肖何 牛曉輝
腫瘤型人工關(guān)節(jié)假體無菌性松動率及相關(guān)因素
肖何 牛曉輝
腫瘤型人工關(guān)節(jié)假體的首例應(yīng)用是 1940 年 Moore等[1]為 1 例骨巨細胞瘤患者植入的股骨上端金屬假體。直到植入后 2 年患者因心力衰竭死亡,該假體一直未發(fā)生無菌性松動。由于術(shù)后復(fù)發(fā)率高,原發(fā)惡性骨腫瘤的保肢治療在當(dāng)時并未被廣泛接受[2],腫瘤型人工關(guān)節(jié)假體也較少。20 世紀下半葉,放化療的進步為原發(fā)骨肉瘤及轉(zhuǎn)移瘤的保肢治療創(chuàng)造了條件[3-5]。腫瘤型人工關(guān)節(jié)假體的應(yīng)用才逐漸廣泛。
與截肢相比,人工假體置換能提供更好的肢體功能[6-7],歷史上曾出現(xiàn)過的其它重建材料,主要是同種異體骨和異體骨-假體復(fù)合物( APC )。異體骨的感染風(fēng)險較高[6,8-9]。APC容易發(fā)生骨折,并且難以和宿主骨形成骨性結(jié)合[6,10-13]。目前腫瘤型人工關(guān)節(jié)假體是重建材料的主流。
Wirganowicz 等[14]和 Henderson 等[15]將腫瘤型人工關(guān)節(jié)假體失敗分為軟組織失敗,無菌性松動,假體結(jié)構(gòu)失敗,感染,腫瘤進展等 5 個類型。文獻報道認為無菌性松動是下肢腫瘤型關(guān)節(jié)假體失敗最主要的原因[16-17],是機械性失敗中最常見的類型[18],以及最常見的長期并發(fā)癥[19]。鑒于其重要地位,腫瘤型人工關(guān)節(jié)假體的無菌松動率及其影響因素頗有研究價值?,F(xiàn)回顧既往文獻,對腫瘤型人工關(guān)節(jié)假體的無菌性松動率以及各方面因素對無菌松動率的影響作一綜述。
人體的生物力學(xué)特點決定了不同部位假體的固定界面應(yīng)力不同,骨髓腔的形態(tài)以及小梁骨的骨量也有所差異,這會影響假體的穩(wěn)固程度[16]。
Unwin 等[16]對 1001 例定制式固定鉸鏈水泥固定假體下肢關(guān)節(jié)置換進行的長期隨訪發(fā)現(xiàn)植入后 10 年的無菌松動率分別為股骨近端 6.2%,股骨遠端 32.6%,脛骨近端42%,股骨近端的松動率顯著低于其它兩個部位。Mittermayer 等[20]對 251 例非水泥固定的旋轉(zhuǎn)鉸鏈關(guān)節(jié)置換的研究也得出了類似結(jié)論;植入后 10 年的無菌松動率在股骨近端為 4%,股骨遠端為 24%,脛骨近端為 15%。脛骨近端的假體松動率最高,其次是股骨遠端和股骨近端,差異有統(tǒng)計學(xué)意義。
Henderson 等[17]對 2174 例的研究顯示,上肢腫瘤型關(guān)節(jié)假體的無菌松動率低于下肢,但差異無統(tǒng)計學(xué)意義,對 4359 例研究顯示,各部位假體的總體松動率為 10%,肱骨近端為 6.8%,肱骨遠端為 5.7%,股骨近端為 5.3%,股骨遠端為 11.5%,脛骨近端為 8.8%[17]。目前尚無證據(jù)提示上下肢假體松動率差異有統(tǒng)計學(xué)意義。
綜上所述,植入部位是無菌性松動較為確定的相關(guān)因素。研究顯示股骨近端的松動率顯著低于股骨遠端和脛骨近端。上下肢之間以及上肢不同部位之間松動率的差異還有待明確。
一、假體柄與松動的關(guān)系
1. 假體柄直徑與松動率的關(guān)系:有學(xué)者認為傳統(tǒng)骨水泥固定技術(shù)中假體并周圍水泥較厚,會增加松動風(fēng)險,而充分擴髓并使用直徑較大的假體柄能實現(xiàn)不依賴于骨水泥的三點固定,保護水泥-假體柄界面,降低松動率[21]。
Bergin 等[21]對 91 例股骨遠端水泥固定假體平均時間12.7 年的隨訪發(fā)現(xiàn)未發(fā)生松動的假體柄直徑比發(fā)生松動的假體柄直徑大 35%,假體柄 / 股骨干的直徑比與無菌性松動的獨立危險因素大。
