after being stirred in an ultrasonic bath for 30 min.Thereafter,the slurry was microwave-heated at 160°C for 30 min in the microwave synthesizer(Initiator Biotage,Sweden).The resulting solution was filtered,washed and dried at 85°C for 10 h in a vacuum oven,yielding 10%(w)Pt loading on the supports.As contrast samples,Pt nanoparticles(10%(w)metal content)on acid treated CNTs(Pt/CNTs)was prepared using similar procedures as described above.

    2.3 Characterizations

    The morphology,crystal phase,structure and element distribution of the samples were respectively characterized by XRD,XPS,and TEM.XRD was performed with a Thermo ARL SCINTAG X?TRA X-ray at room temperature,using quartz monochromatic Cu Kα1radiation source(λ=0.1541 nm)under a voltage of 45 kV and a current of 40 mA.The XRD patterns were recorded with a step size of 0.04°from 10°to 80°at the speed of 2.4(°)·min-1.TEM was carried out on a Tecnai G2 F30 S-Twin(Philips-FEI).XPS was carried out on Kratos AXIS Ultra DLD.

    2.4 Electrochemical measurements

    Electrochemical measurements were performed on Ivium electrochemical workstation.A standard three-electrode cell with separate anode and cathode compartments was used.A Pt foil and saturated calomel electrode(SCE)were used as counter and reference electrodes,respectively.For electrode preparation,2.5 mg of electrocatalyst sample was ultrasonically mixed in 400 μL of ethanol-water solution(1:1,V/V)to form a homogeneous ink followed by dropping 5 μL of the electrocatalyst ink onto the surface of a glassy carbon electrode(GCE,with a diameter of 3 mm),and 7 μL of Nafion solution of 1.0%(DuPont,USA)in ethanol was added to fix the electrocatalyst on the GCE surface.The electrochemical active surface(EAS)assessed in a nitrogen-saturated 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1and the electrocatalytic activity for the methanol oxidation reaction was measured in a nitrogensaturated 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1.

    The CO stripping experiments were performed in a 0.5 mol·L-1H2SO4solution.Along with the continuous CO bubbling for 30 min,the anode electrode was controlled at-0.14 V for CO adsorption.The solution was then purged with N2for 30 min to remove the dissolved CO before the stripping test.

    3 Results and discussion

    3.1 XRD and TEM analysis of samples

    Fig.1 shows the typical XRD patterns of the samples.The diffraction peak at 2θ=26.2°is characteristic of the graphite(002)plane,demonstrating the graphitization of carbon in the sample.The distinct diffraction peaks at 2θ of 23.09°,23.58°,24.33°,33.25°,34.12°,and 41.44°are indexed as the(002),(020),(200),(022),(202),and(222)planes of monoclinic WO3phase.29Those slight diffraction peaks at 2θ of 39.76°,46.28°,and 67.53°are attributed to the Pt(111),(200),and(220)planes,which are not obvious for Pt/WO3-CNTs,indeed,the broaden peak centered at 41.45°is the overlapped peak of the(111)peak of Pt and the(222)peak of WO3.

    Fig.1 XRD patterns of(a)WO3-CNTs,(b)Pt/WO3-CNTs,and(c)Pt/CNTs catalysts

    Fig.2 shows scanning transmission electron microscope(STEM)images of Pt/CNTs and Pt/WO3-CNTs catalyst.The black and white picture is sample particle morphology and color pictures are samples?elements distribution density by energy dispersive spectrometer(EDS)surface scan.As can be seen from Fig.2(a),W,Pt,and O elements are distributed on the outer surface of CNTs.Combined with XRD characterization of results,Pt/WO3-CNTs catalyst is composed of Pt,WO3,and CNTs.

    Fig.3 gives the TEM images of Pt/CNTs and Pt/WO3-CNTs catalysts and the corresponding histograms of the Pt particle diameters,as well.It can be seen from the TEM images that the Pt particles on the WO3-CNTs support are smaller and more uniformly dispersed than those on CNTs support.The average sizes of the Pt particles in Pt/CNTs and Pt/WO3-CNTs catalysts are estimated from their histograms as being approximately 4.8 and 3.6 nm,respectively,indicating that the introduction of WO3can inhibit the aggregation of Pt particles.26

