• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the Loading Inherent Subspace Scaling Method on the Whipping Responses Test of a Surface Ship to Underwater Explosions

    2013-12-13 02:57:12LIUJianhuWUYoushengWANGHaikunPANJianqiang
    船舶力學(xué) 2013年3期

    LIU Jian-hu,WU You-sheng,WANG Hai-kun,PAN Jian-qiang

    (China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    It is well known that a nearby underwater explosion to a ship can cause the onboard equipments damage,hull rapture and whipping damage.Since 1950s,many naval architects had investigated the hull whipping effects of a ship induced by underwater explosion.Chertock[1]had set up a method for predicting the whipping responses of surface ship to underwater explosion based on mode superposition.Ma[2]had also used the similar method to investigate the whipping responses of a surface ship to underwater shockwave.Hicks[3]had developed Chertock’s method to use FEM modeling the ship structure.Li[4]had conducted an elastic scaled model of a surface ship to investigate the whipping responses to underwater explosion,and the experimental results are not suitable to convert directly to that of the prototype because the scale law are not clear.

    Because the dynamics of underwater explosion bubble is strongly related to the gravity but the shock wave is not,there are some difficulties to achieve a complete similarity both in structural dynamics and in that of underwater explosion loadings in scaled model test.Lua[5]had proposed a‘big cover’method for modeling the hydraulic pressure of the ship bottom and the detonation position.This method is not easy to execute in reality.Schmidt[6]had used a geotechnic centrifuge to amplify the gravity of the model and the surrounding water for a subscale model to underwater explosion.Normally,if the pressure of the detonating position of the charge is not simulated,the geometric scale method can still be used to conduct the experiment to investigate the shock environment and local hull damage due to underwater explosion shock wave,and it is not suitable for modeling the whipping responses,as it is strongly relevant to the bubble loads that are seriously affected by the initial pressure of the detonation position.

    The Froude scale method which is based on a dynamic similarity of the ratio between inertia and gravity force,is widely used in whipping model experiment caused by surface wave.In underwater explosion case,the shock wave energy must be balanced with the structural strain energy and the bubble dynamics must be balanced with the beamlike dynamic responses,and the Froude scale method can be used for whipping response modeling to underwater explosion with a scaled air pressure condition.Therefore,it is not easy to execute such an experiment for relative large model.In order to simulate the whipping responses of ship structure to underwater explosion in subscale,a scaled model test method has previously been proposed by Liu et al[7].This method does not like the geometric or Froude scale method that need to pressurize or decompress for free surface and have similar law in all mechanical space,and there is similarity between prototype and scaled model only in a load inherent subspace.This method is called Loading Inherent Subspace(LIS)scale method.The LIS scale method satisfies the subscale requirement by keeping the same ratios of the lower vibration mode periods to the pulsation periods of the bubble,and of the maximum radius to the detonation distance as the real ship situation to underwater explosion.And the method ignores the effects of the differences of the rising height of the bubble between scaled model test and the real ship situation.

    In this paper,the LIS scale method is applied to a surface ship-like model,and both the prototype and the subscale model to underwater explosion were experimented.The whipping responses are measured respectively and compared to each other.It was also found that the damping coefficient varies with the amplitude of the responses and has important effects to the maximum bending moments.

    2 Scale law and the experimental model

    2.1 Scale Law

    As usual for the low frequency modes of hull vibration,a simple beam model has been used to represent the elastic character of hull and the structure details of each section are not simulated.The mass distribution and the wet surface are simulated in scale method.If we design a model test with a scaled factor λl,we can get the relationship of the whipping response between the prototype ship and the model to underwater explosion from the LIS scale method.Results of main scale factors from the Ref.[7]are summarized in Tab.1.

