續(xù)勇波,XU Zhihong,蔡祖聰
1. 云南農(nóng)業(yè)大學(xué)煙草學(xué)院,云南 昆明 650201;2. Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, QLD 4111, Australia;3. 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇 南京210097
熱帶亞熱帶土壤氮素反硝化研究進展
續(xù)勇波1*,XU Zhihong2,蔡祖聰3
1. 云南農(nóng)業(yè)大學(xué)煙草學(xué)院,云南 昆明 650201;2. Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, QLD 4111, Australia;3. 南京師范大學(xué)地理科學(xué)學(xué)院,江蘇 南京210097
熱帶亞熱帶獨特的土壤性質(zhì)可能使得反硝化機理有別于溫帶土壤。文章綜述了熱帶亞熱帶地區(qū)土壤氮素生物反硝化的研究進展,試圖更好地了解該地區(qū)土壤反硝化在全球氮(N)循環(huán)以及在全球環(huán)境變化和生態(tài)系統(tǒng)響應(yīng)互作中的角色。熱帶亞熱帶土壤反硝化強度普遍較溫帶地區(qū)弱,且隨著土地利用方式和耕作管理措施的不同而呈現(xiàn)較大的時空變異性。影響土壤水分狀況和土壤碳(C)、N轉(zhuǎn)化特性和速率的因素即為區(qū)域和農(nóng)田尺度上的反硝化影響因素。濕潤型熱帶亞熱帶土壤由于含有豐富的氧化物而致使土壤氧化還原勢較高,這也是導(dǎo)致該地區(qū)土壤反硝化勢較溫帶地區(qū)較低的關(guān)鍵土壤因素之一。然而土壤pH值不是該地區(qū)土壤反硝化勢較低的主要限制因素。有機C礦化過程較土壤全氮含量和土壤C/N比在決定濕潤型亞熱帶土壤反硝化勢方面更為重要。愈來愈多的證據(jù)表明熱帶亞熱帶土壤反硝化的生態(tài)環(huán)境效應(yīng)不同于溫帶地區(qū),熱帶亞熱帶地區(qū)土壤反硝化對全球變暖的貢獻應(yīng)綜合考慮其對其它溫室氣體(如CH4,CO2)排放和氮沉降的影響。熱帶亞熱帶土壤生態(tài)系統(tǒng)具有一些防止土壤氮素反硝化損失的機制和保氮策略。然而,熱帶亞熱帶生態(tài)系統(tǒng)對全球變化的響應(yīng)機制及其生物地球化學(xué)調(diào)控機制仍然不清楚,這些研究對于反硝化和其它同時發(fā)生的氮轉(zhuǎn)化過程模型的精確構(gòu)建至關(guān)重要。
反硝化;環(huán)境效應(yīng);氮淋失;保氮策略;氧化亞氮
反硝化是指將硝態(tài)氮或亞硝態(tài)氮還原成一氧化氮(NO)、一氧化二氮(N2O)和氮氣(N2)的過程,是氮循環(huán)中重要的轉(zhuǎn)化過程和環(huán)節(jié)。是除了厭氧銨氧化(Anammox)之外唯一能將陸地或水生生態(tài)系統(tǒng)中活性氮(Nr)轉(zhuǎn)化為惰性的N2的途徑(Galloway 等, 2004)。Galloway等的研究表明全球尺度上關(guān)于Nr產(chǎn)生的研究數(shù)據(jù)遠遠多于Nr轉(zhuǎn)化為N2的數(shù)據(jù)(Galloway等, 2008)。反硝化速率和產(chǎn)物的關(guān)鍵控制因素研究對于量化人類活動對陸地生態(tài)系統(tǒng)氮循環(huán)的影響以及控制和緩解氮污染引起的嚴重環(huán)境問題至關(guān)重要(Boyer等, 2006)。
關(guān)于土壤反硝化過程、反硝化在生態(tài)系統(tǒng)氮損失中的貢獻、影響反硝化的因素和其環(huán)境效應(yīng)方面已有眾多研究(Wijler和Delwiche, 1954; ?imek等, 2000; ?imek和Cooper, 2002; Hofstra和Bouwman, 2005; Dannenmann等, 2008)。然而土壤反硝化研究主要集中在溫帶地區(qū)恒電荷土壤(Hofstra和Bouwman, 2005),極少有量化研究熱帶和亞熱帶地區(qū)可變電荷土壤反硝化的報道(Pu等, 2001; Pu等, 2002),因此,影響熱帶亞熱帶地區(qū)土壤反硝化速率和產(chǎn)物的主要土壤因素和機理尚不十分清楚。
熱帶亞熱帶地區(qū)雨量豐沛、氣溫較高,土壤高度風(fēng)化、土壤脫硅、富含鐵鋁氧化物(Qafoku等, 2004)。據(jù)報道亞熱帶地區(qū)土壤無定型鐵氧化物含量顯著高于溫帶地區(qū)土壤(Zhang等, 2009),使得相似土壤水分含量條件下,亞熱帶地區(qū)土壤氧化還原勢較高(丁昌璞, 2008)。此外,未經(jīng)人為干擾的濕潤熱帶亞熱帶土壤大多數(shù)都酸性較強(Xu和Cai, 2007),為繼承性肥力較低的氧化土(Oxisols)和老成土(Ultisols),富含可變電荷礦物質(zhì)且微生物區(qū)系以真菌為主(Sanchez等, 1989)。顯然熱帶亞熱帶土壤的化學(xué)性質(zhì)與溫帶地區(qū)的恒電荷土壤有諸多不同特點(徐仁扣等, 2014),這些獨特性質(zhì)有可能使其反硝化機理有別于其它地區(qū)土壤。
關(guān)于溫帶地區(qū)土壤反硝化的速率、影響因素和研究方法等已有詳細綜述(Payne, 1981; Tiedje, 1988; Nieder等, 1989; Aulakh等, 1992),因此本文首先簡要概述熱帶亞熱帶地區(qū)土壤反硝化的一般特征,討論不同研究尺度上影響反硝化速率和產(chǎn)物的主要環(huán)境因素和機理;其次綜述熱帶亞熱帶土壤反硝化的環(huán)境效應(yīng),分析熱帶亞熱帶土壤防止和降低反硝化氮損失的保氮策略;最后討論了熱帶亞熱帶地區(qū)反硝化的研究展望。
1.1 熱帶亞熱帶土壤氮素反硝化勢通常較低
濕潤型熱帶亞熱帶地區(qū)高溫高濕的氣候特點使人認為反硝化可能是該地區(qū)農(nóng)業(yè)生態(tài)系統(tǒng)氮素損失的重要途徑和機制,然而一些證據(jù)表明反硝化也許不是大多數(shù)熱帶土壤氮素損失的主要途徑。例如,通過測定加入K15NO3后培養(yǎng)試驗中NO, N2O和N2產(chǎn)生量而計算的反硝化速率表明中國熱帶亞熱帶森林土壤顯著低于東部溫帶地區(qū)森林土壤(Zhang等, 2009)。Xu和Cai也報道了濕潤型亞熱帶土壤以NO3--N還原速率表征的反硝化勢普遍較低(Xu和Cai, 2007)。其它一些研究表明熱帶森林土壤和農(nóng)用旱地土壤反硝化速率低于或相當于相應(yīng)溫帶地區(qū)土壤(Nieder等, 1989; Aulakh等, 1992; Bowden, 1986; Robertson和Tiedje, 1988; Groffman和Tiedje, 1989; Griffiths等, 1993),表明熱帶亞熱帶地區(qū)土壤反硝化通常不是氮損失主要途徑。
