楊 俊,肖劉萍, 滿雪玉,劉士軍
(中南大學(xué)化學(xué)化工學(xué)院,中南大學(xué)有色金屬資源化學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,中國(guó) 長(zhǎng)沙 410083)
硅和鋁分別是地殼中第二及第三豐富的元素,也是地球生態(tài)最重要的元素.許多自然界過程如礦物形成、巖漿沉積、地下水循環(huán)、及植物生長(zhǎng)等都與硅酸鹽及鋁酸鹽溶液有關(guān);而鋁冶金、分子篩及各種材料制備、造紙、采油等眾多工業(yè)領(lǐng)域與硅酸鈉溶液及鋁酸鈉溶液更是密切相關(guān)[1-6].在鋁冶金中,硅酸鈉溶液與鋁酸鈉溶液反應(yīng)生成鈉硅渣而達(dá)到除硅的目的,但同時(shí)易在換熱器及管道內(nèi)結(jié)垢;硅鋁分子篩的結(jié)構(gòu)在很大程度上取決于硅酸鈉溶液的性質(zhì).因此硅酸鈉溶液的熱力學(xué)性質(zhì)對(duì)地球化學(xué)的研究及相關(guān)生產(chǎn)工藝的設(shè)計(jì)與優(yōu)化具有重要的理論意義.
在硅酸鈉溶液體系中,存在硅酸根離子的質(zhì)子化及聚合等復(fù)雜的相互作用,其溶液結(jié)構(gòu)與濃度、pH值、溫度等因素密切相關(guān),但在高堿性條件下,一般都認(rèn)為單硅酸根是主要組分[7-11].這些復(fù)雜的相互作用使得硅酸鈉溶液的熱力學(xué)性質(zhì)具有異于普通電解質(zhì)溶液的規(guī)律,其相關(guān)的研究雖比較困難,但也得到人們的重視[9-14 ].這些研究主要集中在溶解度、溶液中各組分的活度、及相關(guān)熱力學(xué)模型等方面,而關(guān)于硅酸鈉溶液熱容的研究還未見文獻(xiàn)報(bào)道.
本文用C80微熱量計(jì)步進(jìn)升溫的方法測(cè)定了一系列不同模數(shù)及不同濃度的堿性硅酸鈉溶液(NaOH-Na2SiO3-H2O)在298 K~363 K范圍內(nèi)的恒壓熱容,并建立了該溶液體系恒壓熱容隨總濃度、模數(shù)及溫度變化的模型方程,可為相關(guān)工藝設(shè)計(jì)及優(yōu)化提供基礎(chǔ)數(shù)據(jù).
NaOH(s)(天津試劑三廠),偏硅酸鈉Na2SiO3·9H2O(s)(天津市光復(fù)精細(xì)化工研究所)均為優(yōu)級(jí)純?cè)噭甆aOH(aq)儲(chǔ)備液根據(jù)文獻(xiàn)[15]配制,其質(zhì)量分?jǐn)?shù)根據(jù)GB629-81(84)由標(biāo)準(zhǔn)鹽酸滴定,3次平行滴定的相對(duì)偏差小于0.1%,碳酸鈉的含量低于總堿度的0.1%.Na2SiO3(aq)儲(chǔ)備液濃度根據(jù)GB/T 4209-2008由標(biāo)準(zhǔn)鹽酸滴定,3次平行滴定的相對(duì)偏差小于0.3%.待測(cè)樣品溶液由已知濃度的Na2SiO3(aq)儲(chǔ)備液、NaOH (aq) 儲(chǔ)備液和高純水三者按確定的比例混合而成.實(shí)驗(yàn)用水皆為超純水系統(tǒng)Synergy UV純化所得的高純水(電導(dǎo)率小于1×10-4S/m).
