張小春 黑明燕 羅婭麗 李媛媛 戴津津
·論著·
高壓氧對缺氧缺血1周內新生大鼠腦皮質細胞線粒體膜電勢的影響
張小春1黑明燕2羅婭麗2李媛媛2戴津津2
目的 研究高壓氧(HBO)對新生大鼠缺氧缺血性腦損傷(HIBD)1周內腦皮質細胞線粒體功能的影響,探討HBO對HIBD可能的保護作用及其機制。方法 新生SD大鼠360只分為正常對照組、HIBD組和HIBD+HBO組,每組120只。HIBD組和HIBD+HBO組結扎左側頸總動脈后暴露于8% O2+92% N2低氧環(huán)境中2 h制備HIBD模型。HIBD+HBO組在缺氧缺血后立即予HBO干預(壓力為2 ATA, 每次持續(xù)60 min,每日1次,連續(xù)7 d),HIBD組不予HBO干預,正常對照組不予結扎左側頸總動脈和HBO干預。以HIBD模型建立后設為缺氧缺血后0 h時點,3組于0 h、2 h、4 h、6 h、12 h、1 d、2 d、3 d、4 d、5 d、6 d和7 d時點斷頭處死(各組各時點n=10),取損傷側腦皮質制備單細胞懸液,予細胞線粒體膜電勢(ΔΨm)標記物羅丹明123(Rho123)孵育,用流式細胞儀檢測Rho123的平均熒光強度(MFL),并以該MFL值作為ΔΨm值。結果 ①正常對照組腦皮質細胞ΔΨm值為(4.66±0.80)MFL,HIBD組各時點腦皮質細胞ΔΨm值均低于正常對照組相應時點,且最低為0 h時點[(2.85±0.56)MFL],各時點差異均有統(tǒng)計學意義(P<0.05);②HIBD組及HIBD+HBO組腦皮質細胞ΔΨm均呈現降低-恢復-再降低的變化規(guī)律,兩組ΔΨm初次降低時間均為缺氧缺血后0 h時點,初次恢復時間均為缺氧缺血后2~12 h,再次降低的時間均為缺氧缺血后1~4 d,HIBD+HBO組ΔΨm的再次降低程度更明顯且最低為缺氧缺血后3 d時點[(2.62±1.03)MFL];③HIBD組腦皮質細胞ΔΨm在再次降低后未再回復,而HIBD+HBO組ΔΨm在再次降低后,于缺氧缺血后5 d時點后開始恢復,6和7 d時點ΔΨm值逐漸趨近但低于正常對照組水平,差異無統(tǒng)計學意義(P<0.05)。結論 HBO在HIBD后0 h至3 d內不能改善缺氧缺血損傷側腦皮質細胞的線粒體功能,HIBO后過早開始HBO治療可能導致受損腦皮質細胞的進一步損傷,但HBO可能在HIBD后5~7 d內可通過改善腦皮質線粒體功能促進HIBD受損細胞功能恢復。
高壓氧; 缺氧缺血; 一周內; 腦; 線粒體功能; 新生大鼠
新生兒缺氧缺血性腦損傷(HIBD)在許多國家依然高發(fā)且易導致兒童神經系統(tǒng)后遺癥[1],而臨床上除了亞低溫治療外還沒有其他有效治療手段[2,3]。HIBD的根本病因是腦細胞氧及能量的缺失,缺氧引發(fā)的NMDA受體被激活、細胞內游離鈣聚集、線粒體功能障礙和其他一系列細胞內外生化指標的改變均參與了缺氧缺血導致的HIBD過程中,最終導致受損腦細胞凋亡或壞死[4]。理論上,可逆轉上述病理生理過程的干預手段可以用于治療HIBD,其中包括改善線粒體功能的干預手段[5]。由于HIBD與缺氧有直接的關聯,而高壓氧(HBO)可通過高壓力的氧療來影響細胞內能量代謝,因此HBO有可能在缺氧缺血損傷后對抗缺氧所致的腦細胞線粒體功能障礙。臨床研究已證實HBO在治療急性腦水腫時可同時增加受損腦細胞氧供、增加腦血流,同時降低顱內壓[6];動物實驗研究發(fā)現HBO可通過增加氧彌散梯度和改善無氧代謝過程而修復受損傷后的腦細胞線粒體功能[7]。本研究假設HBO可通過改善HIBD受損部位腦細胞線粒體功能而減輕缺氧缺血所致的腦損傷。以代表線粒體功能的線粒體膜電勢(ΔΨm)為主要觀察指標,建立HIBD新生大鼠模型,以了解HBO對HIBD后新生大鼠腦皮質細胞線粒體功能的影響,為臨床應用HBO治療HIBD找尋可能的實驗室依據。
1.1 實驗動物 出生后7日齡的新生清潔級SD大鼠360只,體重(12.11±1.19)g。由湖南省人民醫(yī)院動物實驗中心提供。本研究遵循中南大學動物實驗研究指南規(guī)定,并獲得中南大學湘雅三醫(yī)院醫(yī)學倫理委員會審批。
1.2 分組 將360只大鼠均分為正常對照組、HIBD組和HIBD+HBO組,每組120只。
1.3 HIBD動物模型制備 HIBD組參照文獻[9,10]方法建立HIBD大鼠模型,結扎新生大鼠的左側頸總動脈后,回母鼠身邊恢復2 h,再暴露于室溫34℃、8% O2+92% N2環(huán)境中2 h。
1.4 干預 本研究以HIBD動物模型建立后設定為缺氧缺血后0 h時點(0 h)。①HIBD+HBO組干預措施:HIBD大鼠每艙10只0 h時點進入特制的透明高壓氧艙,艙內徑為 25 cm×50 cm,艙內溫度34℃,艙內氧濃度>85%,艙內壓力經過15 min 達到2個大氣壓(2ATM, 0.2 MPa)并持續(xù)60 min出艙,每日1次,連續(xù)7日(次間間隔≥24 h);②HIBD組干預措施:HIBD大鼠10只0 h時點進入特制的透明高壓氧艙,艙內常溫、空氣和正常氣壓環(huán)境下持續(xù)60 min出艙;③正常對照組干預措施:新生大鼠每艙10只,同HIBD組干預措施。
1.5 流式細胞儀檢測腦皮質細胞ΔΨm
1.5.1 腦皮質單細胞懸液制備 各組大鼠在缺氧缺血后0 h、2 h、4 h、6 h、12 h、24 h(為了解單次HBO干預后24 h內ΔΨm的變化規(guī)律)和1 d、2 d、3 d、4 d、5 d、6 d和7 d時點(為了解連續(xù)多次HBO干預后1周內ΔΨm的變化規(guī)律)斷頭處死(各組各時點10只大鼠),冰上操作取左側大腦皮質制備單細胞懸液[11],單細胞懸液濃度為2×106·mL-1,活細胞數量采用臺盼藍染色光鏡檢測法,以保證實驗中活細胞數量占流式細胞儀檢驗細胞的99%以上。