目前假體柄直徑與松動率的相關(guān)性僅在水泥固定假體中有小樣本的報道,在非水泥固定腫瘤型假體中尚無報道。假體柄直徑與松動率的關(guān)系還需要更有說服力的證據(jù)。
2. 水泥 / 非水泥固定與松動率的關(guān)系:首例腫瘤型關(guān)節(jié)假體是通過皮質(zhì)外螺栓固定[1],關(guān)節(jié)假體的骨水泥固定在 1953 年由 Harboush[22]首次應(yīng)用,1960 年由 Charnley[23]推廣。為解決水泥固定松動率高的問題,20 世紀 80 年代出現(xiàn)了不依賴骨水泥的生物固定技術(shù)。目前關(guān)節(jié)假體的固定方式主要分為水泥固定( CIS )和生物固定( UCS )兩大類。
既往文獻中生物固定的松動率為 0%~27%[24-30],水泥固定的松動率為 2%~34%[16,31-32],生物固定松動率似乎較低。目前比較二種固定方式松動率的研究尚少,Giltelis等[33]對 80 例脛骨近端和股骨遠端腫瘤型關(guān)節(jié)置換進行平均 5.3 年的隨訪顯示,生物固定與水泥固定無菌松動率無顯著差異。
總之,大量數(shù)據(jù)顯示生物固定松動率似乎低于水泥固定,但目前尚無明確證據(jù)提示兩者松動率差異有無統(tǒng)計學(xué)意義。此兩種固定方式對假體松動率的影響還有待進一步研究。
3. 加壓固定與松動率的關(guān)系:傳統(tǒng)的壓配式生物固定容易造成應(yīng)力遮擋,導(dǎo)致的假體柄周圍骨量丟失,這可能增加無菌性松動的風(fēng)險,而避免應(yīng)力遮擋也許能減少無菌性松動[6]。根據(jù)這一設(shè)想,20 世紀 90 年代初出現(xiàn)了以Compress 假體為代表的加壓生物固定技術(shù)。該假體通過固定于髓腔內(nèi)的加壓裝置向植入的骨端施加軸向壓力,以此避免應(yīng)力遮擋,同時封閉髓腔以避免磨損微粒進入[34,28]。體外模型研究證實了加壓固定能避免應(yīng)力遮擋[35],影像學(xué)觀察[36]以及假體固定界面組織學(xué)研究[37-38]也證實了加壓固定能促進假體周圍的骨增生。
Healey 等[39]對 82 例進行平均 43 個月的隨訪顯示,Compress 假體植入后 10 年的無菌松動率為 10%。Farfalli等[28]的研究,顯示軸向加壓的大小未對無菌性松動率造成影響。
文獻報道,加壓固定和水泥固定的膝關(guān)節(jié)假體在平均約 2 年的隨訪中松動率均為 0%,5 年松動率分別為 4.3%( 加壓固定組 )和 8.7%( 水泥固定組 ),差異無統(tǒng)計學(xué)意義[40-41]。但該研究未排除關(guān)節(jié)類型的影響,其結(jié)論說服力有限。與壓配固定的比較方面,F(xiàn)arfalli 等[28]對同一種關(guān)節(jié)結(jié)構(gòu),單純壓配固定和 Compress 假體共 91 例進行了平均分別為 88 個月和 45 個月的隨訪,因無菌松動須翻修的病例在壓配組為 12 例( 24% ),而 Compress 組為 0 例( 0% )。筆者對該報道原始數(shù)據(jù)行卡方分析顯示,兩組松動率差異有統(tǒng)計學(xué)意義( P<0.01 ),Compress 假體松動率低于單純壓配式假體。
綜上所述,加壓生物固定假體的短期和長期松動率均較低( 0%~10% ),小樣本研究提示其短、中期松動率較傳統(tǒng)壓配固定低。準確評價加壓固定對假體松動的影響還需要大樣本量、長隨訪時間的研究。
4. 假體涂層與松動率的關(guān)系:假體柄表面覆蓋在假體與骨的接觸面覆蓋羥基磷灰石( HA )或雙相磷酸三鈣( HA / TCP )涂層的目的為促進假體柄與內(nèi)側(cè)皮質(zhì)的骨整合,增加假體的長期軸向和旋轉(zhuǎn)穩(wěn)定性[3];阻擋磨損微粒的進入;借助粗糙的表面增加即時穩(wěn)定性[28]。目前尚無無涂層假體柄與涂層假體柄無菌松動率差異的報道。