    3.2 XPS analysis of samples

    Fig.4 shows the XPS spectra of Pt 4f and W 4f photoemission from Pt/WO3-CNTs,respectively.The two characteristic peaks observed in the Pt 4f region with binding energies of 71.5 and 74.8 eV should be attributed to the metallic Pt.30The two peaks in the W 4f region with binding energies centered at 35.7 and 37.9 eV,suggest the presence of tungsten in the+VI oxidation state.31Fig.5 displays the XPS spectra of Pt 4f photoemission from Pt/CNTs.It can be observed that the two peaks with binding energies of 71.5 and 74.8 eV are characteristic of the metallic Pt,and the other two peaks at 72.3 and 75.8 eV can be assigned to Pt2+in PtO and Pt(OH)2-like species.32

    3.3 Electro-catalytic performance

    Fig.2 EDS elemental mapping of(a)Pt/WO3-CNTs and(b)Pt/CNTs catalysts under STEM model

    Fig.3 TEM images of(a)Pt/WO3-CNTs and(b)Pt/CNTs,and Pt particle size distributions of(c)Pt/WO3-CNTs and(d)Pt/CNTs

    Fig.4 XPS spectra of the Pt 4f and W 4f photoemission from Pt/WO3-CNTs

    Fig.6 presents cyclic voltammograms(CVs)of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1.The platinum in Pt/WO3-CNT has a larger EAS than that in Pt/CNTs,which is reflected by the hydrogen adsorption/desorption currents at the potentials between-0.2 and 0.2 V,as shown in Fig.6.The EAS of platinum can be calculated from the integrated charge in the hydrogen adsorption region of the cyclic voltammograms(Fig.6)based on ESA=QH/0.21×[Pt],where QHis the integrated charge(mC),[Pt]is the Pt loading(mg·cm-2)on the electrode.The EAS values calculated for Pt/CNTs and Pt/WO3-CNTs are shown in Table 1,which reveals that the EAS of platinum is influenced by the particle sizes.This result is consistent with Pt particle size distributions of Pt/CNTs and Pt/WO3-CNTs(Fig.3).

    Fig.7 shows CVs of the electrodes in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution between 0.0 to 1.0 V at a scan rate of 50 mV·s-1.The electrocatalytic activity of Pt/WO3-CNTs and Pt/CNTs catalysts on the oxidation of methanol was studied in 0.5 mol·L-1H2SO4aqueous solution containing 1.0 mol·L-1CH3OH at a scan rate of 50 mV·s-1.It can be observed from Fig.7 that the onset of methanol oxidation peaks for the Pt/WO3-CNTs catalyst is at 0.25 V,which is apparently lower than that on Pt/CNTs catalysts with the onsets at 0.30 V.The negative shift on the potential onset of Pt/WO3-CNTs indicates that Pt nanoparticles on WO3-CNTs surface can effectively reduce the over potentials in the methanol electro-oxidation reaction.In addition,it can be seen that the mass specific current of Pt/WO3-CNTs(403 mA·mg-1)is 5 times that of Pt/CNT(80 mA·mg-1)at 0.69 V,indicating that WO3plays a key role in the high catalytic performance.

    Fig.5 XPS spectra of the Pt 4f photoemission from Pt/CNTs

    Fig.6 Cyclic voltammograms of(a)Pt/WO3-CNTs and(b)Pt/CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1

    Table 1 Onset potential,EAS,peak current density,and forward anodic to reverse anodic peak current density ratio ofthe different catalysts for methanol oxidation

    Besides,it is well known that the ratio of the forward anodic peak current density(If)to the reverse anodic peak current density(Ib),i.e.,If/Ib,suggests a tolerance to carbonaceous species accumulation of catalysts during methanol electro-oxidation.And the high If/Ibindicates excellent oxidation of methanol during the reverse anodic scan and less accumulation of residues on the catalyst.Here the If/Ibratio for Pt/WO3-CNT is about 1.37,which is much higher than that of Pt/CNT catalyst(0.96),showing the Pt/WO3-CNT has a better tolerance to carbonaceous species accumulation.

    Fig.8(a)shows the cyclic voltammograms of Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution.In Fig.8(b),the effects of WO3content on the anodic peak current density and the If/Ibratio are shown.It can be seen that for Pt/WO3-CNTs catalyst,the peak current density of methanol oxidation increases along with the increasing of WO3content because WO3reduces the Pt nanoparticles size and improves the dispersion of Pt nanoparticles on the surface of CNTs.26However,the increasing of WO3amount would lead to a decrease of the electrode conductivity,thus decreases the reaction performance of Pt/WO3-CNTs catalyst on the contrary,finally,the content of WO3is optimized at ca 25%.