1.5.2 流式細胞儀檢測ΔΨm 在大腦皮質單細胞懸液中加入線粒體膜電勢標記物羅丹明(Rho)123(1 mmol·L-1)(美國Sigma公司),孵育時間為45 min,孵育溫度為37℃,孵育后將標本置于冰上,采用流式細胞儀(Cytomics FC500,美國貝克曼庫爾特有限公司)檢測Rho123的平均綠色熒光強度(MFL),并以此作為該標本的平均腦細胞ΔΨm值,激發(fā)波長為488 nm,散發(fā)波長為525 nm。為確保大腦皮質單細胞懸液中活細胞ΔΨm檢測有效,每次檢測時在孵育前隨意選取1份標本加入終濃度為100 mmol·L-1的非耦合劑氫化甲基氯苯基腙(mCICCP,美國Sigma公司)作為陽性對照。
如表1和圖1所示,缺氧缺血后0 h至7 d 各時點正常對照組ΔΨm值基本無變化,HIBD組和HIBD+HBO組各時點ΔΨm值均低于正常對照組。HIBD組和HBO+HIBD組ΔΨm值均以0 h時點最低;2~6 h時點ΔΨm值有所恢復,HIBD+HBO組均高于HIBD組(P<0.05);之后在12 h至3 d時點又再次降低,且HBO+HIBD組ΔΨm值降低程度更大,兩組ΔΨm值在12 h、24 h、2 d和3 d時點差異均有統(tǒng)計學意義(P均<0.05)。缺氧缺血后4~7 d時點HIBD組ΔΨm值呈現平穩(wěn)趨勢,HBO+HIBD組在4~7 d時點ΔΨm值再次開始恢復,6和7 d時點ΔΨm值逐漸趨近但低于正常對照組水平,差異無統(tǒng)計學意義。
Notes HIBD: hypoxic ischemic brain damage; HBO: hyperbaric oxygenation; 1): compared with HIBD+HBO group,P<0.05.n=10 at each time point in every group
圖1 缺氧缺血后0 h至7d各時點正常對照組、HIBD組和HIBD+HBO組損傷側腦皮質細胞ΔΨm的變化
Fig 1 ΔΨm changes of the ipsilateral cortex of HIBD and HBO+HIBD groups at 0 h-7 d time points after HI damage
本研究結果顯示,HIBD組0 h 至7 d時點損傷側腦皮質細胞的ΔΨm值呈現降低-恢復-再降低的變化規(guī)律,給予HBO干預后12 h至3 d時點ΔΨm值降低程度更為明顯,提示該期間HBO不能通過改善腦細胞線粒體功能而減輕HIBD,但HBO干預后4 ~7 d時點ΔΨm值再次恢復且可接近正常對照組的水平,提示HBO在HIBD損傷后72 h(即亞急性期),可能通過改善線粒體功能而達到減輕HIBD的目的。
腦細胞ΔΨm是線粒體功能的標志[12],本研究采用Rho123檢測ΔΨm值,Rho123是一種可與活細胞線粒體膜特異性結合的陽性熒光染料,由于Rho123與線粒體膜結合的程度與ΔΨm呈正相關,因此Rho123被認為是腦細胞線粒體功能的生物標記[13],可通過流式細胞儀檢測其熒光強度值定量測定線粒體功能[14,15],但ΔΨm值反映的是存活細胞受損傷后線粒體功能的改變,并不能反映出所有的受損傷神經元,特別是死亡的神經元。HBO很可能并未糾正能量代謝衰竭,而只是促進了損傷但尚存活細胞的線粒體功能的恢復。大鼠腦皮質以神經元細胞為主,本研究采用的單細胞懸液的制備方法與其他類似研究一致[11~14],僅能控制流式細胞儀標本的單細胞懸液濃度為2×106·mL-1,活細胞數量采用臺盼藍染色光鏡檢測法以保證實驗中活細胞數量占流式細胞儀檢驗細胞的99%以上,但由于本試驗方法的限制,目前無法從形態(tài)學角度明確給出活細胞的獲得能代表多少皮質神經元的具體數據。
哺乳動物對氧的攝入依賴肺泡內外的壓力梯度,給予高壓力的氧可增加這一壓力梯度并有助于提高供應腦組織的氧,動物實驗證實1.5 ATA的HBO可使溶解于血漿中的氧含量提高10倍[16]、使腦組織中氧分壓達到200~300 mmHg[17]。臨床上最常采用的HBO治療方案為1.8~2.8 ATA、60~90 min[18,19],本研究HBO干預條件采用2 ATA、60 min,2 ATA的HBO可以使得實驗動物血漿中氧含量增加10倍以上。HBO已在臨床上用于治療多種神經系統(tǒng)疾病[20,21],并有動物實驗報道單次HBO干預可減輕缺氧缺血導致的新生大鼠腦損傷[22],其作用機制可能一方面與HBO提高腦組織內的氧分壓、促進氧與線粒體內的氧化還原酶結合從而改善線粒體功能有關[7,23],另一方面與HBO可抑制細胞凋亡過程有關[24,25]。應用成年大鼠動物模型實驗研究也證實大腦中動脈梗塞6 h內給予HBO干預可減輕腦缺血性損傷[26],認為干預越早則治療效果越好。但本研究結果顯示,在新生SD大鼠HIBD后給予HBO干預并未在早期改善腦細胞的線粒體功能,而是在缺氧缺血后3 d時點損傷側腦細胞的線粒體功能才得到改善,在12 h至3 d時點HBO干預后腦細胞線粒體功能反而更進一步降低,提示HIBD后給予HBO干預可能并不是越早效果越好,分析導致這一結果的原因可能與氧自由基損傷或組織再灌注損傷等機制相關。腦損傷后,氧自由基和氮自由基大量產生,在細胞防御系統(tǒng)功能降低的情況下自由基的升高可導致脂質過氧化反應,最終導致細胞功能障礙[27],而腦組織對脂質過氧化反應尤其敏感,并需要更高的耗氧量來維持正常功能[28],同時由于腦組織清除氧自由基的能力有限、腦組織的過氧化氫酶活性較低以及腦組織內富含誘發(fā)產生自由基的鐵元素,故腦組織對抗自由基損傷的自然防御能力更差[23]。本研究結果顯示HIBD+HBO組在缺氧缺血后4~7 d時點損傷側大腦皮質的ΔΨm值明顯高于HIBD組,由此推斷在度過HIBD最初的急性期之后,HBO可能通過改善線粒體功能而減輕HIBD。