酸性熱帶亞熱帶土壤反硝化勢較低的原因可能為:(1)熱帶亞熱帶土壤氧化物含量較高使得土壤氧化能力較強,進而提高了土壤氧化還原勢,從而抑制了反硝化(Zhang等, 2009);(2)有機C和礦質(zhì)N含量較低不足以維持足夠的反硝化微生物數(shù)量和活性(Xu和Cai, 2007; Wang和Cai, 2008);(3)土壤pH值較低,遠遠低于大多數(shù)反硝化菌生長和活性發(fā)揮的適宜pH值范圍(6~8)(Aulakh等, 1992),也可能是該地區(qū)土壤反硝化勢較低的原因之一;(4)澳大利亞農(nóng)用土壤上自然條件下土壤水分較難以達到飽和狀態(tài)或者在土壤水分達到飽和狀態(tài)時礦質(zhì)態(tài)15N的淋失都導(dǎo)致反硝化含15N氣態(tài)產(chǎn)物排放量較低(Pu等, 2002)。
1.2 熱帶亞熱帶土壤反硝化勢變異較大
熱帶亞熱帶土壤反硝化的另一個特點是隨著土地利用方式和耕作管理措施的不同反硝化勢變異很大,在淹水厭氧充氮氣培養(yǎng)試驗條件下從不發(fā)生反硝化作用(如某些旱地土壤)到11 d內(nèi)并加入200 mg N kg-1的NO3--N完全消耗完都有可能發(fā)生(如某些稻田土壤)(Xu和Cai, 2007)。無論是田間還是實驗室土壤培養(yǎng)試驗條件下對反硝化絕對量的量化研究都非常缺乏。表1中例舉了不同土壤生態(tài)系統(tǒng)因植被類型和農(nóng)業(yè)耕作管理措施的不同反硝化氮素損失率變異很大的特性(反硝化氮素損失率占施入15N標記氮肥的1%~53%)(Mahmood等, 2000; Aulakh等, 2001; Weier, 1994; Weier等, 1991, 1993; Bacon和Freney, 1989; Mahmood等, 2001; Houlton等, 2006)。
北半球熱帶亞熱帶土壤大多數(shù)(>70%)氮素反硝化損失都發(fā)生在6月至8月,該期間土壤溫度較高、季風(fēng)性降雨量豐沛,表現(xiàn)出反硝化除了具有上述極大的空間變異性外還具有明顯的時間變異性。土壤質(zhì)地、土壤含水率和NO3--N含量是影響田間原位反硝化速率時間變異性的主要原因(Mahmood等, 2000)。
表1 熱帶亞熱帶土壤氮素反硝化損失估計值示例Table 1 Estimated denitrification losses in tropical/subtropical soils in published studies
2.1 區(qū)域和田間尺度影響因素
在區(qū)域尺度上研究反硝化應(yīng)關(guān)注土壤類型(土壤質(zhì)地、自然滲透能力)對土壤水分含量的影響和植物群落類型對土壤中反硝化菌C和NO3--N有效性的影響??偟恼f來降雨量是區(qū)域尺度上反硝化的主要控制因素,其次是土壤有效態(tài)C和NO3--N含量(Pu, 1996)。
正如象溫帶地區(qū)那樣,當降雨量不是反硝化主要影響因素時,熱帶亞熱帶土壤反硝化與土壤C和N轉(zhuǎn)化的特性和速率密切相關(guān)(Griffiths等, 1993)。研究大田尺度和區(qū)域尺度上的反硝化影響因素需要研究影響土壤C和N轉(zhuǎn)化的因素,如土地利用方式、作物類型、殘茬管理方式、有機肥投入、養(yǎng)分管理策略、間套作和耕作收獲強度等。凡是能促進土壤C和N積累和厭氧微生物活性的土地利用方式和耕作管理措施均會促進反硝化的進行。
在中國的亞熱帶土壤反硝化研究表明,反硝化勢受土壤母質(zhì)和土地利用方式的深刻影響(Xu和Cai, 2007)。我們的研究表明反硝化受土壤母質(zhì)的影響,花崗巖母質(zhì)發(fā)育的土壤反硝化勢顯著高于第四紀紅粘土和第三季紅砂巖,土壤有機C和N的有效性是決定3種母質(zhì)間反硝化勢差異的關(guān)鍵因素。土地利用方式對反硝化勢的影響表現(xiàn)為稻田土壤反硝化勢顯著高于林地、旱地、茶園和灌叢土壤,且掩蓋了不同土壤母質(zhì)對反硝化勢的影響。稻田土壤反硝化勢高的原因主要為淹水的耕作管理措施促進了有機C和N的積累以及可進行厭氧呼吸的微生物的生長和活性的發(fā)揮(Xu和Cai, 2007)。
亞熱帶森林枯落物管理也影響反硝化,如,澳大利亞亞熱帶南洋杉林地采伐后的殘枝和枯落物堆積條帶微區(qū)域的反硝化15N損失占加入15N肥料的百分比大于條帶微區(qū)域之間的反硝化15N損失,但這種影響效應(yīng)2年后將差異不顯著(Pu等, 2001)。在水稻-小麥輪作系統(tǒng)土壤可持續(xù)生產(chǎn)力的培育中合理的作物殘茬和綠肥管理措施是一種環(huán)境友好的耕作管理措施,不會顯著增加大氣中N2O排放負荷(Aulakh等, 2000a, 2001)。然而過量施用N和C將極大地增加N2O排放量。澳大利亞糧食主產(chǎn)區(qū)殘茬還田已進行了連續(xù)10年,在田間原位和實驗室土壤培養(yǎng)試驗中加入15N后2~4周該土壤反硝化氮損失(施入15N的91%~95%)較不進行秸稈還田(秸稈移出田外且焚燒)的甘蔗地土壤反硝化氮損失(施入15N的51%~85%)高(Pu, 1996)。半干旱亞熱帶土壤添加不同C/N比有機肥同樣也會影響反硝化氣態(tài)N損失,土壤反硝化氮素累積損失量隨施入的有機肥含氮量升高和C/N比降低而呈增加趨勢,即綠肥>家禽糞肥>壓濾泥漿>牲畜糞肥(Aulakh等, 2000b)。
不同的耕作和作物類型對土壤反硝化有顯著影響。澳大利亞東部糧食作物主產(chǎn)區(qū)免耕土壤反硝化潛勢高于傳統(tǒng)耕作土壤,2種耕作方式均是長期休閑土壤的4~5倍((Pu, 1996; Islam, 1992)。不同作物-牧草輪作系統(tǒng)施入15N的反硝化損失率為休閑-豆科牧草(86%)>鷹嘴豆-小麥(58%)>紫花苜蓿-小麥(55%)>小麥連作(46%)>苜蓿-小麥(26%)>長期休閑(9%)(Islam, 1992)。研究結(jié)果表明反硝化氮素損失潛勢受土壤水分含量、新施入的作物秸稈、施肥位置和氮源的影響。
絕大多數(shù)反硝化氮損失研究都集中在不同單作農(nóng)業(yè)生態(tài)系統(tǒng)中,僅有很少研究報道輪作和間套作系統(tǒng)中反硝化途徑在氮損失中的重要性。Mahmood等的結(jié)果表明半干旱亞熱帶氣候條件下小麥-玉米輪作水澆地系統(tǒng)中反硝化氮損失量很大(Mahmood等, 2005),這一結(jié)果意味著有必要采取合理施肥和養(yǎng)分管理措施來降低氮損失。
熱帶地區(qū)土壤反硝化同樣受不同植被類型下土壤水分和氮素有效性差異的強烈影響。大田尺度上研究反硝化影響因素必須考慮時間變異性。就非農(nóng)業(yè)土地利用方式而言,熱帶森林土壤反硝化與林地所處的演替階段有密切關(guān)系,森林演替初期(森林砍伐后幾周內(nèi))和晚期(從未砍伐的原始森林)土壤反硝化勢較森林演替中期(森林砍伐后2~25年)高得多(Robertson和Tiedje, 1988)。這和溫帶地區(qū)森林土壤反硝化研究結(jié)果一致,表明森林演替中期大多數(shù)植被處于氮同化旺盛生長時期,其對土壤水分和NO3--N的競爭也許是抑制了該時期反硝化進行的關(guān)鍵因素(Robertson和Tiedje, 1988; Groffman和Tiedje, 1989; Goodroad和Keeney, 1984; Myrold, 1988; Schmidt等, 1988)。