    Tab.1 The summarized scale factors of model tests[7]

    In Tab.1,the index n is a key value in the LIS scale method,as n constrains the similar space and it can be expressed as follows:

    In above equation,d is the detonation depth of the charge.In usual condition,it can be seen that:0<n<1.This Loading Inherent Subspace(LIS)scaling method is different from the traditional existing scale methods.Every scale model has an unique scale index n that is relevant to the underwater explosion situation and it can only model some special load cases and not suitable for all cases.The geometric scale law requires n=0.The traditional whipping model test requires Froude numbers invariant and then n=1.In traditional scaling cases,the scaled model is only determined by the geometric scale factor λland is not inherent with the loadings of the prototype.

    2.2 Experimental models

    In order to validate the scale law,two models of ship whipping responses to underwater explosion are developed,where the big one acts as the prototype and the small one as the subscale model.Three-dimensional rendering of two models is shown in Fig.1.The main structure and half breadth plan of the prototype and the scale model are shown in Fig.2.It consists of 8 segments that are connected by 7 elastic cylinders.The 8 segments consist of the shiplike outlines and the main weight,and the 7 cylinders supply the bending stiffness of the beam that also act as the bending moment measuring meter by measuring the strain.There are 7 sealing rubber strips between segments.Ship lines of models are the same and satisfy geometry scale.

    The subscale model is designed to simulate the prototype with a scaled factor of 0.3 and a scaled index n=0.244 3,and both the main structure stiffness and the mass distribution are similar with those of the prototype,and their manufacture techniques are the same.The main parameters of the prototype and the subscale model are listed in Tab.2.The inertia moment and segments mass both of the prototype and the subscale model are listed in Tab.3.The first vibration mode frequency is almost similar to the prototype,and there are some bias between the required and the real frequency of the second and third mode.However,the critical damping ratios are difficult to keep the same even if the technique of making the model is the same.The critical damping ratio of the first vibration mode initially is 0.3%that is much lower than that of the prototype.After damping treatment,the relevant ratio becomes 3%that is near to the value of 1.5%of the prototype.

    Fig.1 Three-dimensional longitudinal cutaway view and fitting partial view of models

    Fig.2 Structure and half breadth plan both of prototype and model

    Tab.2 The key parameters of the prototype and the subscale model

    Fig.3 shows the first and second vibration mode shapes of the subscale model and the prototype,where curves obtained from vibration mode test are all normalized by the maximum to 1.Fig.4 shows the comparison of the normalized mode moment which was also obtained from vibration mode test between the model and the prototype.It can be seen that a good consistency is achieved on the mode parameters between the subscale model and the prototype,which is the base of getting good simulation results by scaled model test.Fig.5 shows the test scene of the prototype and 0.3 scale model to the underwater explosion,and it shows that the whipping responses had caused the water splashing in the aft and the stern.

    Cylinders No.proto Itny ep re t i a moment(m m 4o)d elSegments No.protot Sy ep ge ment mass(k m g)odel 1234567 3.25E-03 4.96E-03 6.65E-03 6.72E-03 5.80E-03 4.76E-03 3.12E-03 1.967E-05 2.975E-05 4.016E-05 4.078E-05 3.543E-05 2.885E-05 1.876E-05 12345678 4 296 3 527 3 685 4 507 3 742 3 061 2 732 4 394 155 102 99 116 97 86 83 168

    Fig.3 Comparison of test mode shapes between model and prototype

    Tab.3 Inertia moments and segment mass of the prototype and the subscale model

    Fig.4 Comparison of test mode moments of the model and the prototype

    Fig.5 Test scene of the prototype and model to underwater explosion in CSSRC

    3 Experimental results

    3.1 Experiment cases

    Experiment cases are designed in different keel shock factors SFkldefined by(1+sinα)W0.5/2R,different attack angles α,various frequency ratios of the first vibration mode to the first pulsation of the bubble ξ,and different positions in longitude.Cases are then all experimented not in the simulated subspace but near the boundary.All experimental cases are listed in Tab.4 in detail.The experiment scheme is shown in Fig.6.In all cases,the charge weights are scaled bythe distances from the detonation charge to the keel of the model are strictly scaled by λl,thus the keel shock factors are scaled byIn cases 10 and 11,the detonation position of the subscale model experiment is not within the similar subspace,just keeping the charge weight W,the ratios ξ of the frequencies and the keel shock factor SFklsatisfy the scaling law introduced in Tab.1.From case 12 to case 16,the SFklare close and the ξ values become large.Strains of each cylinder are measured by strain gauges which are affixed to upside and downside of the cylinder,which are converted to the bending moment and deflection by test calibration.The disposing diagram of strain is also shown in Fig.6.

