潘 珠
(海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院,海南???71127)
隨著經(jīng)濟(jì)全球化和信息技術(shù)的加快發(fā)展,我國(guó)企業(yè)面臨著更為嚴(yán)峻的競(jìng)爭(zhēng)壓力。為了適應(yīng)現(xiàn)代市場(chǎng)需求,企業(yè)必須優(yōu)化配置人力資源,并科學(xué)制定人力資源規(guī)劃。其中,科學(xué)的人力資源需求預(yù)測(cè)是人力資源開(kāi)發(fā)和規(guī)劃的基礎(chǔ),對(duì)人力資源管理活動(dòng)將產(chǎn)生持續(xù)和重要的影響。
企業(yè)人力資源需求預(yù)測(cè)分析方法多種多樣。在進(jìn)行人力資源需求預(yù)測(cè)時(shí),企業(yè)要考慮的因素復(fù)雜多變,如企業(yè)的目標(biāo)和經(jīng)營(yíng)戰(zhàn)略、生產(chǎn)狀況的變化、工作設(shè)計(jì)或組織結(jié)構(gòu)的變化等,而且各種影響因素與預(yù)測(cè)結(jié)果之間的相關(guān)性難以用定量的方法表示出來(lái),是非線(xiàn)性相互制約的映射關(guān)系。將BP神經(jīng)網(wǎng)絡(luò)方法應(yīng)用于人力資源需求預(yù)測(cè)領(lǐng)域,彌補(bǔ)和改進(jìn)了人力資源需求預(yù)測(cè)分析方法,能較好地實(shí)現(xiàn)各指標(biāo)與需求結(jié)果之間非線(xiàn)性關(guān)系的映射,對(duì)企業(yè)人力資源決策具有一定的參考和指導(dǎo)作用。
人工神經(jīng)網(wǎng)絡(luò),簡(jiǎn)稱(chēng)神經(jīng)網(wǎng)絡(luò),是一種包括許多簡(jiǎn)單的非線(xiàn)性計(jì)算單元或聯(lián)結(jié)點(diǎn)的非線(xiàn)性動(dòng)力系統(tǒng),是用大量簡(jiǎn)單的處理單元廣泛連接組成的復(fù)雜網(wǎng)絡(luò)。Back-Propagation Network,簡(jiǎn)稱(chēng)為BP網(wǎng)絡(luò),即基于誤差反向傳播算法的多層前饋網(wǎng)絡(luò),是目前應(yīng)用最成功和廣泛的人工神經(jīng)網(wǎng)絡(luò)。它由輸入層、隱含層和輸出層組成。隱含層可以是一層或多層。BP神經(jīng)網(wǎng)絡(luò)自身具有的非線(xiàn)性映射、自學(xué)習(xí)、自適應(yīng)能力、容易實(shí)現(xiàn)并行計(jì)算等優(yōu)點(diǎn),彌補(bǔ)和改進(jìn)了供應(yīng)商選擇和評(píng)價(jià)方法,能較好地實(shí)現(xiàn)各指標(biāo)與評(píng)價(jià)結(jié)果之間非線(xiàn)性關(guān)系的映射。
基于BP神經(jīng)網(wǎng)絡(luò),構(gòu)建供應(yīng)商的選擇評(píng)價(jià)模型,其基本思想為:假設(shè)輸入變量為 X=(X1,X2,···,Xi)’,隱含層輸出變量為 Y=(Y1,Y2,···,Yj)’,輸出層變量為 Z=(Z1,Z2,···,Zl)’,期望輸出的目標(biāo)變量為 T=(T1,T2,···,Tl)’,Wij、Wjl分別為輸入層到隱含層、隱含層到輸出層的連接權(quán)值(如圖1所示)。對(duì)于i個(gè)輸入學(xué)習(xí)樣本X1,X2,···,Xi,已知與其對(duì)應(yīng)的輸出樣本為Z1,Z2,···,Zl。通過(guò)BP算法的學(xué)習(xí),沿著負(fù)梯度方向不斷調(diào)整和修正網(wǎng)絡(luò)連接權(quán)值Wij和Wjl,使網(wǎng)絡(luò)的實(shí)際輸出Z逐漸逼近目標(biāo)矢量T,也就是使網(wǎng)絡(luò)輸出層的誤差平方和達(dá)到最小。