熱容測(cè)定采用C80微量熱量計(jì)(Setaram,法國(guó)).該熱量計(jì)恒溫穩(wěn)定性為±0.001 K;分辨率為0.1 μW.測(cè)定前用焦耳校正法對(duì)儀器進(jìn)行校正.采用步進(jìn)升溫模式[16]測(cè)量樣品溶液的升溫焓變,每次升溫5 K,升溫速率0.25 K·min-1,基線維持1 h后繼續(xù)升溫.為避免強(qiáng)堿性待測(cè)溶液對(duì)樣品池的腐蝕,加入一個(gè)與池內(nèi)壁緊密貼在一起聚乙烯塑料內(nèi)襯保護(hù)管.測(cè)量過程中的參比池為空白,樣品池中裝入5~6 g的樣品溶液,壓強(qiáng)為大氣壓.
(1)
(2)
(3)
式中Ai(i=1,2,3,4)是方程的回歸系數(shù).則對(duì)式(3)求導(dǎo),即得到樣品的恒壓熱容方程;
(4)
表1 水的恒壓熱容實(shí)驗(yàn)值Cp和文獻(xiàn)
從表1的結(jié)果可見,測(cè)量結(jié)果與文獻(xiàn)值的相對(duì)偏差小于0.6%,表明本文所采用的實(shí)驗(yàn)方法及儀器可靠.
表2 樣品溶液的組成*(1 kg溶劑)
*根據(jù)簡(jiǎn)化的NaOH-Na2SiO3-H2O三元溶液體系確定的組成.
No.T/KΔTT0H2/(J·g-1)No.T/KΔTT0H2/(J·g-1)No.T/KΔTT0H2/(J·g-1)302.7018.790302.7518.111307.7517.433307.6637.685307.7136.266312.7135.079312.6156.593312.6654.482317.6652.807317.5675.564317.6372.853322.6170.632322.5494.724322.5991.254327.5788.568327.51113.921327.55109.710332.51106.4911332.46133.1134332.50128.1747337.46124.495337.39152.293337.47146.751342.42142.567342.33171.564342.40165.214347.37160.624347.28190.906347.37183.859352.32178.697352.24210.297352.32202.462357.28196.816357.22229.745357.30221.217362.24214.942362.19249.099362.25239.901302.7518.806302.7617.602302.7418.468307.7137.701307.7135.249307.737.087312.6756.647312.6753.110312.6655.852317.6375.648317.6471.136317.6374.771322.5894.667322.5989.175322.693.782327.53113.744327.55107.306327.55112.7892332.5132.9545332.51125.4728332.51131.888337.46152.182337.46143.627337.46150.991342.42171.463342.43161.882342.42170.167347.37190.756347.41180.213347.37189.332352.33210.132352.36198.495352.33208.563357.27229.470357.32216.908357.29227.826362.25248.997362.26235.384362.25247.126302.7518.149302.7520.352307.7719.521307.7136.250307.7139.695312.7339.227312.6654.412312.6759.138317.6859.005317.6272.692317.6478.708322.6478.908322.5791.002322.6198.350327.698.876327.53109.405327.57118.012332.55118.8513332.51127.9296332.52137.6839337.52138.940337.46146.381337.47157.393342.47158.971342.42164.908342.43177.173347.43179.059347.39183.509347.38196.936352.38199.122352.34202.073352.34216.757357.33219.200357.3220.719357.31236.630362.29239.341362.25239.378362.28256.512
注:1.T0=297.77 K,k=0.350 6,I=1.996 8 mol·kg-1;2.T0=297.79 K,k=0.093 4,I=2.009 1 mol·kg-1;3.T0=297.80 K,k=0.156 9,I=4.013 8 mol·kg-1;4.T0=297.78 K,k=0.079 01,I=3.962 7 mol·kg-1;5.T0=297.78 K,k=0.183 9,I=6.016 5 mol·kg-1;6.T0=297.72 K,k=0.178 3,I=1.239 3 mol·kg-1;7.T0=302.80 K,k=0.410 9,I=5.730 4 mol·kg-1;8.T0=297.78 K,k=0.420 0,I=2.364 3 mol·kg-1;9.T0=302.81 K,k=0.425 0,I=0.879 0 mol·kg-1.