    Tab.4 The experiment cases

    Fig.6 The schematic diagram of experiment case and strain gauges disposing

    3.2 Results of subscale model

    The deflection measure results at S4 position of subscale model in different cases with the same ξ=0.961 and different SFklare shown in Fig.7.The deflection is defined of vertical distance from any position of beam model to the straight line connected bow to stern.Fig.8 shows the responses are linearly increased by the keel shock factors,and the relation between maximal deflection ymaxand SFklis obtained:

    Fig.7 Comparisons of measure deflection in different cases

    Fig.8 The relation between maximal deflection and SFkl

    Fig.9 Comparisons of measure results in same SFkland different ξ

    The measured results of subscale model are shown in Fig.9 of different cases that are all normalized to SFkl=0.195 of different frequency ratio ξ.From Fig.9(a),in the first period of the bubble pulsation,t<T,two deflection curves are consistent well on the amplitude.In case of ξ=0.961,the maximal deflection is in the second period of the first vibration mode.However when ξ=1.04,the maximal deflection value is achieved half period of the first vibration mode later than in case of ξ=0.961.There is some phase difference between the two load cases.Even if the test model is the same,the responses by bubble are delayed by the bubble pulsations when ξ becomes greater.Fig.9(b)also shows the maximal response increases with ξ increasing when its value is less than 1.124,and the maximal response decreases when its value is more than 1.124,and the whipping response reaches the maximal value when ξ=1.124.

    Fig.10 shows the measured deflections at S2 position in different test cases that are in the same keel shock factor SFkl,ξ and γ.It shows the maximal response appears in the middle section when charge is located at L/2,while the maximal response appears in the L/4 or 3L/4 section when charge is located at L/4.It shows the component of 2nd mode whipping responses becomes larger when charge is at L/4,but the maximal responses with charge at L/2 are always about 2 times larger than charge at L/4 position.

    Fig.10 Comparisons of deflection with different charge longitudinal position

    Fig.11 shows the measured deflections at S4 strain gauge in different test cases that are just in the same keel shock factor SFkl=0.179 and ξ=0.961.The differences of the maximal whipping responses among each case are within 10%when both SFkland ξ are the same.

    Fig.11 Comparisons of the measured results in same SFkland same ξ

    Fig.12 Comparisons of the deflection response with different critical damping ratios

    It is found that the damping can seriously affect the maximal whipping responses.Fig.12 shows the comparison of the responses with different critical damping ratios.When the damp-ing ratio increases 10 times,the maximum responses will decrease about 20%.We also found that the damping varies with the amplitude of response.Fig.13 shows the damping ratio change along with time in case 7.The damping ratio decreases from 1.3%to 0.3%with the strain from 500 με to 50 με.The characteristics of damping may introduce difficulty to whipping response prediction and simulation.So it is worthy of further study.

    Fig.13 Curve of damping ratio changed along with strain response of subscale model

    3.3 Comparing with results of prototype

    Fig.14 to Fig.16 show the comparisons of moment measure results between prototype and 0.3 scale model.The test results of 0.3 scale model are converted by the scale law in Tab.1.It shows that the responses are consistent well between the prototype and the subscale model.

    Fig.14 Comparisons of moment measure curves in case 2 with η=3%subscale model

    Fig.15 Comparisons of moment measure curves in case 7 with η=0.3%subscale model

    Fig.16 Comparisons of moment measure curves in case 8 with η=0.3%subscale model

    Fig.17 shows the comparisons of test results between prototype and 0.3 subscale model in case 10 in which the detonation condition of subscale model is not in the similar subspace of LIS scale law,just keeping the charge weight W,the ratios of the frequencies ξ and the keel shock factor SFklsatisfy the scaling law.The comparisons results show that the simulation precise is still accepted.