假體領(lǐng)部覆蓋涂層的目的是使骨生長從骨皮質(zhì)外跨越骨與假體的連接部,形成皮質(zhì)外骨橋。皮質(zhì)外骨橋理論上能加強假體固定,改善應(yīng)力傳導(dǎo),并且封閉假體與骨的接觸面以避免磨損微粒進入骨-水泥界面[42]。Myers 等對 173 例股骨遠端旋轉(zhuǎn)鉸鏈式假體的研究顯示,有領(lǐng)口涂層的假體 10 年松動率( 0% )顯著低于無領(lǐng)口涂層的假體( 24% )[31]。Myers 等還報道 99 例有涂層的脛骨近端假體 10 年和 15 年的松動率僅為 3% 和 9%[32]。Shin 等[42]對31 例有領(lǐng)部多孔涂層的假體進行了平均 12.5 年的長期隨訪研究顯示,松動率為 19%。
綜上所述,假體柄涂層對松動率的影響還有待進一步研究,假體領(lǐng)部涂層能有效降低假體松動率。
二、關(guān)節(jié)類型與松動率的關(guān)系
由于術(shù)中通常無法保留膝關(guān)節(jié)周圍韌帶,所以腫瘤型膝關(guān)節(jié)假體主要是鉸鏈關(guān)節(jié)。早期的腫瘤型膝關(guān)節(jié)假體是單純鉸鏈式的,只允許屈伸運動。20 世紀 80 年代中期出現(xiàn)了旋轉(zhuǎn)鉸鏈關(guān)節(jié),通過減少傳遞到股骨柄上的扭旋應(yīng)力降低了松動率。
Henderson 等[17]對 2174 例腫瘤型假體植入患者的多中心研究顯示,單軸膝關(guān)節(jié)的松動率( 6.1% )顯著低于多軸膝關(guān)節(jié)( 2.7% )。Myers 等[31]報道,股骨遠端無領(lǐng)部涂層的固定鉸鏈關(guān)節(jié)和旋轉(zhuǎn)鉸鏈關(guān)節(jié)植入 10 年后的無菌松動率分別為 35% 和 24%,領(lǐng)部有羥基磷灰石涂層的旋轉(zhuǎn)鉸鏈關(guān)節(jié)為 0%。有領(lǐng)部涂層的旋轉(zhuǎn)鉸鏈關(guān)節(jié)松動率顯著低于另外兩種關(guān)節(jié)。而脛骨近端腫瘤切除的患者中,無領(lǐng)部涂層的固定鉸鏈關(guān)節(jié)和帶有領(lǐng)部涂層旋轉(zhuǎn)鉸鏈關(guān)節(jié)植入10 年后的無菌松動率分別為 46% 和 3%,旋轉(zhuǎn)鉸鏈假體松動率顯著低于固定鉸鏈假體[32]。
綜上所述,有力的證據(jù)表明旋轉(zhuǎn)鉸鏈式膝關(guān)節(jié)假體的無菌松動率低于固定鉸鏈式膝關(guān)節(jié)假體。關(guān)節(jié)類型的改進降低了假體的無菌松動率。
三、組配式 / 定制式結(jié)構(gòu)和松動率的關(guān)系
早期的腫瘤型假體是根據(jù)患者的影像學(xué)檢查在術(shù)前個體化制造,稱為定制式假體。術(shù)前等待假體完工的過程中腫瘤的生長往往會迫使手術(shù)計劃改變,并且術(shù)前測量的誤差不可避免,這兩方面的因素造成了定制式假體與術(shù)中實際條件不匹配的問題。20 世紀 80 年代中期出現(xiàn)了組配式假體,此類假體按照不同尺寸標準化制造,可根據(jù)術(shù)中情況現(xiàn)場裝配。憑借其即時可用性及靈活性,組配式假體目前已成為腫瘤型關(guān)節(jié)假體的主流[43],定制式假體只在假體柄直徑特殊及其它特殊情況下使用[44]。
有學(xué)者對多種關(guān)節(jié)的定制版本和組配版本共 186 例進行了平均 96 個月的隨訪,101 例定制式假體中有 19 例( 18.8% )發(fā)生無菌性松動,而 85 例組配式假體中僅有3 例( 3.5% )發(fā)生無菌性松動[43]。筆者對該研究的原始數(shù)據(jù)行卡方分析示,兩組松動率差異有統(tǒng)計學(xué)意義( P<0.01 ),組配式假體的松動率低于定制式假體。
綜上所述,關(guān)于組配式與定制式假體的無菌松動率的差異報道較少。但有限的文獻也顯示組配式假體的松動率低于定制式假體。