圖1 三層BP網(wǎng)絡(luò)結(jié)構(gòu)圖
根據(jù)BP神經(jīng)網(wǎng)絡(luò)主要思想,以A公司為例,分析如何運(yùn)用MATLAB工具箱實(shí)現(xiàn)基于BP神經(jīng)網(wǎng)絡(luò)的企業(yè)人力資源需求預(yù)測(cè)。
選取年份、產(chǎn)值、資產(chǎn)總計(jì)、利潤(rùn)4個(gè)指標(biāo)作為輸入向量,從業(yè)人員作為目標(biāo)向量(見(jiàn)表1)。在對(duì)BP網(wǎng)絡(luò)進(jìn)行訓(xùn)練前,應(yīng)該對(duì)數(shù)據(jù)進(jìn)行歸一化處理,使那些比較大的輸入仍落在傳遞函數(shù)梯度大的地方。本例采用MATLAB工具箱中的premnmx()函數(shù)把數(shù)據(jù)歸一到[-1,1] 之間,如表2所示。
表1 A公司有關(guān)數(shù)據(jù)表
表2 歸一化后的數(shù)據(jù)
對(duì)于BP網(wǎng)絡(luò),有一個(gè)非常重要的定理。即對(duì)于任何在閉區(qū)間內(nèi)的一個(gè)連續(xù)函數(shù)都可以用單隱層的BP網(wǎng)絡(luò)逼近,因而一個(gè)三層BP網(wǎng)絡(luò)就可以完成任意的n維到m維的映射。本例采用單隱層的BP網(wǎng)絡(luò)進(jìn)行從業(yè)人員預(yù)測(cè)。由于輸入樣本為4維的輸入向量,因此,輸入層一共有4個(gè)神經(jīng)元,網(wǎng)絡(luò)只有1個(gè)輸出數(shù)據(jù),則輸出層只有1個(gè)神經(jīng)元。隱含層神經(jīng)元個(gè)數(shù)根據(jù)最佳隱含層神經(jīng)元數(shù)經(jīng)驗(yàn)公式取15個(gè)。因此,網(wǎng)絡(luò)應(yīng)該為4×15×1的結(jié)構(gòu)。隱含層神經(jīng)元的傳遞函數(shù)為S型正切函數(shù)tansig(),輸出層神經(jīng)元的傳遞函數(shù)為線(xiàn)性激活函數(shù)purelin()。
建立網(wǎng)絡(luò)后,對(duì)表2中的數(shù)據(jù)進(jìn)行訓(xùn)練,訓(xùn)練參數(shù)的設(shè)定如表3所示,其他參數(shù)取默認(rèn)值。
表3 訓(xùn)練參數(shù)
訓(xùn)練結(jié)果如圖1所示,可見(jiàn)經(jīng)過(guò)52次訓(xùn)練后,網(wǎng)絡(luò)的目標(biāo)誤差達(dá)到要求。
網(wǎng)絡(luò)訓(xùn)練結(jié)束后,運(yùn)用MATLAB工具箱中的sim()函數(shù),將經(jīng)過(guò)歸一化后的數(shù)據(jù)表2進(jìn)行仿真模擬,獲得網(wǎng)絡(luò)的輸出,然后將運(yùn)算結(jié)果通過(guò)postmnmx()函數(shù)進(jìn)行反歸一化處理,得到BP網(wǎng)絡(luò)預(yù)測(cè)值,最后檢查BP網(wǎng)絡(luò)預(yù)測(cè)值和實(shí)際從業(yè)人員數(shù)之間的誤差是否符合要求,如表4所示。
圖2 訓(xùn)練結(jié)果
從表4可以看出,該人力資源需求預(yù)測(cè)的神經(jīng)網(wǎng)絡(luò)模型誤差較小,泛化能力也較好,模擬的預(yù)測(cè)結(jié)果比較具有客觀性和準(zhǔn)確性。
表4 預(yù)測(cè)誤差