    Fig.17 Comparisons of moment measure curves in case 10 with η=0.3%subscale model

    4 Conclusions

    Two model tests are executed by applying the LIS scaling method to investigate the whipping responses of a surface ship to underwater explosions.Some relations between the whipping responses and the explosion parameters are investigated.The predicted responses by subscale model test are compared with those of the prototype and a good consistence is achieved.And an upward displacement compensating method is proposed for decreasing the bias from the subscale model test.Some meaningful results are achieved as follows:

    (1)The most important parameters to the whipping responses are the keel shock factor and the ratio of the frequency of the first beam vibration mode to the first bubble pulsation,ξ.The maximum response was obtained with a similar keel shock factor when ξ=1.12.

    (2)The whipping response increases linearly with the SFkl.

    (3)Damping has obvious effects on the whipping responses.The critical damping ratios are relevant to the amplitude of the responses,and it decreases to the measurement value obtained from vibration test as the response decreases to small amplitude.

    (4)The LIS scaling method has a good precise in modeling the responses of surface ship to underwater explosion.

    Acknowledgements

    Authors would like to thank He Bin,Yang Yunchuan,Cai Rongkun,Chen Hui,Zhang Keming,Mao Haibin and all colleagues in the explosion and shock division of China Ship Scientific Research Center for their high quality work on designing models,executing underwater experiments and measuring the responses.We also thank Dr.Wang Weibo for his advices on the paper.

    [1]Chertock G.Transient flexural vibrations of ship-like structures exposed to underwater explosions[J].J Acoust.Soc.Am.,1970,48(1):170-180.

    [2]Ma J,Zhang Q.The estimation of dynamic bending moment for a ship subjected to underwater noncontact explosions[C]//Proc.Int.Symp.On Mine Warfare Vessels and Systems.Rina,London,1984.

    [3]Hicks A N.Explosion induced hull whipping[M].Advances in Marine Structures,edited by Smith C S,Clark J D,Elsevier Applied Science Publishers,1986:390-410.

    [4]Li Y J,Pan J Q,Li G H,Zhang X C.Experimental study of ship whipping by underwater explosive bubble[J].Journal of Ship Mechanics,2001,5(6):75-83.

    [5]Lua J,Godino V,Littlewood T,Miller R,Martini K.Dynamic response analysis of scaled steel hulls under direct shock wave and bubble loadings[C]//Proc.of 68th Shock&Vibration Symp.Hunt Valley,Maryland,1997:643-651.

    [6]Schmidt R M,Voss M E,Housen K R,Holsapple K A.Subscale experiments to measure shock and bubble loading on responding structures[M].ASME Publication PVP-Vol.272,Sloshing,Fluid-structure Interaction and Structural Response Due to Shock and Impact Loads,1994:175-182.

    [7]Liu J H,Wu Y S,Pan J Q,Wang H K.The scaling method for the whipping responses of a ship structure to underwater explosion[M]//Proceedings of Sixth International Conference of Navy and Shipbuilding Nowadays.St.Peterburg,Russia,June 30-July 1,2011,Section B-11,2011.

    [8]Cole R H.Underwater explosion[M].Princeton University Press,1948.