眾多文獻報道了手術(shù)時的年齡與無菌松動的相關(guān)性。Unwin 等對 1001 例水泥固定的固定鉸鏈膝關(guān)節(jié)和股骨上端假體的研究發(fā)現(xiàn),手術(shù)時年齡>20 歲者比<20 歲者的無菌松動率低[16]。Myers 等[31-32]對固定鉸鏈膝關(guān)節(jié)假體的研究也提示,手術(shù)時年齡>60 歲患者的松動率顯著低于<60 歲的患者。Mittermayer 等[20]對 250 例非水泥固定組配式假體的研究也顯示,手術(shù)時年齡>30 歲患者的術(shù)后10 年松動率比<30 歲的患者顯著低。但是,也有少數(shù)研究否認年齡與松動率的相關(guān)性[45,21]。既往研究多顯示性別和松動率相關(guān)[16,31,20],尚無證據(jù)提示兩者的相關(guān)性。
總之,目前多數(shù)研究認為:腫瘤型關(guān)節(jié)假體的無菌松動率年長患者低于年輕患者,并且與性別不相關(guān)。
腫瘤病灶的大小、關(guān)節(jié)假體與術(shù)中所見情況的匹配程度、術(shù)者技術(shù)水平等因素決定了腫瘤型關(guān)節(jié)假體置換術(shù)中重建的長度。而植入部位的力線偏距,髓腔形態(tài),骨質(zhì)條件等都會受隨重建長度的影響,進而影響假體的穩(wěn)定程度[16]。
一些研究發(fā)現(xiàn)重建長度占骨骼原本長度的百分比和無菌性松動有相關(guān)性,Unwin 等[16]對 1001 例水泥固定的下肢腫瘤型關(guān)節(jié)假體置換的研究表明,在脛骨近端和股骨遠端,重建長度百分比越大,無菌性松動率越高,有統(tǒng)計學(xué)意義。而在股骨近端這一規(guī)律剛好相反,但無統(tǒng)計學(xué)意義。然而,Kawai 等[45]對水泥和壓配固定假體的研究以及Bergin 等[21]對水泥固定假體的研究提示,重建長度與松動率不相關(guān),但這些研究的樣本都<100 例,說服力相對較弱。
總之,對于水泥固定的腫瘤型人工關(guān)節(jié)假體,重建長度是其無菌松動率的相關(guān)因素,兩者的關(guān)系在不同的解剖部位各不相同。重建長度與非水泥固定松動率的相關(guān)性需要進一步研究。
目前,多數(shù)文獻均提示,病種與腫瘤型關(guān)節(jié)假體的松動率不相關(guān)[21,31,43]。長期以來化療都被懷疑對骨骼有不良作用,包括抑制新骨形成并導(dǎo)致骨量減少,減慢兒童骨生長,增加骨腫瘤患者異體骨重建不愈合的風(fēng)險[46-53]等。Avedian 等[36]對加壓固定腫瘤型假體植入患者的前瞻性研究顯示,化療會抑制骨-假體界面的骨質(zhì)增生。但是,目前尚無研究提示化療會影響假體的無菌性松動率。Kawai等[45]對 82 例腫瘤型關(guān)節(jié)假體置換患者的中長期隨訪顯示,化療與無菌性松動無相關(guān)性。其它研究也未發(fā)現(xiàn)化療與松動率相關(guān)[21]。
值得注意的是,化療的使用決定于病種、腫瘤分期等因素,并且化療會影響患者的營養(yǎng)狀況,而有證據(jù)表明營養(yǎng)不良不利于假體的骨整合[53]。由于混雜因素眾多,評價化療與松動關(guān)系還需要更多更深入的多因素分析研究。
總之,腫瘤型關(guān)節(jié)假體的無菌性松動受到諸多因素的影響。目前較明確的相關(guān)因素包括植入部位,假體領(lǐng)部涂層,關(guān)節(jié)類型,年齡、骨切除長度等。而患者性別和病種比較明確,與無菌性松動不相關(guān)。假體髓內(nèi)柄尺寸、固定方式、組配式 / 定制式、化療等因素與松動率的相關(guān)性尚無明確結(jié)論。腫瘤型關(guān)節(jié)假體的改進降低了無菌性松動率,關(guān)注腫瘤型關(guān)節(jié)假體的無菌性松動率能為假體的設(shè)計和使用提供參考。更長時間大樣本的隨訪,前瞻性研究,多因素分析以及多中心的病例回顧將會為腫瘤型人工關(guān)節(jié)假體的無菌性松動提供更準確客觀的結(jié)論。
[1] Austin T. Moore, Harold R. Bohlman. Metal hip joint: a case report. J Bone Joint Surg (Am), 1943, 25(3):688-692.
