程 毅, 華宏圖, 李秋月
(1. 吉林大學(xué) 數(shù)學(xué)研究所, 長(zhǎng)春 130012; 2. 空軍航空大學(xué) 基礎(chǔ)部, 長(zhǎng)春 130022)
微分包含是非線性分析理論的重要分支, 它與微分方程、 最優(yōu)控制及最優(yōu)化等問(wèn)題緊密相聯(lián). 對(duì)于微分包含的初值和周期問(wèn)題, 目前已有很多研究結(jié)果[1-6]. 但由于偏微分包含問(wèn)題較復(fù)雜, 因此研究結(jié)果相對(duì)較少. 文獻(xiàn)[7]討論了一類偏微分包含問(wèn)題: -Δu∈G(x,u), 利用集值的Kakutani不動(dòng)點(diǎn)定理, 證明了在凸情形下其邊值解的存在性. 進(jìn)一步, 本文考慮其端點(diǎn)解的存在性.
設(shè)RN是N維實(shí)的Euclid空間, ‖·‖,‖·‖X分別表示RN空間和Banach空間X空間的范數(shù).Pk(f)c(R)表示實(shí)數(shù)集 R的所有非空緊(閉)凸子集的全體.
設(shè)k為正整數(shù), 函數(shù)集合
Wk,p(Ω)={u:Dαu∈Lp(Ω), ?α≤k}
賦以范數(shù)
設(shè)Z是度量空間, 則在Pf(Z)上可以定義一個(gè)廣義度量, 即Hausdorff度量. 設(shè)C,E,∈Pf(Z), 定義C,E的Hausdorff度量如下:
若Z是完備的度量空間, 則(Pk(Z),h)也是完備的度量空間.
設(shè)Ω?RN的有界開(kāi)集其邊界光滑, 考慮如下邊值問(wèn)題:
(1)
這里extG(x,u,u)表示集值映射G:Ω×R→2R{?}的端點(diǎn)集. 設(shè)G滿足下列假設(shè)條件.
(H) 集值映射G:Ω×R→Pkc(R)使得:
1) (x,u)→G(x,u)是圖像可測(cè)的;
2) 對(duì)幾乎所有的x∈Ω, 都有u→G(x,u)是h-連續(xù)的;
證明: 設(shè)問(wèn)題(1)的解集為Se, 則由文獻(xiàn)[7]中解的先驗(yàn)估計(jì)知,
Se=sup{‖u‖W2:u∈Se}≤M.
[1] HU Shou-chuan, Papageorgiou N S. Handbook of Multivalued Analysis (Ⅰ): Theory [M]. Dordrecht: Kluwer Academic Publishers, 1997.
[2] XUE Xiao-ping, YU Jin-feng. Periodic Solutions for Semi-linear Evolution Inclusions [J]. J Math Anal Appl, 2007, 331(2): 1246-1262.
[3] XUE Xiao-ping, CHENG Yi. Existence of Periodic Solutions of Nonlinear Evolution Inclusions in Banach Spaces [J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 459-471.
[4] LI Guo-cheng, XUE Xiao-ping. On the Existence of Periodic Solutions for Differential Inclusions [J]. J Math Anal and Appl, 2002, 276: 168-183.
[5] Cernea A. Continuous Version of Filippov’s Theorem for Fractional Differential Inclusions [J]. Nonlinear Anal, 2010, 72: 204-208.
[6] Alberto Bressan, Giancarlo Facchi. Trajectories of Differential Inclusions with State Constraints [J]. J Differential Equations, 2011, 250: 2267-2281.
[7] CHENG Yi, CONG Fu-zhong. Existence of Solutions for a Class of Partial Differential Inclusions [J]. Journal of Jilin University: Science Edition, 2010, 48(6): 964-967. (程毅, 從福仲. 一類偏微分包含解的存在性 [J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2010, 48(6): 964-967.)
[8] Tolstonogov A A. Existence and Relaxation Theorems for Extreme Continuous Selectors of Multifunctions with Decomposable Values [J]. Topology and Its Applications, 2008, 155(8): 898-905.