    亚洲片人在线观看| 久久久久国产精品人妻aⅴ院| 黄色成人免费大全| 国产免费av片在线观看野外av| a级毛片a级免费在线| 免费搜索国产男女视频| 两性夫妻黄色片| 少妇裸体淫交视频免费看高清| 国产一区二区在线av高清观看| 国产黄色小视频在线观看| 色精品久久人妻99蜜桃| 亚洲五月婷婷丁香| 99热6这里只有精品| 欧美另类亚洲清纯唯美| 99久国产av精品| 男人和女人高潮做爰伦理| 欧美色视频一区免费| 国产高清videossex| 精品久久久久久久人妻蜜臀av| 成人一区二区视频在线观看| 成在线人永久免费视频| 床上黄色一级片| 老汉色av国产亚洲站长工具| 亚洲国产欧洲综合997久久,| 91麻豆精品激情在线观看国产| 一区福利在线观看| 青草久久国产| 两人在一起打扑克的视频| 在线播放国产精品三级| 日韩欧美国产在线观看| 91老司机精品| 白带黄色成豆腐渣| 国产精品久久久久久久电影 | 精品午夜福利视频在线观看一区| 午夜精品一区二区三区免费看| 亚洲欧美日韩高清在线视频| 夜夜躁狠狠躁天天躁| 国产伦精品一区二区三区四那| 9191精品国产免费久久| 黑人操中国人逼视频| 国语自产精品视频在线第100页| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 免费看美女性在线毛片视频| 99久国产av精品| 不卡av一区二区三区| 色在线成人网| 夜夜爽天天搞| tocl精华| 女同久久另类99精品国产91| 亚洲中文字幕一区二区三区有码在线看 | 色吧在线观看| 18禁国产床啪视频网站| 露出奶头的视频| 久久香蕉国产精品| 欧美高清成人免费视频www| 高潮久久久久久久久久久不卡| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 国产1区2区3区精品| 亚洲午夜理论影院| 老熟妇乱子伦视频在线观看| 日本 av在线| 久久亚洲真实| 男女那种视频在线观看| 日韩欧美国产一区二区入口| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 国产黄片美女视频| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 日日夜夜操网爽| 久久久久久九九精品二区国产| 99在线人妻在线中文字幕| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添小说| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清| 中出人妻视频一区二区| 三级男女做爰猛烈吃奶摸视频| 久久99热这里只有精品18| 久久久久久久精品吃奶| 亚洲欧美日韩高清在线视频| 村上凉子中文字幕在线| 午夜福利在线观看吧| 伦理电影免费视频| 国产爱豆传媒在线观看| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 欧美日韩黄片免| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| 中文字幕高清在线视频| avwww免费| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 亚洲国产看品久久| 毛片女人毛片| 国产熟女xx| 亚洲国产精品999在线| av视频在线观看入口| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久久久99蜜臀| 在线观看免费午夜福利视频| 欧美日本视频| 国产蜜桃级精品一区二区三区| 成人无遮挡网站| 日本一本二区三区精品| 男女午夜视频在线观看| a级毛片在线看网站| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 不卡一级毛片| 少妇裸体淫交视频免费看高清| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 90打野战视频偷拍视频| 日本在线视频免费播放| 亚洲精品在线美女| 舔av片在线| 久久久国产成人精品二区| www日本在线高清视频| 国产精品久久久人人做人人爽| 久久性视频一级片| 成人精品一区二区免费| 国产精品香港三级国产av潘金莲| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 一级a爱片免费观看的视频| 嫩草影院入口| 亚洲中文日韩欧美视频| 日本 av在线| 欧美乱妇无乱码| 国产av麻豆久久久久久久| 国产av在哪里看| 色播亚洲综合网| 国产又黄又爽又无遮挡在线| www.自偷自拍.com| 岛国在线免费视频观看| 男女那种视频在线观看| 亚洲国产精品sss在线观看| 最近最新中文字幕大全免费视频| 久久久精品大字幕| 欧美av亚洲av综合av国产av| 久久九九热精品免费| 成人精品一区二区免费| 国产一区二区在线观看日韩 | 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放| 97碰自拍视频| 亚洲七黄色美女视频| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 国产黄色小视频在线观看| www.