[2] Gilbert HA, Kagan AR, Winkley J. Soft tissue sarcomas of the extremities: their natural history, treatment, and radiation sensitivity. J Surg Oncol, 1975, 7(4):303-317.
[3] Palumbo BT, Henderson ER, Groundland JS, et al. Advances in segmental endoprosthetic reconstruction for extremity tumors: a review of contemporary designs and techniques. Cancer Control, 2011, 18(3):160-170.
[4] Marcove RC, Lewis MM, Rosen G, et al. Total femur and total knee replacement: a preliminary report. Clin Orthop Relat Res, 1977, 126:147-152.
[5] Marcove RC, Rosen G. En bloc resections for osteogenic sarcoma. Cancer, 1980, 45:3040-3044.
[6] Calvert GT, Cummings JE, Bowles AJ, et al. A dual-center review of compressive osseointegration for fxation of massive endoprosthetics: 2- to 9-year followup. Clin Orthop Relat Res, 2014, 472(3):822-829.
[7] Rougraff BT, Simon MA, Kneisl JS, et al. Limb salvage compared with amputation for osteosarcoma of the distal end of the femur: a long-term oncological, functional, and qualityof-life study. J Bone Joint Surg (Am), 1994, 76(5):649-656.
[8] Muscolo DL, Ayerza MA, Farfalli G, et al. Proximal tibia osteoarticular allografts in tumor limb salvage surgery. Clin Orthop Relat Res, 2010, 468:1396-1404.
[9] Ogilvie CM, Crawford EA, Hosalkar HS, et al. Long-term results for limb salvage with osteoarticular allograft reconstruction. Clin Orthop Relat Res, 2009, 467:2685-2690.
[10] Donati D, Colangeli M, Colangeli S, et al. Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clin Orthop Relat Res, 2008, 466:459-465.
[11] Farid Y, Lin PP, Lewis VO, et al. Endoprosthetic and allograftprosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin Orthop Relat Res, 2006, 442:223-229.
[12] Gilbert NF, Yasko AW, Oates SD, et al. Allograft-prosthetic composite reconstruction of the proximal part of the tibia: an analysis of the early results. J Bone Joint Surg (Am), 2009, 91(7):1646-1656.
[13] Zehr RJ, Enneking WF, Scarborough MT. Allograft-prosthesis composite versus megaprosthesis in proximal femoral reconstruction. Clin Orthop Relat Res, 1996, 312:207-223.
[14] Wirganowicz PZ, Eckardt JJ, Dorey FJ, et al. Etiology and results of tumor endoprosthesis revision surgery in 64 patients. Clin Orthop Relat Res, 1999, 358:64-74.
[15] Henderson E, Groundland J, Marulanda GA. Peri-operative expectations with revision of lower extremity segmental megaprosthesis for tumor: Podium presented at the American Academy of Orthopaedic Surgeons 2010 Annual Meeting, New Orleans, 2010, 409.
[16] Unwin PS, Cannon SR, Grimer RJ, et al. Aseptic loosening in cemented custom-made prosthetic replacements for bone tumours of the lower limb. J Bone Joint Surg (Br), 1996, 78(1):5-13.
[17] Henderson ER, Groundland JS, Pala E, et al. Failure mode classifcation for tumor endoprostheses: retrospective review of fveinstitutions and a literature review. J Bone Joint Surg (Am), 2011, 93(5):418-429.