表4 樣品溶液熱容方程(4)的系數(shù)
各樣品溶液的熱容隨溫度的變化關(guān)系如圖2所示.從圖2可見,各樣品溶液的熱容隨溫度的升高而增加,但部分樣品的熱容在較高溫度下有下降的趨勢(shì).
圖1 樣品溶液的關(guān)系
圖2 各樣品溶液的熱容曲線Fig.2 Curves of Cp~T
在確定溫度下(如308 K及358 K),堿性硅酸鈉溶液的恒壓熱容隨溶質(zhì)總質(zhì)量分?jǐn)?shù)(wT)的變化關(guān)系如圖3所示,其它溫度時(shí)的變化趨勢(shì)大致相同.
圖3 熱容與溶質(zhì)總量(wT)的關(guān)系 Fig.3 Relationship between heat capacities and mass fraction of the solutes
為了確定堿性硅酸鈉溶液的恒壓熱容與NaOH的質(zhì)量分?jǐn)?shù)(wa)、Na2SiO3的質(zhì)量分?jǐn)?shù)(wSi)、及溫度的定量關(guān)系,作者進(jìn)行了模型研究,即將各樣品溶液在不同溫度點(diǎn)的熱容值對(duì)相應(yīng)溶液的wa、wSi及溫度按不同的模型函數(shù)進(jìn)行回歸.計(jì)算發(fā)現(xiàn),以下模型方程能較好表達(dá)實(shí)驗(yàn)結(jié)果,
(5)
式中k0,ki和pj為相應(yīng)的回歸系數(shù),其結(jié)果列于表5.
表5 模型方程(5)的系數(shù)
式(5)的計(jì)算值(Cp,mod)與相應(yīng)條件下的測(cè)量值(Cp,exp)比較,其相對(duì)偏差都在1.5%以內(nèi),表明方程(5)能較好地表達(dá)堿性硅酸鈉溶液的恒壓熱容與NaOH的質(zhì)量分?jǐn)?shù)、Na2SiO3的質(zhì)量分?jǐn)?shù)及溫度的定量關(guān)系.
圖4 確定離子強(qiáng)度和模數(shù)時(shí)堿性硅酸鈉溶液的Cp~T曲線(k=0為NaOH溶液,其值取自文獻(xiàn)[18])Fig.4 Cp~T curves of sodium silicate solutions at determinated modules (when k=0, the solutions are NaOH(aq.), and the Cp is from Ref[18])
在確定的離子強(qiáng)度和模數(shù)時(shí),溶液的恒壓熱容隨溫度的變化關(guān)系如圖4所示,其中模數(shù)k=0所對(duì)應(yīng)的為NaOH溶液,其值取自文獻(xiàn)[18].從圖4中可見,確定溫度下堿性硅酸鈉溶液的恒壓熱容隨離子強(qiáng)度的增大而減??;離子強(qiáng)度相同時(shí),熱容隨模數(shù)的增加而減?。?/p>
實(shí)驗(yàn)測(cè)定了常壓及298~362 K溫度范圍內(nèi)不同濃度下的堿性硅酸鈉溶液(NaOH-Na2SiO3-H2O)的恒壓熱容,建立了堿性硅酸鈉溶液的恒壓熱容隨溫度及溶質(zhì)總量變化的模型方程. 溶液體系的恒壓熱容隨溶質(zhì)總量或離子強(qiáng)度的增大而減小,并呈負(fù)指數(shù)的關(guān)系;而在溫度及離子強(qiáng)度相同時(shí),溶液的模數(shù)越大,熱容越?。?/p>
參考文獻(xiàn):
[1] SWADDLE T W, SALERNO J, TREGLOAN P A. Aqueous aluminates, silicates, and aluminosilicates[J]. Chem Soc Rev, 1994,23(5):319-325.