早產兒視網膜病變和高氧肺損傷是臨床醫(yī)生高度重視的問題,因此在應用HBO治療HIBD時,必然會考慮到HBO的安全性問題。一項隨機臨床試驗結果顯示每24 h間斷給予2 ATA的HBO治療2~3次(每次60 min)對于外傷導致的腦損傷患者是安全的[23],動物實驗結果顯示給予早產新生大鼠HBO治療1 h不會導致與視網膜病變相關的視網膜結構改變或視網膜血管增生[21],而Yoles等[29]應用不同日齡的新生狗研究發(fā)現,在腦代謝、腦血流穩(wěn)定性、腦細胞電生理方面,日齡越小的新生狗對HBO導致的氧毒性耐受力越強。本研究采用的是7日齡的新生SD大鼠,HBO的壓力為2 ATA、時間為60 min,未在HBO氧毒性方面進行相關觀察,僅根據現有研究報道推測,本研究采用的HBO干預方法對新生SD大鼠產生氧毒性的可能性較小。
本研究的局限性:①各組各時點樣本量較小(n=10),數據標準差較大;②HBO對HIBD長期后遺癥(如記憶認知能力、大運動功能、行為異常等)的影響沒有進行評估;③本研究HBO干預是在HIBD后0 h時點開始,不能回答關于HBO治療的時間窗問題;④HBO干預后Δψm呈現降低-恢復-再降低-再恢復變化規(guī)律的機制尚不明確,這些機制可能牽涉到氧自由基損傷、NMDA受體激活或細胞內游離鈣聚集。
致謝:真誠地感謝中南大學湘雅醫(yī)院兒科楊于嘉教授為本研究無償提供動物實驗專用高壓氧艙!
[1] Glass HC, Bonifacio SL, Peloquin S, et al. Neurocritical care for neonates. Neurocrit Care, 2010, 12(3): 421-429
[2] Ma H, Sinha B, Pandya RS, et al. Therapeutic hypothermia as a neuroprotective strategy in neonatal hypoxic-ischemic braininjury and traumatic brain injury. Curr Mol Med, 2012, 12(10): 1282-1296
[3] Pietrini D, Piastra M, Luca E, et al. Neuroprotection and hypothermia in infants and children. Curr Drug Targets, 2012, 13(7): 925-935
[4] Vert P, Daval JL. Cell death and neurogenesis after hypoxia: a brain repair mechanism in the developing rat? Bull Acad Natl Med, 2006, 190(2): 469-484
[5] Cooper CE. In vivo measurements of mitochondrial function and cell death following hypoxic/ischaemic damage to the newborn brain. Biochem Soc Symp, 1999, 66: 123-140
[6] Sukoff MH, Ragatz RE. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery, 1982, 10(1): 29-38
[7] Zhou Z, Daugherty WP, Sun D, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg, 2007, 106(4): 687-694
[8] Rice JE, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol, 1981, 9(2): 131-141
[9] Hei MY, Tao HK, Tang Q, et al. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage. Braz J Med Biol Res, 2012, 45(10): 962-927
[10] Hei MY, Huang WQ, Liu FR. Effect of rhIGF-1 on cytochrome C and caspase-3 expression in neonatal rats with hypoxic-ischemic brain damage in vivo. Chin J Contemp Pediatr(中國當代兒科雜志), 2010, 12(12): 963-966
[11] Maric D, Maric I, Barker JL. Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic cortex. Cereb Cortex, 2000, 10(6): 561-573
[12] Signoretti S, Marmarou A, Aygok GA, et al. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg, 2008, 108(1): 42-52
[13] Sureda FX, Escubedo E, Gabriel C, et al. Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry. Cytometry, 1997, 28(1): 74-80
[14] Liu J, Yu Z, Guo S, et al. Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons. J Neurosci Res, 2009, 87(1): 164-170
[15] Nolan JP, Duggan E, Liu E, et al. Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods, 2012, 57(3): 272-279