    Fig.7 Cyclic voltagrammograms of methanol oxidation on(a)Pt/WO3-CNTs,(b)Pt/CNTs,and(c)WO3/CNTs in 0.5 mol·L-1 H2SO4+1 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1

    Fig.8 (a)Cyclic voltammograms of the Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution with a scan rate of 50 mV·s-1;(b)dependencyof anodic peak current density and the ratio ofIf/Ibto the mass fraction of WO3

    CO-stripping voltammograms is measured and the characteristic CO stripping curves of Pt/WO3-CNTs and Pt/CNTs catalysts are shown in Fig.9.The onset potential and the peak potential may directly reflect the CO oxidizing ability of the catalysts.It is revealed that the onset potential and the peak potential for the oxidation of adsorbed CO on Pt/WO3-CNTs(Fig.9(a))are much lower than those on Pt/CNTs(Fig.9(b)),so WO3efficiently reduces the overpotential of CO oxidation due to forming HxWO3-OHadsspecies at lower potentials,which is helpful to oxidize COadsthrough bi-functional mechanism.33

    Fig.9 CO-stripping voltammograms of Pt/WO3-CNTs and Pt/CNTs catalysts in 0.5 mol·L-1H2SO4solution at room temperature and a scan rate of 50 mV·s-1

    Fig.10 Chronoamperomtric curve of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution at an operation potential of 0.7 V

    The chronoamperometry(CA)curves for the three catalysts are shown in Fig.10.These curves reflect the activity and stability of the catalysts to catalyze methanol oxidation.Obviously,the decay in the methanol oxidation current with time varies.But after 100 min the current density of Pt/WO3-CNTs catalyst is 15 times higher than that of Pt/CNTs catalyst.It shows that the modification of WO3can effectively improve the resistance to toxic and stability of Pt-based catalyst for methanol oxidation.This significant improvement in the catalytic performance of the Pt/WO3-CNTs catalysts may be attributed to three factors:first,the Pt and WO3particles supported on the carbon are smaller and more uniformly distributed;second,more metallic Pt is present on Pt/WO3-CNTs than on Pt/CNTs catalyst.Third,in the presence of WO3,the hydrogen adsorbed on the Pt spills over onto the surface of the WO3and forms HxWO3,thus releasing these Pt active sites.Subsequently,HxWO3can be readily oxidized to release hydrogen ions,electrons,and WO3.34,35This cyclic process will accelerate the dehydrogenation of methanol on Pt and improve the catalytic performance of methanol oxidation.The cyclic process on the Pt/WO3-CNTs catalyst is speculated to occur as follows:33,34

    4 Conclusions

    Nano-WO3modified carbon nanotubes were prepared by the conventional means with sodium tungstate as the precursor.Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.Electrochemical analysis shows that the Pt/WO3-CNTs catalysts prepared exhibit excellent catalytic activity and stability for methanol electro-oxidation.

    (1) Jung,E.H.;Jung,U.H.;Yang,T.H.;Peak,D.H.;Jung,D.H.;Kim,S.H.International Journal of Hydrogen Energy 2007,32,903.doi:10.1016/j.ijhydene.2006.12.014

    (2) Li,X.;Chen,J.L.;Zhu,Z.H.;De Marco,R.;Bradley,J.;Dicks,A.Energy&Fuels 2009,23,3721.doi:10.1021/ef900203h(3)Han,D.M.;Guo,Z.P.;Zeng,R.;Kim,C.J.;Meng,Y.Z.;Liu,H.K.International Journal of Hydrogen Energy 2009,34,2426.doi:10.1016/j.ijhydene.2008.12.073

    (4) Corpuz,A.R.;Olson,T.S.;Joghee,P.;Pylypenko,S.;Dameron,A.A.;Dinh,H.N.;O?Neill,K.J.;Hurst,K.E.;Bender,G.;Gennett,T.;Pivovar,B.S.;Richards,R.M.;O?Hayre,R.P.Journal of Power Sources 2012,217,142.doi:10.1016/j.jpowsour.2012.06.012

    (5) Kakati,N.;Lee,S.H.;Maiti,J.;Yoon,Y.S.Surface Science 2012,606,1633.doi:10.1016/j.susc.2012.07.008

    (6)Chu,Y.Y.;Wang,Z.B.;Jiang,Z.Z.;Gu,D.M.;Yin,G.P.Journal of Power Sources 2012,203,17.doi:10.1016/j.jpowsour.2011.11.025

    (7) Remona,A.M.;Phani,K.L.N.Journal of Fuel Cell Science and Technology 2011,8,011001.