熟女人妻精品国产| 欧美+亚洲+日韩+国产| 一个人免费在线观看电影 | 国产高清视频在线观看网站| 嫩草影院入口| 国产 一区 欧美 日韩| 在线a可以看的网站| 国产一区在线观看成人免费| 国产精品,欧美在线| 毛片女人毛片| 黑人操中国人逼视频| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 少妇熟女aⅴ在线视频| 精品乱码久久久久久99久播| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 999精品在线视频| 少妇裸体淫交视频免费看高清| 午夜久久久久精精品| 午夜福利高清视频| 欧美zozozo另类| 中文字幕久久专区| 少妇丰满av| 久9热在线精品视频| 国产伦一二天堂av在线观看| 久久精品影院6| 亚洲精品456在线播放app | 久久这里只有精品19| 色老头精品视频在线观看| 亚洲18禁久久av| 两人在一起打扑克的视频| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 精品国产美女av久久久久小说| 国产成人av教育| 成人国产综合亚洲| 国产一区二区激情短视频| 午夜激情欧美在线| 国产成人精品久久二区二区免费| 国产三级中文精品| 国产精品九九99| tocl精华| 国产在线精品亚洲第一网站| 又黄又粗又硬又大视频| 人人妻,人人澡人人爽秒播| 亚洲,欧美精品.| 制服丝袜大香蕉在线| 熟女人妻精品中文字幕| 国产精品一区二区免费欧美| av福利片在线观看| 精华霜和精华液先用哪个| 亚洲av成人av| a在线观看视频网站| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 最新在线观看一区二区三区| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 手机成人av网站| 国产午夜精品久久久久久| 熟女少妇亚洲综合色aaa.| 久久久久久九九精品二区国产| 亚洲国产欧美一区二区综合| 老司机深夜福利视频在线观看| 一二三四社区在线视频社区8| 久久草成人影院| 精品国产亚洲在线| 色精品久久人妻99蜜桃| 久久久久国产精品人妻aⅴ院| АⅤ资源中文在线天堂| www.熟女人妻精品国产| 国产又色又爽无遮挡免费看| 欧美丝袜亚洲另类 | 国产成人aa在线观看| 亚洲色图av天堂| 噜噜噜噜噜久久久久久91| 国产 一区 欧美 日韩| 国产成人系列免费观看| 很黄的视频免费| 亚洲人成网站在线播放欧美日韩| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 一边摸一边抽搐一进一小说| www日本在线高清视频| 色综合站精品国产| 久久久精品大字幕| 美女黄网站色视频| 亚洲国产中文字幕在线视频| 国产三级在线视频| 可以在线观看的亚洲视频| 精品不卡国产一区二区三区| 国产成人精品无人区| 成人欧美大片| 亚洲av成人av| 91老司机精品| 国产91精品成人一区二区三区| 免费看日本二区| 大型黄色视频在线免费观看| a在线观看视频网站| 亚洲最大成人中文| 日韩欧美免费精品| 亚洲成av人片在线播放无| 久久久久久久久久黄片| 在线播放国产精品三级| 精品国产三级普通话版| 色av中文字幕| 巨乳人妻的诱惑在线观看| 亚洲成人久久爱视频| 九九在线视频观看精品| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 麻豆国产97在线/欧美| 中文在线观看免费www的网站| 此物有八面人人有两片| 国产高清有码在线观看视频| 午夜影院日韩av| 久久久久久久久久黄片| 成人无遮挡网站| 日本在线视频免费播放| 国产精品久久久久久久电影 | 97人妻精品一区二区三区麻豆| 一个人免费在线观看电影 | 美女午夜性视频免费| 成人午夜高清在线视频| 成熟少妇高潮喷水视频| 欧美精品啪啪一区二区三区| 一区福利在线观看| 一边摸一边抽搐一进一小说| 99久久成人亚洲精品观看| 女同久久另类99精品国产91| 亚洲av美国av| aaaaa片日本免费| 老熟妇乱子伦视频在线观看| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 国产精品日韩av在线免费观看| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区91| 久久久久久久久中文| 免费高清视频大片| 啦啦啦观看免费观看视频高清| 国产精品久久久人人做人人爽| 成熟少妇高潮喷水视频| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 久久亚洲精品不卡| 日本三级黄在线观看| 国产真人三级小视频在线观看| 久久久久性生活片| 国产精品影院久久| 