就農(nóng)業(yè)土地利用方式而言,同樣具有反硝化的時間變異性。反硝化隨作物生長發(fā)育階段的推進而增強,表明旺盛生長的植株根系分泌物中C有效性增加進而促進了反硝化進行。小麥-玉米輪作水澆地系統(tǒng)中作物不同生育期反硝化氮損失量不同,反硝化損失主要發(fā)生在有大量NO3--N累積的灌溉期(Mahmood等, 2005),因此土樣采集時期應(yīng)考慮不同作物生長季之間和干濕季交替之間(Groffman, 1995)。
2.2 影響熱帶亞熱帶土壤反硝化的土壤理化性質(zhì)
影響土壤反硝化速率的因素很多,包括土壤含水率、NO3--N含量、溶解性有機C(DOC)、C和N有效性、氧氣分壓,土壤溫度、微生物活性、土壤呼吸速率等(Griffiths等, 1993; Mahmood等, 2000; Pu, 1996; Mahmood等, 2005; Maag和Vinther, 1999)。已有很多研究證實反硝化速率和這些因素之間的密切相關(guān)性,包括溫帶地區(qū)(?imek等, 2000; Pu等, 2001, 2002; Heinen, 2006; Attard等, 2011)和熱帶亞熱帶地區(qū)(Xu和Cai, 2007; Aulakh等, 2000a, 2000b, 2000c; Islam, 1992; Mahmood等, 2005; Jia等, 2010; Fellows等, 2011),然而關(guān)于濕潤型熱帶亞熱帶地區(qū)反硝化勢較弱的原因至今尚無定論。
濕潤型熱帶亞熱帶土壤有效態(tài)有機C、土壤水分、質(zhì)地、氧氣分壓以及其它一些土壤理化性質(zhì)與溫帶地區(qū)土壤相比并無顯著差異,且溫度也不是反硝化的限制因素,因此,這些土壤理化性質(zhì)不會是熱帶亞熱帶地區(qū)土壤反硝化較弱的主要控制因素。如上所述,土壤pH對反硝化的影響尚存在爭論(?imek和Cooper, 2002),Wijler和Delwiche認為最適宜反硝化進行的pH范圍為7.0~8.0(Wijler 和Delwiche, 1954)。許多濕潤型熱帶亞熱帶森林土壤呈酸性且高度風(fēng)化(Bennema等, 1970),然而一些關(guān)于中國濕潤型亞熱帶土壤反硝化的研究表明土壤pH值和反硝化速率之間并無顯著相關(guān)性,表明pH值不是該地區(qū)土壤反硝化勢較弱的原因(Zhang等, 2009; Xu和Cai, 2007)。
土壤氧化還原勢是造成不同氣候帶反硝化速率和N2O/N2比值存在差異的關(guān)鍵因素(Zhang等, 2009)。在相似的土壤水分含量條件下,中國濕潤型熱帶亞熱帶森林土壤氧化還原勢顯著高于溫帶森林土壤(丁昌璞, 2008),濕潤型熱帶亞熱帶土壤氧化還原勢較高從而抑制了反硝化,盡管土壤有機C(SOC)在厭氧培養(yǎng)過程中對氧化還原勢的降低起重要作用,但土壤氧化能力較SOC在降低氧化還原勢方面作用更大(Zhang等, 2009)。
此外,反硝化酶的合成和活性受環(huán)境變化影響較大(Parkin, 1990),Pett-Ridge等,發(fā)現(xiàn)某熱帶土壤厭氧培養(yǎng)3周后反硝化速率顯著升高(Pett-Ridge等, 2006)。反硝化菌的生長和酶的合成在含有豐富氧化物且氧化還原勢較高的濕潤型熱帶亞熱帶土壤上可能會受到抑制。Xu和Cai的研究也證實濕潤型亞熱帶反硝化菌豐富度較低(Xu和Cai, 2007)。氧化物含量豐富的土壤氧化還原勢較高,這也許是中國濕潤型熱帶亞熱帶土壤反硝化勢較低的主要原因之一(Zhang等, 2009)。然而關(guān)于土壤氧化物如何直接影響反硝化微生物的生長、酶合成和活性有待于進一步研究。
SOC礦化是反硝化的主要驅(qū)動力(?imek等, 2000; Griffiths等, 1993; Heinen, 2006; Drury等, 1998; Mathieu等, 2006),SOC礦化較土壤全N和C/N比在決定濕潤型亞熱帶土壤反硝化勢方面更為重要(Xu和Cai, 2007)。反硝化是消耗電子的異養(yǎng)還原過程,土壤有機質(zhì)的礦化不僅為反硝化還原NO3--N提供電子(Ahn, 2006; McLain和Martens, 2006),而且可降低土壤氧化還原勢,因此濕潤型熱帶亞熱帶土壤氧化物含量高對反硝化的抑制作用可通過增加土壤有機質(zhì)含量得到緩解,Xu和Cai的研究結(jié)果已證實了這一點,他們的結(jié)果表明亞熱帶土壤反硝化勢和土壤SOC含量呈顯著正相關(guān)(Xu和Cai, 2007)。
反硝化可能受土壤鐵氧化物含量及其不同價態(tài)鐵氧化物之間相互轉(zhuǎn)化的影響,這種影響有可能是生物化學(xué)過程(Kumaraswamy等, 2006; Li等, 2012)或者化學(xué)反硝化過程(Philips等, 2003),這些方面的研究有待進一步深入。
上述表明熱帶亞熱帶地區(qū)土壤反硝化研究甚少,影響反硝化的因素幾乎和溫帶地區(qū)土壤相同,但是熱帶亞熱帶地區(qū)土壤反硝化的生態(tài)環(huán)境效應(yīng)可能不同。熱帶亞熱帶可變電荷土壤硝化和反硝化作用能顯著影響離子態(tài)養(yǎng)分的吸附和淋失,硝化作用伴隨著質(zhì)子化過程,而反硝化伴隨著去質(zhì)子化過程。森林砍伐后硝化作用受到促進,土壤電荷接近甚至低于電荷零點,使得可交換態(tài)離子可能從根區(qū)淋失。這一假設(shè)已被證實,如哥斯達黎加低地的人工幼林礦質(zhì)養(yǎng)分存在普遍的N缺乏、鋁毒和K/Mg比例失衡的現(xiàn)象(Zech等, 1997);Qian和Cai的研究也證明酸性亞熱帶土壤硝化作用是控制NO3--N淋失的重要因素,隨硝化作用增強NO3--N淋失加劇。陽離子交換量較低、可交換鹽基陽離子缺乏的土壤,NH4+-N和H+有可能作為NO3--N的伴隨離子而淋失以平衡土壤正負電荷,導(dǎo)致不同土層pH值的改變(Qian和Cai, 2007)。
熱帶亞熱帶土壤反硝化勢較低對NO3--N還原意義重大,當NO3--N不能被有效還原,殘留在土壤中的NO3--N可能通過NO3--N淋失和滲透對環(huán)境造成威脅,特別是當氣溫較高、降雨量大的同時施用過量硝態(tài)氮肥時。在澳大利亞亞熱帶濕潤夏季,二代輪作的南洋杉林地育林期間施入的NO3--N盡管有相當一部分經(jīng)反硝化(6%~26%)和固持(14%~35%)而損失,但氮損失主要歸因于NO3--N淋失(32%~53%)(Pu等, 2002; Pu等, 2005)。
3.2 熱帶亞熱帶氣候條件下反硝化對溫室氣體排放和還原的影響