    (8) Chu,Y.H.;Shul,Y.G.International Journal of Hydrogen Energy 2010,35,11261.doi:10.1016/j.ijhydene.2010.07.062(9) Wu,G.;Swaidan,R.;Cui,G.F.Journal of Power Sources 2007,172,180.doi:10.1016/j.jpowsour.2007.07.034

    (10) Chung,Y.S.;Pak,C.;Park,G.S.;Jeon,W.S.;Kim,J.R.;Lee,Y.;Chang,H.;Seung,D.Journal of Physical Chemistry C 2008,112,313.doi:10.1021/jp0759372

    (11) Piela,P.;Eickes,C.;Brosha,E.;Garzon,F.;Zelenay,P.Journal of the Electrochemical Society 2004,151,A2053.

    (12) Profeti,L.P.R.;Profeti,D.;Olivi,P.International Journal of Hydrogen Energy 2009,34,2747.doi:10.1016/j.ijhydene.2009.01.011

    (13) Zhou,C.M.;Wang,H.J.;Liang,J.H.;Peng,F.;Yu,H.;Yang,J.Chinese Journal of Catalysis 2008,29,1093.doi:10.1016/S1872-2067(09)60007-3

    (14) Frolova,L.A.;Dobrovolsky,Y.A.Russian Chemical Bulletin 2011,60,1101.doi:10.1007/s11172-011-0174-z

    (15) Guo,D.J.;You,J.M.Journal of Power Sources 2012,198,127.doi:10.1016/j.jpowsour.2011.10.017

    (16)Xu,M.W.;Gao,G.Y.;Zhou,W.J.;Zhang,K.F.;Li,H.L.Journal of Power Sources 2008,175,217.doi:10.1016/j.jpowsour.2007.09.069

    (17) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L85.

    (18) Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1994,141,3082.doi:10.1149/1.2059282

    (19) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Chemical Society-Faraday Transactions 1994,90,3089.doi:10.1039/ft9949003089

    (20) Cui,X.Z.;Shi,J.L.;Chen,H.R.;Zhang,L.X.;Guo,L.M.;Gao,J.H.;Li,J.B.Journal of Physical Chemistry B 2008,112,12024.

    (21) Jayaraman,S.;Jaramillo,T.F.;Baeck,S.H.;McFarland,E.W.Journal of Physical Chemistry B 2005,109,22958.doi:10.1021/jp053053h

    (22)Zhang,D.Y.;Ma,Z.F.;Wang,G.X.;Konstantinov,K.;Yuan,X.X.;Liu,H.K.Electrochemical and Solid State Letters 2006,9,A423.

    (23) Chen,K.Y.;Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L185.

    (24) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of Electroanalytical Chemistry 1995,389,223.doi:10.1016/0022-0728(95)03974-L

    (25)Yang,C.Z.;van der Laak,N.K.;Chan,K.Y.;Zhang,X.Electrochimica Acta 2012,75,262.doi:10.1016/j.electacta.2012.04.107

    (26)Cui,Z.M.;Feng,L.G.;Liu,C.P.;Xing,W.Journal of Power Sources 2011,196,2621.doi:10.1016/j.jpowsour.2010.08.118

    (27) Rajesh,B.;Karthik,V.;Karthikeyan,S.;Thampi,K.R.;Bonard,J.M.;Viswanathan,B.Fuel 2002,81,2177.doi:10.1016/S0016-2361(02)00162-X

    (28) Sheng,J.F.;Ma,C.A.;Zhang,C.;Li,G.H.Acta Physico-Chimica Sinica 2007,23,181.[盛江峰,馬淳安, 張 誠(chéng),李國(guó)華.物理化學(xué)學(xué)報(bào),2007,23,181.]doi:10.3866/PKU.WHXB20070209

    (29) Rajeswari,J.;Viswanathan,B.;Varadarajan,T.K.Materials Chemistry and Physics 2007,106,168.doi:10.1016/j.matchemphys.2007.05.032

    (30)Ahmadi,R.;Amini,M.K.International Journal of Hydrogen Energy 2011,36,7275.doi:10.1016/j.ijhydene.2011.03.013

    (31) Raghuveer,V.;Viswanathan,B.Journal of Power Sources 2005,144,1.doi:10.1016/j.jpowsour.2004.11.033