圖3反映了該BP網(wǎng)絡(luò)較好地逼近了輸入矢量,即年份、產(chǎn)值(萬(wàn)元)、資產(chǎn)總計(jì)(萬(wàn)元)和利潤(rùn)(萬(wàn)元)與目標(biāo)矢量,即從業(yè)人員(人)之間的線(xiàn)性關(guān)系。用BP神經(jīng)網(wǎng)絡(luò)對(duì)現(xiàn)有人力資源狀況進(jìn)行分析擬合,是人力資源需求預(yù)測(cè)的較理想方法。與傳統(tǒng)的人力資源需求預(yù)測(cè)方法相比,將BP神經(jīng)網(wǎng)絡(luò)用于人力資源需求預(yù)測(cè),克服了輸入矢量和目標(biāo)矢量非線(xiàn)性、不符合統(tǒng)計(jì)規(guī)律的問(wèn)題。BP神經(jīng)網(wǎng)絡(luò)模型良好的容錯(cuò)和自學(xué)習(xí)能力,調(diào)用MATLAB工具箱函數(shù),使預(yù)測(cè)過(guò)程更易實(shí)現(xiàn),可以更好地對(duì)人力資源進(jìn)行規(guī)劃,提高人力資源預(yù)測(cè)精度。
圖3 BP神經(jīng)網(wǎng)絡(luò)的函數(shù)逼近結(jié)果
將BP神經(jīng)網(wǎng)絡(luò)應(yīng)用于企業(yè)人力資源需求預(yù)測(cè),能較好地建立起各影響因素與預(yù)測(cè)結(jié)果之間的非線(xiàn)性關(guān)系,是企業(yè)預(yù)測(cè)人力資源需求的一種較理想的方法。但BP神經(jīng)網(wǎng)絡(luò)也存在著一些不足和問(wèn)題。主要表現(xiàn)在學(xué)習(xí)速率太小可能會(huì)造成訓(xùn)練時(shí)間過(guò)長(zhǎng);BP算法可以使權(quán)值收斂到某個(gè)值,但并不能保證其為誤差平面的全局最小值;網(wǎng)絡(luò)隱含層的層數(shù)和單元數(shù)的選擇一般是根據(jù)經(jīng)驗(yàn)或者通過(guò)反復(fù)實(shí)驗(yàn)確定,網(wǎng)絡(luò)往往存在很大的冗余性,在一定程度上也增加了網(wǎng)絡(luò)學(xué)習(xí)的負(fù)擔(dān)。因此,BP神經(jīng)網(wǎng)絡(luò)在企業(yè)人力資源需求預(yù)測(cè)領(lǐng)域的應(yīng)用仍需根據(jù)企業(yè)自身實(shí)際情況做進(jìn)一步的改進(jìn)和完善。
[1] 飛思科技產(chǎn)品研發(fā)中心.神經(jīng)網(wǎng)絡(luò)理論與MATLAB7實(shí)現(xiàn)[M] .北京:電子工業(yè)出版社,2005.
[2] (美)海金(Simon Haykin).神經(jīng)網(wǎng)絡(luò)原理(原書(shū)第2版)[M] .葉世偉,史忠植譯.北京:機(jī)械工業(yè)出版社,2004.
[3] 叢爽.面向MATLAB工具箱的神經(jīng)網(wǎng)絡(luò)理論與應(yīng)用[M] .中國(guó)科學(xué)技術(shù)大學(xué)出版社,1998.
[4] 劉躍.基于BP神經(jīng)網(wǎng)絡(luò)的人力資源估價(jià)研究[J] .統(tǒng)計(jì)與信息論壇,2007(1):96 -99.
[5] 李志強(qiáng),王艷明.四種人力資源的定量預(yù)測(cè)方法及評(píng)述[J] .統(tǒng)計(jì)與決策,2008(7):30-32.
[6] 國(guó)家統(tǒng)計(jì)局固定資產(chǎn)投資統(tǒng)計(jì)司,中國(guó)行業(yè)企業(yè)信息發(fā)布中心.中國(guó)大型房地產(chǎn)與建筑業(yè)企業(yè)年鑒[M] .北京:中國(guó)大地出版社,2003-2008.
[7] 王文富.企業(yè)人力資源預(yù)測(cè)與規(guī)劃研究[D] .天津大學(xué),2004.