反硝化作為大氣N2O(一種溫室氣體)和NO(參與對流層臭氧光化學(xué)反應(yīng)的重要氣體)排放源無論是在大田、區(qū)域尺度還是全球尺度上都越來越受到關(guān)注。盡管濕潤型熱帶亞熱帶森林土壤自養(yǎng)硝化作用和反硝化作用較弱,但在氣候因素、土壤特性、較快的氮循環(huán)速率等綜合作用下,氣態(tài)氮氧化物損失較溫帶森林土壤高,且是全球最大的N2O和NO自然排放源(Xu和Cai, 2007; Lashof和Ahuja, 1990); (Matson和Vitousek, 1990; Davidson和Kingerlee, 1997; Stehfest和Bouwman, 2006; Zhao等, 2007)。Veldkamp(1998)等認為熱帶農(nóng)田生態(tài)系統(tǒng)N2O和NO排放量遠遠高于溫帶地區(qū)農(nóng)業(yè)土壤,可能也是全球N2O和NO主要排放源,盡管這一科學(xué)假設(shè)還沒有得到直接證據(jù)。
眾多研究表明,不同土地利用方式下氣候因素和土壤理化特性(如土壤pH、NO3--N和DOC含量、氧氣分壓、土壤氧化還原勢)的相互作用影響N2O產(chǎn)生底物的有效性,進而影響反硝化過程中N2O還原酶酶活性和N2O占總氣態(tài)含氮產(chǎn)物的比率(Wolf和Brumme, 2003; Manconi等, 2006; Chapuis-Lardy等, 2007; Dannenmann等, 2008; Xu等, 2012)。但是影響熱帶亞熱帶地區(qū)土壤和溫帶地區(qū)土壤反硝化N2O/N2比差異的因素和機理尚需進一步研究。
厭氧培養(yǎng)條件下,熱帶亞熱帶地區(qū)森林土壤反硝化過程中產(chǎn)生的NO占總氣態(tài)含氮產(chǎn)物的比率和N2O占總氣態(tài)含氮產(chǎn)物的比率通常遠遠高于溫帶森林土壤(Keller等, 1983; Keller等, 1986; Parsons等, 1993; Zhang等, 2009)。土壤氧化能力也許是影響熱帶亞熱帶土壤反硝化速率的關(guān)鍵因素,因為土壤氧化物含量高的土壤氧化能力強,即土壤氧化還原勢高,從而抑制了土壤反硝化的進行,使得NO和N2O占總氣態(tài)含氮產(chǎn)物的比率增加(Zhang等, 2009)。
盡管眾多文獻報道了熱帶亞熱帶地區(qū)不同土地利用方式或土地利用方式的改變對N2O排放的影響,但是很少有對這些生態(tài)系統(tǒng)下N2O排放途徑進行區(qū)分的研究。可控實驗室培養(yǎng)條件下用15N示蹤法研究N2O不同排放途徑,結(jié)果表明,40%~52%WFPS(土壤含水空隙率)的好氧條件下,反硝化是中國亞熱帶酸性森林土壤(pH4.5)和亞熱帶集約化蔬菜地N2O主要排放途徑(Zhang等, 2011a; Zhu 等, 2011),反硝化產(chǎn)生的N2O約占總N2O排放量的50%以上;而與之相應(yīng),在相似土壤含水率條件下(35%WFPS)溫帶牧羊草場(pH5.9)反硝化產(chǎn)生的N2O僅占總N2O排放量的10%以下(Rütting等, 2010)。但是在土壤含水率較高時(WFPS接近田間最大持水量),某德國溫帶酸性森林土壤(pH 3.8)原位試驗結(jié)果表明反硝化是N2O產(chǎn)生的主要途徑(Wolf和Brumme, 2002)。
好氧條件下反硝化是亞熱帶酸性森林土壤N2O的主要排放源,好氧條件下反硝化的發(fā)生是由于加入15N溶液后促進了由于微生物生長或土壤團聚體水分飽和所形成的厭氧微區(qū)的存在(Renault和Stengel, 1994)。好氧條件下也可能發(fā)生反硝化(Müller等, 2004; Xiong等, 2009),但其機理尚不明確。此外,化學(xué)反硝化也可能是酸性土壤N2O的排放源(S?rensen和Thorling, 1991),但是目前尚未將化學(xué)反硝化與生物反硝化區(qū)別開來。與溫帶森林土壤相比亞熱帶酸性森林土壤真菌生物量高(Shi等, 2002; Wu等, 2009),真菌具有同時進行反硝化和好氧呼吸的功能(Shoun等, 1992; Laughlin和Stevens, 2002),與需要在厭氧條件下才能進行的細菌反硝化相比真菌能在更寬范圍的氧氣濃度條件下進行反硝化(Firestone和Davidson, 1989; Granli和Bockman, 1994; Murray和Knowles, 2004)。熱帶亞熱帶生態(tài)系統(tǒng)土壤呈酸性可能不利于反硝化細菌的生長,進一步證實真菌參與的反硝化是N2O的重要排放源,真菌可能缺乏N2O還原酶(Shoun等, 1992),這就可以解釋為什么亞熱帶森林土壤是全球最大的N2O排放源,盡管這些地區(qū)土壤生態(tài)系統(tǒng)自養(yǎng)硝化和反硝化作用較弱(Xu和Cai, 2007; Zhao等, 2007)。
在熱帶地區(qū),N2O主要來源于反硝化,而NO主要來源于硝化作用(Veldkamp 等, 1998)。關(guān)于熱帶亞熱帶地區(qū)反硝化過程中NO排放的研究甚少。有研究表明熱帶亞熱帶土壤反硝化過程中產(chǎn)生的NO占總氣態(tài)氮產(chǎn)物的比率比N2O占總氣態(tài)氮產(chǎn)物的比率低(Zhang等, 2009)。
3.3 全球氣候變化下的熱帶亞熱帶土壤反硝化環(huán)境效應(yīng)
氮不足和氮過量分別是大多數(shù)溫帶和熱帶森林土壤生態(tài)系統(tǒng)的特征,它們對外源氮素施入的響應(yīng)明顯不同(Martinelli等, 1999)。熱帶森林土壤似乎已達到自然“氮飽和”狀態(tài),氮沉降的增加將可能導(dǎo)致較溫帶森林土壤更多的NO排放量(Li等, 2008),此外,熱帶森林土壤對人類活動產(chǎn)生的活性氮的保蓄能力沒有北緯地區(qū)森林土壤高,濕潤型熱帶亞熱帶森林額外的氮沉降將可能導(dǎo)致施入的氮素以NO損失的比例達到2%(Hall和Matson, 1999; Li等, 2008)。
值得注意的是,熱帶亞熱帶地區(qū)反硝化對全球變暖的貢獻和環(huán)境效應(yīng)需要進行綜合考慮,因為其它溫室氣體(如甲烷CH4)的排放和還原,也會受到反硝化作用的影響。反硝化厭氧培養(yǎng)條件下,加入的NO3--N顯著抑制了亞熱帶土壤CH4的產(chǎn)生和排放,這主要是由于NO3--N對產(chǎn)甲烷過程的競爭抑制作用或者反硝化產(chǎn)物對產(chǎn)甲烷菌的毒害作用造成的(Lindau, 1994; Kluber和Conrad, 1998; Lu等, 2005)。NO3--N對CH4排放的抑制效應(yīng)可能較N2O的強,且NO3--N不僅能抑制CH4的產(chǎn)生和排放還能抑制Fe3+的還原(Xu等, 2008)。