    (32)Su,F.B.;Poh,C.K.;Tian,Z.G.;Xu,G.W.;Koh,G.Y.;Wang,Z.;Liu,Z.L.;Lin,J.Y.Energy&Fuels 2010,24,3727.doi:10.1021/ef901275q

    (33) Park,K.W.;Choi,J.H.;Sung,Y.E.Journal of Physical Chemistry B 2003,107,5851.doi:10.1021/jp0340966

    (34)Tseung,A.C.C.;Chen,K.Y.Catalysis Today 1997,38,439.doi:10.1016/S0920-5861(97)00053-9

    (35) Ye,J.L.;Liu,J.G.;Zou,Z.G.;Gu,J.;Yu,T.Journal of Power Sources 2010,195,2633.doi:10.1016/j.jpowsour.2009.11.055

    猜你喜歡
    浙江工業(yè)大學(xué)淳安電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    從“淳安女童失聯(lián)案”看新媒體的悲劇性事件報(bào)道
    浙江工業(yè)大學(xué)
    漁舟唱晚
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    走進(jìn)淳安,去游千島之湖
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    久久精品久久久久久久性| 久久久久久久久久成人| 国产高清有码在线观看视频| 啦啦啦中文免费视频观看日本| 亚洲av成人精品一二三区| 亚洲怡红院男人天堂| 精品一区二区免费观看| 色婷婷av一区二区三区视频| 久久99一区二区三区| 欧美另类一区| 欧美日韩精品成人综合77777| 男的添女的下面高潮视频| 亚洲av二区三区四区| 成人亚洲欧美一区二区av| 人人妻人人澡人人爽人人夜夜| 精品人妻熟女毛片av久久网站| 国产在线免费精品| 麻豆成人av视频| 少妇的逼水好多| 亚洲精品一二三| 国产毛片在线视频| 精品少妇黑人巨大在线播放| 熟女电影av网| 亚洲熟女精品中文字幕| 久久久国产一区二区| 国产亚洲最大av| 久久6这里有精品| 我的女老师完整版在线观看| 狂野欧美白嫩少妇大欣赏| 一级爰片在线观看| 中文字幕久久专区| 蜜桃在线观看..| 久久这里有精品视频免费| 少妇 在线观看| 另类亚洲欧美激情| 亚洲av在线观看美女高潮| 高清毛片免费看| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三区在线 | 狂野欧美激情性bbbbbb| 天堂俺去俺来也www色官网| 在线免费观看不下载黄p国产| 在线亚洲精品国产二区图片欧美 | 青春草视频在线免费观看| 在线播放无遮挡| 免费观看在线日韩| 亚洲精品一二三| 久久久久网色| 国内精品宾馆在线| av女优亚洲男人天堂| 亚洲av欧美aⅴ国产| 波野结衣二区三区在线| 高清视频免费观看一区二区| av在线老鸭窝| 99热这里只有是精品50| 久久久久久久国产电影| 国产成人精品一,二区| 人人妻人人看人人澡| 女人久久www免费人成看片| 久久精品国产亚洲av涩爱| 看免费成人av毛片| 久久久久久久亚洲中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 国产 精品1| 麻豆成人午夜福利视频| 如何舔出高潮| 超碰97精品在线观看| 欧美成人午夜免费资源| 少妇的逼水好多| 大香蕉久久网| 亚洲欧美一区二区三区黑人 | 日本免费在线观看一区| 亚洲av日韩在线播放| 伦精品一区二区三区| 秋霞伦理黄片| av专区在线播放| 久久国产精品男人的天堂亚洲 | 久久影院123| 日韩成人av中文字幕在线观看| 亚洲精品国产av成人精品| av国产久精品久网站免费入址| 亚洲精品国产色婷婷电影| 精品午夜福利在线看| 国产精品国产三级专区第一集| 精品人妻熟女毛片av久久网站| 老司机影院毛片| 九九在线视频观看精品| 少妇被粗大的猛进出69影院 | 如何舔出高潮| 青春草国产在线视频| 中文字幕精品免费在线观看视频 | 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 一本久久精品| 一级毛片我不卡| 欧美国产精品一级二级三级 | 久久久久国产网址| 三级国产精品片| videossex国产| 精品少妇内射三级| 亚洲国产色片| 久久精品夜色国产| 国产乱来视频区| 乱系列少妇在线播放| 国产精品久久久久久精品电影小说| 亚洲精品国产av成人精品| 日韩免费高清中文字幕av| 亚洲综合精品二区| 我要看黄色一级片免费的| 精品午夜福利在线看| 黄色配什么色好看| 18禁动态无遮挡网站| 久热久热在线精品观看| 国产中年淑女户外野战色| a 毛片基地| 亚洲精品日本国产第一区| 性色avwww在线观看| 国产视频首页在线观看| 街头女战士在线观看网站| av网站免费在线观看视频| 久久人妻熟女aⅴ| 国产男女超爽视频在线观看| 午夜福利在线观看免费完整高清在| 国产在线视频一区二区| 美女中出高潮动态图| 