[16] Jain KK, Baydin SA. Textbook of Hyperbaric Medicine. 3rd edition. Seattle: Hogrefe & Hube Company, 1999
[17] Daugherty WP, Levasseur JE, Sun D, et al. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg, 2004, 101(3): 499-504
[18] Benedetti S, Lamorgese A, Piersantelli M, et al. Oxidative stress and antioxidant status in patients undergoing prolonged exposure to hyperbaric oxygen. Clin Biochem, 2004, 37(4): 312-317
[19] Lipsky BA, Berendt AR, Deery HG, et al. Infectious Diseases Society of America. Diagnosis and treatment of diabetic foot infections. Clin Infect Dis, 2004, 39(7): 885-910
[20] Ostrowski RP, Colohan AR, Zhang JH. Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage. Acta Neurochir Suppl, 2006, 96: 188-193
[21] Calvert JW, Zhou C, Zhang JH. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Exp Neurol, 2004, 189(1): 150-161
[22] Freiberger JJ, Suliman HB, Sheng H, et al. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning in neonatal rats. Brain Res, 2006, 1075(1): 213-222
[23] Rockswold SB, Rockswold GL, Zaun DA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg, 2010, 112(5): 1080-1094
[24] Lou M, Chen Y, Ding M, et al. Involvement of the mitochondrial ATP-sensitive potassium channel in the neuroprotective effect of hyperbaric oxygenation after cerebral ischemia. Brain Res Bull, 2006, 69(2): 109-116
[25] Palzur E, Zaaroor M, Vlodavsky E, et al. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res, 2008, 1221: 126-133
[26] Lou M, Eschenfelder CC, Herdegen T, et al. Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke, 2004, 35(2): 578-583
[27] Lewén A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma, 2000, 17(10): 871-890
[28] Demopoulos HB, Flamm ES, Seligman ML, Pietronigro DD: Oxygen free radicals in central nervous system ischemia and trauma, in Autor AP (ed): Pathology of Oxygen. New York: Academic Press, 1982: 127-155
[29] Yoles E, Zurovsky Y, Zarchin N, et al. The effect of hyperbaric hyperoxia on brain function in the newborn dog in vivo. Neurol Res, 2000, 22(4): 404-408
(本文編輯:張萍)
Effect of hyperbaric oxygenation on mitochondrial membrane potential of cortex neuronal cells of neonatal rats in the first week after hypoxic ischemic brain damage
ZHANG Xiao-chun1, HEI Ming-yan2, LUO Ya-li2, LI Yuan-yuan2, DAI Jin-jin2
(1 Department of Pediatrics, Central Hospital of Loudi, Loudi 417000, China; 2 Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China)
HEI Ming-yan,E-mail:heiming_yan@aliyun.com