CO2濃度升高(從463升高至780 ppm)可促進陸地生態(tài)系統(tǒng)反硝化和N2O的排放(van Groenigen等, 2011)。這可能主要是由于植物水分利用效率的提高,降低了由蒸騰作用導(dǎo)致的土壤水分損失(Wullschleger等, 2002);此外,CO2濃度升高可促進很多生態(tài)系統(tǒng)中土壤生物活性的增強(Zak等, 2000; Pendall等, 2004);這些生態(tài)響應(yīng)有利于土壤厭氧微區(qū)的形成,從而促進了N2O主要產(chǎn)生途徑之一的反硝化作用的增強。CO2濃度升高也會促進根系生物量的增加,礦質(zhì)土壤的C源主要來自于根系分泌物,根系分泌物中易分解有效態(tài)C作為反硝化菌的能量物質(zhì)和呼吸底物可促進反硝化的進行,因此根系生物量的增加將促進反硝化作用,進而促進N2O的排放(van Groenigen等, 2011)。
溫室氣體排放量的增加加劇了陸地生態(tài)系統(tǒng)的輻射強度,這些溫室氣體的排放將至少抵消之前由于大氣CO2濃度升高、陸地生態(tài)系統(tǒng)C庫增加所估計的全球氣候變化消減潛力的16.6%(van Groenigen等, 2011),因此,可能過高估計了陸地生態(tài)系統(tǒng)減緩全球變暖的潛力。由此可知,評價反硝化的環(huán)境效應(yīng)需要在全球氣候變化的大背景條件下進行。
熱帶亞熱帶土壤普遍較弱的反硝化作用對于NO3--N的保蓄和淋失意義重大。依據(jù)Vitousek和Reiners提出的養(yǎng)分保持假說(Vitousek和Reiners, 1975),土壤N素含量較低的生態(tài)系統(tǒng)的關(guān)鍵特征之一是有機氮轉(zhuǎn)化成礦質(zhì)氮的速率通常較低,N循環(huán)和轉(zhuǎn)化過程朝有利于防止N損失(如淋失或反硝化氣態(tài)氮損失)的方向發(fā)展(Vitousek等, 1979; Huygen等, 2007)。為降低NO3--N損失風(fēng)險熱帶亞熱帶土壤形成了一些保N策略和機制,其中可能的保N策略和機制綜述如下。
4.1 降低硝化和礦化作用而增強固持作用
大多數(shù)對于溫帶土壤有效的保N策略和機理同樣對熱帶亞熱帶土壤有效。熱帶亞熱帶土壤降低以NO3--N形態(tài)的氮損失的必要前提是降低硝化速率,如淹水土壤施入NH4+-N形態(tài)的氮肥時,硝化過程減緩、NO3--N有效性限制了反硝化的進行(Aulakh等, 2000c)。此外,對于牧草地而言通過NO3--N滲透將其轉(zhuǎn)移至水溶性C含量較低的25 cm土層以下也許是防止施入的15N反硝化損失的另一策略(Pu, 1996)。澳大利亞亞熱帶南洋杉林地枯落物降低了硝化作用而增強了固持作用,使得更多的N被固持而防止了NO3--N的大量淋失或反硝化損失,南洋杉林地土壤較相鄰原始森林土壤礦質(zhì)氮含量相對缺乏,這也許是南洋杉林地土壤保持礦質(zhì)態(tài)N持續(xù)充足供應(yīng)的機理之一(Pu等, 2002; Xu等, 2008; Pan等, 2009)。秸稈還田的整地措施和覆蓋栽培的效果與林地枯落物的效果相似,通過降低凈硝化速率從而降低NO3--N含量達到降低N淋失和反硝化損失風(fēng)險的目的(Huang等, 2008)。
濕潤型熱帶放牧草場較低的有機N礦化速率和硝化速率限制了反硝化的進行(Vitousek和Reiners, 1975; Buresh和Austin, 1988; Buresh和DeDatta, 1990; Scholes和Sanchez, 1990)。即使是在有機N礦化速率較高的中國亞熱帶闊葉林土壤(其礦化速率是針葉林的2倍以上),硝化速率同樣極低,同時,這些闊葉林土壤產(chǎn)生的NO3--N中大約86%被微生物固持,有效防止了NO3--N淋失和反硝化損失(Zhang等, 2011b)。這種有機N礦化速率較高同時N固持效率也較高的機理同樣也在澳大利亞亞熱帶枯落物覆蓋的硬木樹林地土壤上被證實,表明更多的N素被保存在土壤中,從而在較長時期內(nèi)有利于樹木的養(yǎng)分供應(yīng)(Huang等, 2008; Stark和Hart, 1997)。
熱帶亞熱帶地區(qū)土壤較低的硝化速率本身就是減緩該高溫高濕生態(tài)系統(tǒng)NO3--N淋失風(fēng)險的策略(Vitousek等, 1979; Huygen等, 2007),同時較低的反硝化速率本身也是降低氣態(tài)N損失的策略。即使當加入葡萄糖反硝化速率提高,亞熱帶土壤也具有降低N礦化來彌補反硝化N損失的保氮策略,并且這種保氮機理在有機C含量較低的土壤上更加突出(Jia等, 2010)。
4.2 NO3--N異化還原為銨和N的固持
微生物介導(dǎo)的產(chǎn)銨過程(如NO3--N異化還原為銨(DNRA)、微生物同化、NO3--N激發(fā)的有機N礦化)與反硝化競爭底物NO3--N,將N以NH4+形式保蓄下來,這對于降低反硝化N2O和NO排放以及降低NO3--N淋失導(dǎo)致的地表水和地下水富營養(yǎng)化風(fēng)險具有重要的生態(tài)環(huán)境意義(Tobias等, 2001; Page等, 2003; Ma和Aelion, 2005)。
氣候條件(如降雨量)可影響N的保蓄機理(Zhang等, 2011c),在潮濕的氣候條件下由DNRA或NO3--N微生物固持過程所保蓄的N量顯著高于溫帶或半干旱地區(qū)氣候條件。Huygens等,發(fā)現(xiàn)智利南部假山毛櫸原始森林生態(tài)系統(tǒng)中86%以上的新產(chǎn)生的NO3--N被立即消耗,其中99%以上是通過DNRA途徑被消耗(Huygen等, 2007)。生態(tài)系統(tǒng)中DNRA途徑的存在比我們想象的要更為普遍(Huygen等, 2007; Vitousek 和Sanford, 1986; Vitousek和Matson, 1988),特別是當土壤水分含量較高、厭氧微區(qū)較多時。不同生態(tài)系統(tǒng)中DNRA和NO3--N微生物固持作用的生態(tài)功能和角色以及DNRA和NO3--N微生物固持作用普遍發(fā)生的條件還有待開展更深入的研究,這些將為我們探索生態(tài)系統(tǒng)N保蓄機理提供更多的線索。
此外,DNRA也是N2O的排放途徑,DNRA和反硝化對N2O排放的相對貢獻至今尚不明確,因此應(yīng)綜合考慮并評價DNRA的生態(tài)環(huán)境效應(yīng)。
4.3 NO3--N向可溶性有機N轉(zhuǎn)化途徑的增強
熱帶亞熱帶土壤長期厭氧培養(yǎng)條件下當土壤Eh降低時,加入的NO3--N由非生物固持作用快速轉(zhuǎn)化為可溶性有機N(DON)(Zhang等, 2010),這一現(xiàn)象可用亞鐵循環(huán)假說(Ferrous Wheel Hypothesis)加以解釋,即厭氧微區(qū)的形成促進了有利于非生物NO3--N還原的氧化還原條件的形成,含鐵(Fe)或含錳(Mn)礦物首先將NO3-還原成NO2-,大量存在的可溶性有機C(DOC)進一步和NO2-反應(yīng)生成DON(Davidson等, 2003, 2008)。這一現(xiàn)象意味著當熱帶亞熱帶森林土壤枯落物層(含大量有機C)長期淹水條件下形成足夠低的氧化還原勢時DON會大量生成,這也許是熱帶亞熱帶土壤的另一NO3--N保蓄策略和機理,盡管DON的移動性較NO3--N低,這一途徑也可能在溫暖濕潤的季節(jié)通過DON的滲透和徑流而造成N損失環(huán)境污染威脅。