国产精品熟女久久久久浪| 日韩欧美精品免费久久| 丰满少妇做爰视频| 99热全是精品| 熟女人妻精品中文字幕| 亚洲精品中文字幕在线视频 | 女性被躁到高潮视频| 人妻系列 视频| 国产无遮挡羞羞视频在线观看| 欧美 日韩 精品 国产| 久久久久久久国产电影| 中文在线观看免费www的网站| 深夜a级毛片| 只有这里有精品99| 亚洲激情五月婷婷啪啪| 久久久久久久久大av| 亚洲伊人久久精品综合| 亚洲激情五月婷婷啪啪| 成人亚洲精品一区在线观看| 久久久欧美国产精品| 午夜福利,免费看| 久久久久久久久久人人人人人人| 人体艺术视频欧美日本| 纵有疾风起免费观看全集完整版| 熟女电影av网| 精品国产一区二区三区久久久樱花| 日韩伦理黄色片| 六月丁香七月| 18+在线观看网站| 自拍偷自拍亚洲精品老妇| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 国产有黄有色有爽视频| 精品久久国产蜜桃| 久久99热6这里只有精品| 精品人妻熟女毛片av久久网站| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 久久综合国产亚洲精品| 乱人伦中国视频| 日本-黄色视频高清免费观看| 一本—道久久a久久精品蜜桃钙片| 丝袜脚勾引网站| 熟女av电影| 日韩伦理黄色片| 99久久精品国产国产毛片| 久久婷婷青草| 欧美日韩精品成人综合77777| 成人无遮挡网站| 免费少妇av软件| 中国美白少妇内射xxxbb| 午夜免费观看性视频| 亚洲,欧美,日韩| 大陆偷拍与自拍| 国产高清不卡午夜福利| 久久毛片免费看一区二区三区| 亚洲无线观看免费| 日韩成人伦理影院| 丝袜喷水一区| 中文精品一卡2卡3卡4更新| 亚洲av成人精品一二三区| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 国产一级毛片在线| 秋霞伦理黄片| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 人妻人人澡人人爽人人| 99热这里只有精品一区| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 国产亚洲av片在线观看秒播厂| 免费看av在线观看网站| 久久久久久久久久久丰满| 高清视频免费观看一区二区| av网站免费在线观看视频| 中文精品一卡2卡3卡4更新| 老司机影院成人| 观看免费一级毛片| 成人免费观看视频高清| 又大又黄又爽视频免费| 日本爱情动作片www.在线观看| 久久人人爽人人片av| 免费看光身美女| 亚洲国产欧美在线一区| 久久精品国产鲁丝片午夜精品| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 欧美+日韩+精品| 五月玫瑰六月丁香| 亚洲不卡免费看| 在线观看av片永久免费下载| 精品久久久精品久久久| 亚洲在久久综合| 各种免费的搞黄视频| 国产一级毛片在线| 这个男人来自地球电影免费观看 | 黄色视频在线播放观看不卡| 中文字幕人妻丝袜制服| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 22中文网久久字幕| 最后的刺客免费高清国语| 97超碰精品成人国产| 日本vs欧美在线观看视频 | 美女国产视频在线观看| 丝袜在线中文字幕| 这个男人来自地球电影免费观看 | tube8黄色片| 最新的欧美精品一区二区| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 国产视频首页在线观看| 日韩一区二区视频免费看| 又大又黄又爽视频免费| 美女视频免费永久观看网站| 亚洲精品自拍成人| 国产 精品1| 欧美日韩综合久久久久久| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 日韩中字成人| 色视频www国产| 欧美xxⅹ黑人| 成人无遮挡网站| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 亚洲丝袜综合中文字幕| 色吧在线观看| 欧美 日韩 精品 国产| 一级,二级,三级黄色视频| 国产在视频线精品| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 91精品国产九色| 91午夜精品亚洲一区二区三区| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 日本猛色少妇xxxxx猛交久久| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 欧美 亚洲 国产 日韩一| 伦理电影大哥的女人| 日韩强制内射视频| 精品一区二区三卡| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 街头女战士在线观看网站| 简卡轻食公司| 国产av精品麻豆| av国产精品久久久久影院| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 免费大片18禁| 青春草国产在线视频| 九草在线视频观看| 一区二区av电影网| 久久久久久久精品精品| 成人二区视频| 