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 精品欧美国产一区二区三| 黑人巨大精品欧美一区二区mp4| 亚洲黑人精品在线| 亚洲av五月六月丁香网| 亚洲欧美日韩卡通动漫| 手机成人av网站| 日日干狠狠操夜夜爽| 国产成+人综合+亚洲专区| 色综合站精品国产| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 国产精品九九99| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久| 久久久久久久久免费视频了| 亚洲国产欧洲综合997久久,| 久久热在线av| 国产私拍福利视频在线观看| 国产成人啪精品午夜网站| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 一进一出抽搐gif免费好疼| 亚洲黑人精品在线| 国产黄色小视频在线观看| 亚洲精品久久国产高清桃花| 久久久久精品国产欧美久久久| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放| 两个人看的免费小视频| 免费看a级黄色片| 日本 欧美在线| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9 | 床上黄色一级片| 亚洲欧美精品综合久久99| 国产99白浆流出| 黄色视频,在线免费观看| 真实男女啪啪啪动态图| 人人妻,人人澡人人爽秒播| 成人无遮挡网站| 国产亚洲精品一区二区www| 国产精品一及| 亚洲精品456在线播放app | 久9热在线精品视频| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 欧美三级亚洲精品| 别揉我奶头~嗯~啊~动态视频| 每晚都被弄得嗷嗷叫到高潮| 成人av在线播放网站| 欧美一区二区精品小视频在线| 真人一进一出gif抽搐免费| 不卡一级毛片| 一进一出抽搐动态| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产 | 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| www.熟女人妻精品国产| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 成人特级av手机在线观看| 99久久精品一区二区三区| 色综合站精品国产| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影 | 一本一本综合久久| 午夜福利高清视频| 夜夜夜夜夜久久久久| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 黄色女人牲交| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 亚洲av片天天在线观看| 日本a在线网址| 欧美精品啪啪一区二区三区| 国模一区二区三区四区视频 | 欧美色欧美亚洲另类二区| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 久久中文看片网| 国产高清三级在线| 国产精品免费一区二区三区在线| 欧美丝袜亚洲另类 | 久久久久久久久久黄片| 99久久综合精品五月天人人| 亚洲 国产 在线| 亚洲精品久久国产高清桃花| 在线十欧美十亚洲十日本专区| 久久久国产精品麻豆| 天堂网av新在线| 美女黄网站色视频| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 亚洲一区高清亚洲精品| 男人舔奶头视频| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久久电影 | 最近在线观看免费完整版| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 国产精品亚洲美女久久久| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 国产成年人精品一区二区| 亚洲第一电影网av| 欧美av亚洲av综合av国产av| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 91在线精品国自产拍蜜月 | 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲欧美在线一区二区| 亚洲在线观看片| 色综合亚洲欧美另类图片| 国产69精品久久久久777片 | 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 亚洲五月天丁香| 成人高潮视频无遮挡免费网站| 90打野战视频偷拍视频| 一级毛片女人18水好多| 宅男免费午夜| 亚洲av电影不卡..