熱帶亞熱帶氣候條件下,不同生態(tài)系統(tǒng)植被類型不同,與之協(xié)同進化形成的微生物區(qū)系和種群也不同,使土壤具有了不同的SOM特性,不同氮轉(zhuǎn)化途徑的精巧配合使熱帶亞熱帶土壤發(fā)揮了保氮和供氮功能,而土壤SOM在其中起到了關(guān)鍵的樞紐作用。
隨著發(fā)展中國家和地區(qū)農(nóng)業(yè)的不斷發(fā)展,至2020年全球60%以上的N肥將施用在熱帶和亞熱帶地區(qū),將進一步增加含氮化合物的遷移、轉(zhuǎn)化、排放和沉降(Galloway等, 1994)。越來越多的證據(jù)表明熱帶亞熱帶土壤反硝化具有一些與溫帶土壤不同的特征,然而還需要進一步深入研究造成熱帶亞熱帶土壤和溫帶土壤反硝化特性不同的原因和機理,這將有助于加深我們對熱帶亞熱帶環(huán)境條件下土壤N循環(huán)的理解和認識。
全球氣候變化已造成陸地生態(tài)系統(tǒng)許多物理、化學(xué)和生物學(xué)方面的變化(如大氣CO2濃度升高、氣溫升高、降水模式的改變、大氣N沉降、土地利用方式改變、森林火災(zāi)/生物質(zhì)燃燒等),全球氣候變化可能會導(dǎo)致N生物地區(qū)化學(xué)循環(huán)的改變,反之進一步調(diào)節(jié)生態(tài)系統(tǒng)對環(huán)境變化的響應(yīng)。大多數(shù)關(guān)于環(huán)境變化引起N循環(huán)改變的生態(tài)后果的研究都集中在溫帶地區(qū),這些地區(qū)生態(tài)系統(tǒng)中的生化過程通常受到土壤N含量過低的限制。但是,熱帶亞熱帶生態(tài)系統(tǒng)通過調(diào)節(jié)生物地球化學(xué)循環(huán)、進而調(diào)節(jié)其對環(huán)境變化的響應(yīng)機制尚不清楚,特別是全球氣候變化和N素以及其它養(yǎng)分元素生物地球化學(xué)循環(huán)之間的關(guān)系仍是研究空白。因此,我們針對全球氣候變化和反硝化之間的可能的耦合過程和機理提出了一些科學(xué)假設(shè),兩者之間的耦合過程和機理通過C和其它營養(yǎng)元素的生物地球化學(xué)循環(huán)交織在一起。C生物地球化學(xué)循環(huán)是陸地生態(tài)系統(tǒng)和氣候系統(tǒng)之間的關(guān)鍵交織點,而N的生物地球化學(xué)循環(huán)進一步受C以及其它養(yǎng)分元素有效性的促進或抑制。值得指出的是,全球水循環(huán)也是全球氣候變暖背景下驅(qū)動C和其它養(yǎng)分元素循環(huán)以及反硝化的重要生態(tài)過程,因此需要在研究上述科學(xué)問題時加以充分考慮。
此外,研究環(huán)境變化對N循環(huán)的影響以及評價N循環(huán)在調(diào)節(jié)生態(tài)系統(tǒng)對環(huán)境變化的響應(yīng)機制中的作用時,應(yīng)將N循環(huán)放在C、N、P生物地球化學(xué)循環(huán)之間交互作用的背景下,利用土壤化學(xué)、微生物生態(tài)學(xué)、植物生理學(xué)、分子生物學(xué)等多學(xué)科交叉的研究方法,這些研究將為更好地認識反硝化的相對重要性及其與其它元素循環(huán)的關(guān)系提供理論依據(jù)。
AHN Y H. 2006. Sustainable nitrogen elimination biotechnologies: A review [J]. Process Biochemistry, 41: 1709-1721.
ATTARD E, RECOUS S, CHABBI A, et al. 2011. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses [J]. Global Change Biology, 17: 1975-1989.
AULAKH M S, DORAN J W, MOSIER A R. 1992. Soil denitrification -significance, measurement, and effects of management[C]//Stewart B A. Advances in Soil Science, Vol 18. New York: Springer-Verlag.
AULAKH M S, KHERA T S, DORAN J W, et al. 2001. Managing crop residue with green manure, urea, and tillage in a rice-wheat rotation [J]. Soil Science Society of America Journal, 65: 820-827.
AULAKH M S, KHERA T S, DORAN J W. 2000c. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil I. Effect of nitrate and ammoniacal nitrogen [J]. Biology and Fertility of Soils, 31: 162-167.
AULAKH M S, KHERA T S, DORAN J W. 2000b. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soil II. Effect of organic manures varying in N content and C:N ratio [J]. Biology and Fertility of Soils, 31: 168-174.
AULAKH M S, KHERA T S, SINGH K, et al. 2000a. Yields and nitrogen dynamics in a rice-wheat system using green manure and inorganic fertilizer [J]. Soil Science Society of America Journal, 64: 1867-1876.
H社區(qū)還與所屬街道、周邊商鋪、企業(yè)簽署消防安全責(zé)任狀,將消防安全納入安全生產(chǎn)目標管理考核范疇,根據(jù)考核結(jié)果對先進社區(qū)給予通報表彰,對不合格社區(qū)給予通報批評。 對于安全生產(chǎn)這塊,H社區(qū)實行的是黨政同責(zé),一崗雙責(zé)制。 H社區(qū)的書記說道:
BACON P E, FRENEY J R. 1989. Nitrogen loss from different tillage systems and the effect on cereal grain yield [J]. Fertilizer Research 20: 59-66.