国产精品99久久久久久久久| 街头女战士在线观看网站| 美女cb高潮喷水在线观看| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 久久av网站| 欧美另类一区| 久久久精品免费免费高清| 日韩大片免费观看网站| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 秋霞在线观看毛片| 婷婷色麻豆天堂久久| 在现免费观看毛片| 久久99一区二区三区| 一区二区三区乱码不卡18| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 成年女人在线观看亚洲视频| 国产精品免费大片| 久久这里有精品视频免费| 国产精品人妻久久久影院| 十八禁高潮呻吟视频 | 精品亚洲成国产av| 亚洲怡红院男人天堂| 国产无遮挡羞羞视频在线观看| 亚洲av中文av极速乱| 简卡轻食公司| a级毛片在线看网站| 春色校园在线视频观看| 国产熟女欧美一区二区| 中文字幕精品免费在线观看视频 | 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 亚洲国产日韩一区二区| 嫩草影院新地址| 中国美白少妇内射xxxbb| a级毛片免费高清观看在线播放| 在线观看一区二区三区激情| 亚洲av.av天堂| 老熟女久久久| 国产一区二区在线观看av| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 亚洲精品乱码久久久久久按摩| 老司机亚洲免费影院| 三级经典国产精品| 成人无遮挡网站| 波野结衣二区三区在线| 99九九线精品视频在线观看视频| 亚洲av在线观看美女高潮| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 国产淫语在线视频| 国产精品秋霞免费鲁丝片| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看| 男女国产视频网站| av在线app专区| 国产精品偷伦视频观看了| 久久久久网色| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 日日啪夜夜爽| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 成年av动漫网址| 婷婷色麻豆天堂久久| 午夜91福利影院| 久久久欧美国产精品| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 日本-黄色视频高清免费观看| 久久精品久久精品一区二区三区| 另类亚洲欧美激情| 一本色道久久久久久精品综合| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 中国国产av一级| 精品一品国产午夜福利视频| 91aial.com中文字幕在线观看| 热re99久久国产66热| 亚洲精华国产精华液的使用体验| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 欧美精品一区二区免费开放| 成人无遮挡网站| 蜜桃在线观看..| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| av在线观看视频网站免费| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 哪个播放器可以免费观看大片| 国产在视频线精品| 高清视频免费观看一区二区| 色吧在线观看| 建设人人有责人人尽责人人享有的| 亚洲久久久国产精品| 九九久久精品国产亚洲av麻豆| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 99热全是精品| 天堂中文最新版在线下载| 丰满少妇做爰视频| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 这个男人来自地球电影免费观看 | 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂| 女人久久www免费人成看片| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 午夜福利,免费看| 亚洲内射少妇av| 自线自在国产av| 免费高清在线观看视频在线观看| 午夜91福利影院| 亚洲国产精品999| 五月玫瑰六月丁香| 中文字幕亚洲精品专区| 日本黄大片高清| 在线观看美女被高潮喷水网站| 一级爰片在线观看| 欧美日韩视频精品一区| 一级毛片我不卡| 女性生殖器流出的白浆| 夜夜骑夜夜射夜夜干| 我的老师免费观看完整版| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| 午夜久久久在线观看| 内地一区二区视频在线| 国产永久视频网站| 少妇猛男粗大的猛烈进出视频| 麻豆成人av视频| 亚洲国产精品专区欧美| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 中国三级夫妇交换| 中文字幕免费在线视频6| 最新的欧美精品一区二区| av国产久精品久网站免费入址| 国产成人一区二区在线| 