在线观看| 亚洲真实伦在线观看| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看 | 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 国模一区二区三区四区视频 | 亚洲av第一区精品v没综合| 黑人操中国人逼视频| 美女免费视频网站| 99久久国产精品久久久| 精品国产超薄肉色丝袜足j| 亚洲中文日韩欧美视频| 国产精品av视频在线免费观看| 国产单亲对白刺激| 婷婷精品国产亚洲av在线| 欧美日韩一级在线毛片| 中文亚洲av片在线观看爽| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| 天天添夜夜摸| 小蜜桃在线观看免费完整版高清| 亚洲av成人av| 精品一区二区三区av网在线观看| 精品国产美女av久久久久小说| 法律面前人人平等表现在哪些方面| 亚洲国产看品久久| 91老司机精品| 香蕉丝袜av| 黄色日韩在线| 亚洲人成电影免费在线| 亚洲自拍偷在线| 欧美中文综合在线视频| 变态另类丝袜制服| 国产精品乱码一区二三区的特点| www.www免费av| 一进一出抽搐gif免费好疼| 欧美黄色淫秽网站| 色吧在线观看| 久久精品国产综合久久久| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 狂野欧美激情性xxxx| 国产私拍福利视频在线观看| 亚洲av片天天在线观看| 精品久久久久久久末码| 日本免费一区二区三区高清不卡| 久久久久国产一级毛片高清牌| 美女黄网站色视频| 中文资源天堂在线| 嫩草影院入口| 成人国产一区最新在线观看| 国产成人啪精品午夜网站| АⅤ资源中文在线天堂| 看黄色毛片网站| 亚洲狠狠婷婷综合久久图片| 久久久久久久久中文| 无限看片的www在线观看| 香蕉av资源在线| 欧美国产日韩亚洲一区| 亚洲片人在线观看| 欧美极品一区二区三区四区| 亚洲国产看品久久| 熟女少妇亚洲综合色aaa.| 男人舔女人下体高潮全视频| 美女扒开内裤让男人捅视频| 男女下面进入的视频免费午夜| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 亚洲av电影不卡..在线观看| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 草草在线视频免费看| 欧美国产日韩亚洲一区| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 97超视频在线观看视频| 久久久精品大字幕| 国产av不卡久久| 丁香六月欧美| 两个人视频免费观看高清| 国内精品美女久久久久久| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 国产伦在线观看视频一区| 亚洲五月婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 亚洲中文av在线| 婷婷精品国产亚洲av| 在线免费观看不下载黄p国产 | 亚洲人成伊人成综合网2020| 国产精品一及| 欧美乱色亚洲激情| 亚洲欧美日韩高清专用| 午夜福利欧美成人| 国产激情偷乱视频一区二区| 色精品久久人妻99蜜桃| av中文乱码字幕在线| 最新美女视频免费是黄的| 偷拍熟女少妇极品色| 精品一区二区三区视频在线观看免费| 老司机午夜福利在线观看视频| 免费高清视频大片| 亚洲av五月六月丁香网| 久久这里只有精品19| 久久精品国产清高在天天线| 国产精品99久久久久久久久| 青草久久国产| 国产一区二区在线观看日韩 | 欧美不卡视频在线免费观看| 99久久国产精品久久久| 午夜免费观看网址| 欧美绝顶高潮抽搐喷水| 午夜精品久久久久久毛片777| avwww免费| 色综合婷婷激情| 高清毛片免费观看视频网站| 亚洲自拍偷在线| 免费观看精品视频网站| 久久亚洲真实| 午夜免费成人在线视频| 亚洲av成人精品一区久久| 亚洲精品中文字幕一二三四区| 老熟妇仑乱视频hdxx| 亚洲第一电影网av| 免费大片18禁| 麻豆久久精品国产亚洲av| www.精华液| 听说在线观看完整版免费高清| 国产午夜福利久久久久久| 人妻久久中文字幕网| 欧美性猛交黑人性爽| 国产亚洲av高清不卡| 久久精品国产99精品国产亚洲性色| 99在线人妻在线中文字幕| 黄色成人免费大全| 亚洲一区高清亚洲精品| 变态另类丝袜制服| 一级黄色大片毛片| www国产在线视频色| 亚洲国产欧美人成| 九九在线视频观看精品| 91麻豆av在线| 综合色av麻豆| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久人人人人人| 久久伊人香网站| 香蕉丝袜av| 久久久久久九九精品二区国产| 黄色丝袜av网址大全| 男女之事视频高清在线观看| 91字幕亚洲| 黑人欧美特级aaaaaa片| 国产精品久久久久久人妻精品电影| 又粗又爽又猛毛片免费看| 国产高清三级在线| 国产精品久久久久久人妻精品电影| 女人高潮潮喷娇喘18禁视频| 日韩大尺度精品在线看网址| 国产精品久久视频播放| 国产精品久久久av美女十八| 真人做人爱边吃奶动态| 久久性视频一级片| 亚洲片人在线观看| 成人永久免费在线观看视频|