[18] Jeys LM, Kulkarni A, Grimer RJ, et al. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Joint Surg (Am), 2008, 90(6):1265-1271.
[19] Farfalli GL, Boland PJ, Morris CD, et al. Early equivalence of uncemented press-fit and Compress femoral fixation. Clin Orthop Relat Res, 2009, 457:2792-2799.
[20] Mittermayer F, Windhager R, Dominkus M, et al. Revision of the Kotz type of tumour endoprosthesis for the lower limb. J Bone Joint Surg (Br), 2002, 84(3):401-406.
[21] Bergin PF, Noveau JB, Jelinek JS, et al. Aseptic loosening rates in distal femoral endoprostheses: does stem size matter? Clin Orthop Relat Res, 2012, 470(3):743-750.
[22] Harboush EJ. A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast-setting dental acrylic, and other considerations. Bull Hosp Joint Dis, 1953, 14(2): 242-277.
[23] Charnley J. Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg (Br), 1960, 42-B:28-30.
[24] Griffn AM, Parsons JA, Davis AM, et al. Uncemented tumor endoprostheses at the knee: root causes of failure. Clin Orthop Relat Res, 2005, 438:71-79.
[25] Wunder JS, Leitch K, Griffin AM, et al. Comparison of two methods of reconstruction for primary malignant tumors at the knee: a sequential cohort study. J Surg Oncol, 2001, 77:89-99.
[26] Flint MN, Griffin AM, Bell RS, et al. Aseptic loosening is uncommon with uncemented proximal tibia tumor prostheses. Clin Orthop Relat Res, 2006, 450:452-459.
[27] Mittermayer F, Krepler P, Dominkus M, et al. Long-term followup of uncemented tumor endoprostheses for the lower extremity. Clin Orthop Relat Res, 2001, 388:167-177.
[28] Farfalli GL, Boland PJ, Morris CD, et al. Early equivalence of uncemented press-fit and Compress femoral fixation. Clin Orthop Relat Res, 2009, 467(11):2792-2799.
[29] Song WS, Kong CB, Jeon DG, et al. The impact of amount of bone resection on uncemented prosthesis failure in patientswith a distal femoral tumor. J Surg Oncol, 2011, 104(2): 192-197.
[30] Capanna R, Morris HG, Campanacci D, et al. Modular uncemented prosthetic reconstruction after resection of tumours of the distal femur. J Bone Joint Surg (Br), 1994, 76(2):178-186.
[31] Myers GJ, Abudu AT, Carter SR, et al. Endoprosthetic replacement of the distal femur for bone tumours: long-term results. J Bone Joint Surg (Br), 2007, 89(4):521-526.
[32] Myers GJ, Abudu AT, Carter SR, et al. The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours. J Bone Joint Surg (Br), 2007, 89(12):1632-1637.
[33] Gitelis S, Yergler JD, Sawlani N, et al. Shott S.Short and long term failure of the modular oncology knee prosthesis. Orthopedics, 2008, 31(4):362.
[34] Richard J, O’Donnell. Compressive osseointegration of tibial implants in primary cancer reconstruction. Clin Orthop Relat Res, 2009, 467(11):2807-2812.
[35] Cristofolini L, Bini S, Toni A. In vitro testing of a novel limb salvage prosthesis for the distal femur. Clin Biomech (Bristol, Avon), 1998, 13:608-615.
[36] Avedian RS, Goldsby RE, Kramer MJ, et al. Effect of chemotherapy on initial compressive osseointegration of tumor endoprostheses. Clin Orthop Relat Res, 2007, 459:48-53.
[37] Bini SA, Johnston JO, Martin DL. Compliant prestress fxation in tumor prostheses: interface retrieval data. Orthopedics, 2000, 23:707-711.
[38] Kramer MJ, Tanner BJ, Horvai AE, et al. Compressive osseointegration promotes viable bone at the endoprosthetic interface: retrieval study of Compress implants. Int Orthop, 2008, 32:567-571.
[39] Healey JH, Morris CD, Athanasian EA, et al. Compress knee arthroplasty has 80% 10-year survivorship and novel forms of bone failure. Clin Orthop Relat Res, 2013, 471(3):774-783.
[40] Bhangu AA, Kramer MJ, Grimer RJ, et al. Early distal femoral endoprosthetic survival: cemented stems versus the Compress implant. Int Orthop, 2006, 30(6):465-472.