BENNEMA J, JONGERIUS A, LEMOS R C. 1970. Micromorphology of some oxic and argillic horizons in south Brazil in relation to weathering sequences [J]. Geoderma, 4: 333-355.
BOWDEN W B. 1986. Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets [J]. Biogeochemistry, 2: 249-279.
BOYER E W, ALEXANDER R B, PARTON W J, et al. 2006. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales [J]. Ecological Applications, 16: 2123-2142.
BURESH R J, AUSTIN E R. 1988. Direct measurement of dinitrogen and nitrous oxide flux in flooded rice fields [J]. Soil Science Society of America Journal, 52: 681-688.
BURESH R J, DEDATTA S K. 1990. Denitrification losses from puddled rice soils in the tropics [J]. Biology and Fertility of Soils, 9: 1-13.
Chapuis-Lardy L, Wrage N, Metay A, et al. 2007. Soils, a sink for N2O? A review [J]. Global Change Biology, 13: 1-17.
DAVIDSON E A, CHOROVER J, DAIL D B. 2003. A mechanism ofabiotic immobilization of nitrate in forest ecosystems: The ferrous wheel hypothesis [J]. Global Change Biology, 9: 228-236.
DAVIDSON E A, CHOROVER J, DAIL D B. 2008. Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate [J]. Biogeochemistry, 90: 65-73.
DAVIDSON E A, KINGERLEE W. 1997. A global inventory of nitric oxide emissions from soils [J]. Nutrient Cycling in Agroecosystems, 48: 37-50.
DRURY C F, OLOYA T O, MCKENNEY D J, et al. 1998. Long-term effects of fertilization and rotation on denitrification and soil carbon [J]. Soil Science Society of America Journal, 62: 1572-1579.
FELLOWS C S, HUNTER H M, ECCLESTON C E A, et al. 2011. Denitrification potential of intermittently saturated floodplain soils from a subtropical perennial stream and an ephemeral tributary [J]. Soil Biology and Biochemistry, 43: 324-332.
FIRESTONE M, DAVIDSON E. 1989. Microbiological basis of NO and N2O production and consumption in soil[C]// Andreae M, SCHIMEL D. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Chichester, England: Wiley: 7-21.
GALLOWAY J N, DENTENER D G, CAPONE E W, et al. 2004. Nitrogen cycles: past, present and future [J]. Biogeochemistry, 70: 153-226.
GALLOWAY J N, LEVYLL H, KASIBHATLA P S. 1994. Year 2020: Consequences of population growth and development on the deposition of oxidized nitrogen [J]. Ambio, 23: 120-123.
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 320: 889-892.
GOODROAD L L, KEENEY D R. 1984. Nitrous oxide emissions from soils during thawing [J]. Canadian Journal of Soil Science, 64: 187-194.
GRANLI T, BOCKMAN O C. 1994. Processes that from N2O in soils, nitrogen oxide from agriculture [J]. Norway Journal of Agricultural Science, 12: 18-22.
GRIFFITHS R P, CALDWELL B A, SOLLINS P. 1993. Effects of vegetation regime on denitrification potential in two tropical volcanic soils [J]. Biology and Fertility of Soils, 16: 157-162.
GROFFMAN P M, TIEDJE J M. 1989. Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale [J]. Soil Biology and Biochemistry, 21: 621-626.
GROFFMAN P M. 1995. A conceptual assessment of the importance of denitrification as a source of soil nitrogen loss in tropical agro-ecosystems [J]. Fertilizer Research, 42: 139-148.
HALL S J, MATSON P A. 1999. Nitrogen oxide emissions after nitrogen additions in tropical forests [J]. Nature, 400: 152-155.
HEINEN M. 2006. Simplified denitrification models. Overview and properties [J]. Geoderma, 133: 444-463.
HOFSTRA N, BOUWMAN A F. 2005. Denitrification in agricultural soils: summarizing published data and estimating global annual rates [J]. Nutrient Cycling in Agroecosystems, 72: 267-278.
HOULTON B Z, SIGMAN D M, HEDIN O. 2006. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests [J]. Proceedings of the National Academy of Sciences of the USA, 103: 8745-8750.
HUANG Z, XU Z, BLUMFIELD T J, et al. 2008. Soil nitrogen mineralization and fate of (15NH4)2SO4in field-incubated soil in a hardwood plantation of subtropical Australia: the effect of mulching [J]. Journal of Soils and Sediments, 8: 389-397.
HUYGENS D, RüTTING T, BOECKX P, et al. 2007. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem [J]. Soil Biology and Biochemistry, 39: 2448-2458.
Islam N. 1992. Denitrification under Different Tillage and Cropping Systems of Eastern Australia [D]. Queensland, Australia: Griffith University.
JIA J, LI Z, LIU M, et al. 2010. Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China [J]. Agricultural Sciences in China, 9: 1309-1316.
KELLER M, GOREAU T J, WOFSY S C, et al. 1983. Production of nitrous oxide and consumption of methane by forest soils [J]. Geophysical Research Letters, 10: 1156-1159.
KELLER M, KAPLAN W A, WOFSY S C. 1986. Emissions of N2O, CH4and CO2from tropical forest soils [J]. Journal of Geophysical Research, 91: 11791-11802.
KLUBER H D, CONRAD R. 1998. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii [J]. FEMS Microbiology Ecology, 25: 331-339.
KUMARASWAMY R, SJOLLEMA K, KUENEN G, et al. 2006. Nitrate-dependent [Fe (II) EDTA]2?oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor [J]. Systematic and Applied Microbiology, 29: 276-286.
LANDAU C W. 1994. Methane emissions from Louisiana rice fields amended with nitrogen fertilizers [J]. Soil Biology and Biochemistry, 26: 353-359.
LASHOF D A, AHUJA D R. 1990. Relative contribution of greenhouse emissions to global warming [J]. Nature, 344: 529-531.
LAUGHLIN R J, STEVENS R J. 2002. Evidence for fungal dominance of denitrification and codenitrification in grassland soil [J]. Soil Science Society of America Journal, 66: 1540-1548.
LI D, WANG X, SHENG G, et al. 2008. Soil nitric oxide emissions after nitrogen and phosphorus additions in two subtropical humid forests [J]. Journal of Geophysical Research, 113 D16301. doi: 10.1029/2007JD009375.
LI Y, YU S, STRONG J, et al. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “FeIII–FeII redox wheel” in dynamic redox environments [J]? Journal of Soils and Sediments, 12: 683-693.
LU Y, WASSMANN R, NEUE H U, et al. 2005. Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium and nitrate [J]. Journal of Environmental Quality, 29: 1733-1740.
MA H B, AELION C M. 2005. Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary [J]. Soil Biology and Biochemistry, 37: 1869-1878.
MAAG M, VINTHER F P. 1999. Effect of temperature and water on gaseous emissions from soils treated with animal slurry [J]. Soil Science Society of America Journal, 63: 858-865.
MAHMOOD T, ALI R, ASLAM Z. 2001. Fate of the (15)N-labelled urea applied to irrigated wheat grown after cotton harvest under semiarid subtropical conditions [J]. Pakistan Journal of Botany, 33: 389-392.
MAHMOOD T, ALI R, MALIK K A, et al. 2005. Seasonal pattern of denitrification under an irrigated wheat-maize cropping system fertilized with urea and farmyard manure in different combinations [J]. Biology and Fertility of Soils, 42: 1-9.