ObjectiveThe initial insult of hypoxic-ischemic (HI) brain damage (HIBD) is the deprivation of oxygen (O2) to the brain cells, followed by a cascade of brain cell damage including mitochondrial dysfunction. Theoretically, hyperbaric oxygenation (HBO) could affect the recovery of mitochondrial function in HIBD by greatly increasing the O2delivery diffusion gradient. The objective of this study was to prove the hypothesis that HBO may reduce HI-induced brain injury via affecting brain cell mitochondrial function, and to understand the changing patterns of mitochondrial function following HBO treatment in the first week after HI.MethodsIn the present study, HIBD rat model and flow cytometer were used to explore the change of ΔΨm, the indicator of mitochondrial function of cortex neuronal cells of neonatal rats after HIBD. Neonatal Sprague Dawley (SD) rat pups were randomly divided into normal control, HIBD, and HIBD+HBO groups. The end of HI was considered to be 0 h time point. The HBO treatment was given at 0h time point, and then once a day for consecutive 7 days (in 24 h intervals). Animals were euthanized at 0, 2, 4, 6, 12 h time points (in order to study the ΔΨm changes at the very early stage after a single dose of HBO treatment), and at 2, 3, 4, 5, 6, and 7 d time points (in order to study the ΔΨm changes after a series of HBO treatment). ResultsThe change of ΔΨm of the ipsilateral cortex in both HIBD and HIBD+HBO groups showed fluctuating change pattern. Within 2 h to 12 h after HI insult, ΔΨm of HIBD group recovered to some extent, but ΔΨm of HIBD+HBO group recovered to almost normal level. A secondary drop of ΔΨm was observed in both groups at 1-4 d after HI insult. The secondary drop of HIBD+HBO group was more severe than that of HIBD group. There was a secondary recovery of ΔΨm observed in HIBD+HBO group in 5-7 d after HI insult, but not in HIBD group. The ΔΨm of HIBD+HBO group recovered again to almost normal level at 6 d time point. The ΔΨm of HIBD group in 2-7 d after HI stayed at low level, showing slowly decreasing tendency.ConclusionHBO in the early stage after HI might not be a good therapy to improve the mitochondrial function in the cerebral cortex. The secondary recovery observed in HIBD+HBO group indicated that HBO treatment may protect HI-induced brain damage by improving neural cell mitochondrial function in the cerebral cortex during sub-acute stage after HI.
Hyperbaric oxygenation; Hypoxic-ischemic; The first week; Brain; Mitochondrial function; Neonatal rat
湖南省自然科學基金課題:11JJ6067
1 湖南省婁底市中心醫(yī)院兒科 婁底,417000;2 中南大學湘雅三醫(yī)院兒科 長沙,410013
黑明燕,E-mail:heiming_yan@aliyun.com
10.3969/j.issn.1673-5501.2014.03.011
2014-03-17
2014-05-11)