[41] Pedtke AC, Wustrack RL, Fang AS, et al. Aseptic failure: how does the Compress(?)implant compare to cemented stems? Clin Orthop Relat Res, 2012, 470(3):735-742.
[42] Shin DS, Choong PF, Chao EY, et al. Large tumor endoprostheses and extracortical bone-bridging: 28 patients followed 10-20 years. Acta Orthop Scand, 2000, 71(3):305-311.
[43] Schwartz AJ, Kabo JM, Eilber FC, et al. Cemented distal femoral endoprostheses for musculoskeletal tumor: improved survival of modular versus custom implants. Clin Orthop Relat Res, 2010, 468(8):2198-2210.
[44] Cannon CP, Zeegen E, Eckardt JJ. Operative techniques endoprosthetic reconstruction. Oper Tech Orthop, 2004, 14(4): 225-235.
[45] Kawai A, Lin PP, Boland PJ, et al. Relationship between magnitude of resection, complication, and prosthetic survival after prosthetic knee reconstructions for distal femoral tumors. J Surg Oncol, 1999, 70(2):109-115.
[46] Burchardt H, Glowczewskie FP, Enneking WF. The effect of adriamycin and methotrexate on the repair of segmental cortical autografts in dogs. J Bone Joint Surg (Am), 1983, 65(1): 103-108.
[47] Friedlaender GE, Tross RB, Doganis AC, et al. Effects of chemotherapeutic agents on bone :short-term methotrexate and doxorubicin (adriamycin)treatment in a rat model. J Bone Joint Surg (Am), 1984, 66(4):602-607.
[48] Arikoski P, Komulainen J, Riikonen P, et al. Impaired development of bone mineral density during chemotherapy: a prospectiveanalysis of 46 children newly diagnosed with cancer. J Bone Miner Res, 1999, 14(12):2002-2009.
[49] Arikoski P, Komulainen J, Riikonen P, et al. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab, 1999, 84:3174-3181.
[50] Bath LE, Crofton PM, Evans AEM, et al. Bone turnover and growth during and after chemotherapy in children with solid tumors. Pediatr Res, 2004, 55:224-230.
[51] van Leeuwen BL, Kamps WA, Jansen HWB, et al. The effect of chemotherapy on the growing skeleton. Cancer Treat Rev, 2000, 26:363-376.
[52] Hazan EJ, Hornicek FJ, Tomford W, et al. The effect of adjuvant chemotherapy on osteoarticular allografts. Clin Orthop Relat Res, 2001, 275:176-181.
[53] Dayer R, Rizzoli R, Kaelin A, et al. Low protein intake is associated with impaired titanium implant osseointegration. J Bone Min Res, 2006, 21:258-264.
( 本文編輯:王永剛 )
Aseptic loosening rate of megaprostheses and related factors
XIAO He, NIU Xiao-hui. Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, 100035, PRC
With the development of chemotherapy, imaging, surgical techniques and material science, limb-salvage has become a widely accepted concept in the treatment of bone and soft tissue tumors. Prosthetic reconstruction after tumor segment resection has become a common operation method. In the history, there appeared many kinds of materials for the reconstruction after the resection of tumors. The megaprosthesis has a history of more than 60 years, and has become the mainstream now, with many advantages over the other reconstruction materials. The aseptic loosening of megaprotheses is a common postoperative complication and also a prominent cause of prosthesis failure. How high is the aseptic loosening rate? Will the rate be affected by such factors as the patient’s age, gender, disease category, implantation site, reconstruction length, chemotherapy and so on? Will the rate be obviously reduced due to the improvement of megaprotheses? These questions are worth researching. The aseptic loosening rate of megaprostheses and related factors are reviewed in this article based on previous studies. According to previous reports, many factors concerning the patient and the prosthesis have an impact on the aseptic loosening rate. The clear and defnite related factors included the implantation site, porous coating in the collar, type of articulation, age at the time of surgery and reconstruction length, and the gender and disease category are irrelevant factors. As to the size of intramedullary stem, fxation mode, modular/custom and chemotherapy, their correlation with the aseptic loosening rate is still unclear.
Prosthesis failure; Prostheses and implants; Loose rate; Root cause analysis
10.3969/j.issn.2095-252X.2014.05.010
R738.1
100035 北京積水潭醫(yī)院骨腫瘤科
2013-09-26 )