[2] DING T P, ZHOU J X, WAN D F,etal. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon[J]. Geochimica et Cosmochimica Acta, 2008,72(5):1381-1395.
[3] LEE S K, STEBBINS J F. Effects of the degree of polymerization on the structure of sodium silicate and aluminosilicate glasses and melts: an17O NMR study[J]. Geochimica et Cosmochimica Acta, 2009,73(4):1109-1119.
[4] ROWLES M, O’CONNOR B. Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite[J]. J Mater Chem, 2003,13(5):1161-1165.
[5] CONRAD C F, ICOPINI G A, YASUHARA H,etal. Modeling the kinetics of silica nano-colloid formation and precipitation in geologically relevant aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2007,71(3):531-542.
[6] SODERHOLM L, SKANTHAKUMAR S, GORMAN-LEWIS D,etal. Characterizing solution and solid-phase amorphous uranyl silicates[J]. Geochimica et Cosmochimica Acta, 2008,72(1):140-150.
[7] SJ?BERG S, HAGGLUND Y, NORDIN A,etal. Equilibrium and structural studies of silicon(Ⅳ) and aluminium(Ⅲ) in aqueous solution. V. Acidity constants of silicic acid and the ionic product of water in the medium range 0.05-2.0 M NaCl at 25 ℃[J]. Marine Chem, 1983,13(1):35-44.
[8] BASS J L, TURNEr G L. Anion distributions in sodium silicate solutions. characterization by29Si NMR and infrared spectroscopies, and vapor phase osmometry[J]. J Phys Chem B, 1997,101(50):10638-10644.
[9] GASTEIGER H A, FREDERICK W J, STREISEL R C. Solubility of aluminosilicates in alkaline solutions and a thermodynamic equilibrium model[J]. Ind Eng Chem Res, 1992,31(4):1183-1190.
[10] PROVIS J L, DUXSON P, LUKEY G C,etal. Modeling speciation in highly concentrated alkaline silicate solutions[J]. Ind Eng Chem Res, 2005,44(23):8899-8908.
[11] PARK H, ENGLEZOS P. Osmotic coefficient data for Na2SiO3and Na2SiO3-NaOH by an isopiestic method and modeling using Pitzer’s model[J]. Fluid Phase Equilibria, 1998,153:87-104.
[12] AZAROUAL M, FOUILLAC C, MATRAY J M. Solubility of silica polymorphs in electrolyte solutions, I. Activity coefficient of aqueous silica from 25 ℃ to 250 ℃, Pitzer’s parameterization[J]. Chem Geol, 1997,140(3-4):155-165.
[13] FELMY A R, CHO H, RUSTAD J R,etal. An aqueous thermodynamics model for polymerized silica species to high ionic strength[J]. J Solut Chem, 2001,30(6):509-525.
[14] WEBER C F, RODNEY D H. Modeling alkaline silicate solution at 25 ℃[J]. Ind Eng Chem Res, 2003,42(26):6970-6976.
[15] ZHOU J, CHEN Q Y, ZHOU Y,etal. A new kind of isopiestic apparatus for the determination of osmotic coefficients[J]. J Chem Thermodyn, 2003,35(12):1939-1963.
[16] 宋 婷,劉士軍,肖劉萍,等. NaOH-NaAl(OH)4-H2O三元溶液體系的比定壓熱容[J].中國(guó)有色金屬學(xué)報(bào), 2012,22(10):2977-2984.
[17] WAGNER W, PRUSS A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. J Phys Chem Ref Data, 2002,31(2):387-535.
[18] SCHR?DLE S, K?NIGSBERGER E, MAY P,etal. Heat capacities of aqueous solutions of sodium hydroxide and water ionization up to 300 ℃ at 10 MPa[J]. Geochimica et Cosmochimica Acta, 2008,72(13):3124-3138.