亚州av有码| 欧美成人午夜免费资源| 国产精品成人在线| 欧美日韩av久久| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 三级经典国产精品| 在线 av 中文字幕| 在线观看免费日韩欧美大片 | 高清视频免费观看一区二区| 99久久综合免费| 国产免费福利视频在线观看| 最近2019中文字幕mv第一页| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 日韩在线高清观看一区二区三区| 久久久久久久精品精品| 高清午夜精品一区二区三区| 国产精品一区www在线观看| 日本与韩国留学比较| 熟妇人妻不卡中文字幕| 国产亚洲91精品色在线| 欧美+日韩+精品| 久久午夜福利片| 天天操日日干夜夜撸| 少妇 在线观看| 如日韩欧美国产精品一区二区三区 | 777米奇影视久久| 久久久欧美国产精品| av在线播放精品| 啦啦啦在线观看免费高清www| 最新中文字幕久久久久| 国产乱来视频区| 亚洲精品视频女| 女性被躁到高潮视频| 欧美xxⅹ黑人| 免费观看的影片在线观看| 永久网站在线| 高清欧美精品videossex| 亚洲电影在线观看av| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲在久久综合| 一区二区三区四区激情视频| 日本免费在线观看一区| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 国产亚洲最大av| 丰满迷人的少妇在线观看| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜制服| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡 | 丝瓜视频免费看黄片| 国产熟女午夜一区二区三区 | 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 午夜激情福利司机影院| 日韩av在线免费看完整版不卡| 丝袜脚勾引网站| 22中文网久久字幕| 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 亚洲天堂av无毛| 国产视频内射| 男的添女的下面高潮视频| 国产黄色视频一区二区在线观看| 美女大奶头黄色视频| 一区二区三区四区激情视频| 夫妻午夜视频| 秋霞伦理黄片| 日韩三级伦理在线观看| 在线观看人妻少妇| 精品一区二区免费观看| 又爽又黄a免费视频| 九草在线视频观看| 美女xxoo啪啪120秒动态图| 尾随美女入室| 视频中文字幕在线观看| 在线观看一区二区三区激情| 桃花免费在线播放| 狠狠精品人妻久久久久久综合| av播播在线观看一区| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 校园人妻丝袜中文字幕| 伦理电影大哥的女人| 99久久精品国产国产毛片| 美女大奶头黄色视频| 秋霞在线观看毛片| 中文欧美无线码| 丁香六月天网| 搡老乐熟女国产| 亚洲中文av在线| 亚洲欧美一区二区三区国产| 亚洲怡红院男人天堂| 国产精品国产av在线观看| 久久97久久精品| 91久久精品电影网| 蜜桃久久精品国产亚洲av| 一级毛片电影观看| 99精国产麻豆久久婷婷| 久久人人爽人人片av| 七月丁香在线播放| 国产精品99久久久久久久久| 久久久久网色| 亚洲av成人精品一二三区| 免费看不卡的av| 亚洲va在线va天堂va国产| 精品人妻偷拍中文字幕| 精品亚洲乱码少妇综合久久| 国产视频首页在线观看| 在线天堂最新版资源| 99热这里只有是精品在线观看| 国产精品国产三级国产av玫瑰| 欧美激情国产日韩精品一区| 亚洲精品日本国产第一区| 99热国产这里只有精品6| av视频免费观看在线观看| 成人无遮挡网站| 街头女战士在线观看网站| 夜夜爽夜夜爽视频| 91精品伊人久久大香线蕉| 精品人妻偷拍中文字幕| 又爽又黄a免费视频| 久久综合国产亚洲精品| 我的老师免费观看完整版| 99热这里只有精品一区| av天堂久久9| 久久人妻熟女aⅴ| 亚洲国产成人一精品久久久| 久久久精品94久久精品| 高清午夜精品一区二区三区| 如何舔出高潮| 免费av中文字幕在线| .国产精品久久| 欧美丝袜亚洲另类| 一边亲一边摸免费视频| 夫妻性生交免费视频一级片| 国产日韩欧美视频二区| 日韩中文字幕视频在线看片| 亚洲中文av在线| 韩国av在线不卡| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩东京热| 狂野欧美白嫩少妇大欣赏| 亚洲美女视频黄频| 午夜福利,免费看| av女优亚洲男人天堂| 色婷婷av一区二区三区视频| 99国产精品免费福利视频| 水蜜桃什么品种好| 成人国产av品久久久| 免费看不卡的av| 一本大道久久a久久精品| 美女主播在线视频| 人人妻人人看人人澡| 久久国内精品自在自线图片| 最新中文字幕久久久久| 久久亚洲国产成人精品v| 老司机影院成人| 亚洲国产av新网站| 熟女av电影| 国产淫片久久久久久久久| 美女主播在线视频| 国产又色又爽无遮挡免| 国模一区二区三区四区视频| 日本午夜av视频| 黄色欧美视频在线观看| 免费观看无遮挡的男女| 亚洲真实伦在线观看|