MAHMOOD T, ALI R, SAJJAD M I, et al. 2000. Denitrification and total fertilizer-N losses from an irrigated cotton field [J]. Biology and Fertility of Soils, 31: 270-278.
MANCONI I, MAAS P, LENS P N L. 2006. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2-solutions [J]. Nitric Oxide–Biology and Chemistry, 15: 40-49.
MARTINELLI L A, PICCOLO M C, TOWNSEND A R, et al. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests [J]. Biogeochemistry, 46: 45-65.
MATHIEU O, LéVêQUE J, HéNAULT C, et al. 2006. Emissions and spatial variability of N2O, N2and nitrous oxide mole fraction at the field scale, revealed with15N isotopic techniques [J]. Soil Biology and Biochemistry, 38: 941-951.
MATSON P A, VITOUSEK P M. 1990. Ecosystem approach for the development of a global nitrous oxide budget [J]. Bioscience, 40: 667-672.
MCLAIN J E T, MARTENS D A. 2006. N2O production by heterotrophic N transformations in a semiarid soil [J]. Applied Soil Ecology, 32: 253-263.
MüLLER C, STEVENS R J, LAUGHLIN R J, et al. 2004. Microbial processes and the site of N2O production in a temperate grassland soil [J]. Soil Biology and Biochemistry, 36: 453-461.
MURRAY R E, KNOWLES R. 2004. Trace amounts of O2affect NO andN2O production during denitrifying enzyme activity (DEA) assays [J]. Soil Biology and Biochemistry, 36: 513-517.
MYROLD D D. 1988. Denitrification in ryegrass and winter wheat cropping systems of western Oregon [J]. Soil Science Society of America Journal, 52: 412-415.
NIEDER R, SCHOLLMAYER G, RICHTER J. 1989. Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review [J]. Biology and Fertility of Soils, 8: 219-226.
PAGE K L, DALAL R C, MENZIES N M. 2003. Nitrate ammonification and its relationship to the accumulation of ammonium in a Vertisol subsoil [J]. Australian Journal of Soil Research, 41: 687-697.
PAN K, XU Z, BLUMFIELD T J, et al. 2009. Application of (15NH4)2SO4to study N dynamics in hoop pine plantation and adjacent native forest of subtropical Australia: the effects of injection depth and litter addition [J]. Journal of Soils and Sediments, 9: 515-525.
PARKIN T B. 1990. Characterizing the variability of soil denitrification [C]//Revsbech N P, Sorensen J. Denitrification in Soil and Sediment. New York: Plenum Press: 213-228.
PARSONS W F J, MITRE M E, KELLER M, et al. 1993. Nitrate limitation of N2O production and denitrification from tropical pasture and rain forest soils [J]. Biogeochemistry, 22: 179-193.
PAYNE W J. 1981. Denitrification[M]. New York: John Wiley&Sons.
PENDALL E, BRIDGHAM S, HANSON P J, et al. 2004. Below-ground process responses to elevated CO2and temperature: a discussion of observations, measurement methods, and models [J]. New Phytologist, 162: 311-322.
PETT-RIDGE J, SILVER W L, FIRESTONE M K. 2006. Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil [J]. Biogeochemistry, 81: 95-110.
PHILIPS S, RABAEY K, VERSTRAETE W. 2003. Impact of iron salts on activated sludge and interaction with nitrite or nitrate [J]. Bioresource Technology, 88: 229-239.
PU G X, SAFFIGNA P G, XU Z H. 2001. Denitrification, leaching and immobilization of15N-labelled nitrate in winter under windrowed harvesting residues in hoop pine plantations of 1–3 years old in subtropical Australia [J]. Forest Ecology and Management, 152: 183-194.
PU G X, SAFFIGNA P G, XU Z H. 2005. Transformations of nitrate N-15 under different forest harvest residue regimes in a hoop pine plantation in Australia [J]. Journal of Tropical Forest Science, 17: 372-385.
PU G X, XU Z H, SAFFIGNA P G. 2002. Fate of15N-labelled nitrate in a wet summer under different residue management regimes in young hoop pine plantations [J]. Forest Ecology and Management, 170: 285-298.
PU G X. 1996. Denitrification in Cereal and Sugarcane Soils of Australia [D]. Queensland, Australia: Griffith University.
QAFOKU N P, VAN RANST E, NOBLE A, et al. 2004. Variable charge soils: their mineralogy, chemistry and management [J]. Advances in Agronomy, 84: 159-215.
QIAN C, CAI Z C. 2007. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations [J]. Plant and Soil, 300: 197-205.
RENAULT P, STENGEL P. 1994. Modeling oxygen diffusion in aggregated soils. I. Anaerobiosis inside the aggregates [J]. Soil Science Society of America Journal, 58: 1017-1023.
ROBERTSON G P, TIEDJE J M. 1988. Deforestation alters denitrification in a lowland tropical rain forest [J]. Nature, 336: 756-759.
RüTTING T, CLOUGH T J, MüLLER C, et al. 2010. Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture [J]. Global Change Biology, 16: 2530-2542.
SANCHEZ P A, PALM C A, SZOTT L T, et al. 1989. Organic input management in tropical agroecosystems[C]// Coleman D C, OADES J M, UEHARA G. Dynamics of Soil Organic Matter in Tropical Ecosystems, NifTAL Project. Honolulu, HI: University of Hawaii Press: 125-152.
SCHMIDT J, SEILER W, CONRAD R. 1988. Emission of nitrous oxide from temperate forest soils into the atmosphere [J]. Journal of Atmospheric Chemistry, 6: 95-115.
SCHOLES M C, SANCHEZ P A. 1990. Low soil nitrogen mineralization rates in a humid tropical pasture [J]. Tropical Ecology, 31: 12-15.
SHOUN H, KIM D, UCHIYAMA H, et al. 1992. Denitrification by fungi [J]. FEMS Microbiology Letters, 94: 277-282.
?IMEK M, COOPER J E, PICEK T, et al. 2000. Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice [J]. Soil Biology and Biochemistry, 32: 101-110.
?IMEK M, COOPER J E. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years [J]. European Journal of Soil Science, 53: 345-354.
S?RENSEN J, THORLING L. 1991. Stimulation by lepidocrocite (7-FeOOH) of Fe (II)- dependent nitrite reduction [J]. Geochimica et Cosmochimica Acta, 55: 1289-1294.
STARK J M, HART S C. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests [J]. Nature, 385: 61-64.
STEHFEST E, BOUWMAN L. 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions [J]. Nutrient Cycling in Agroecosystems, 74: 207-228.
TIEDJE J M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonia[C]//Zehnder A J B. Biology of Anaerobic Microorganisms. New York: John Wiley & Sons: 179-244.
TOBIAS C R, ANDERSON I C, CANUEL E A. 2001. Nitrogen cycling through a fringing marsh-aquifer ecotone [J]. Marine Ecology Progress Series, 210: 25-39.
VAN GROENIGEN K, OSENBERG C W, HUNGATE B A. 2011. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 475: 215-216.
VELDKAMP E, KELLER M, NU?EZ M. 1998. Effects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa Rica [J]. Global Biogeochemistry Cycling, 12: 71-79. VITOUSEK P, SANFORD R. 1986. Nutrient cycling in moist tropical forest [J]. Annual Review of Ecology and Systematics, 17: 137-167.
VITOUSEK P M, GOSZ J R, GRIER C C, et al. 1979. Nitrate losses from disturbed ecosystems [J]. Science, 204: 469-474.
VITOUSEK P M, MATSON P A M. 1988. Nitrogen transformations in a range of tropical forest soils [J]. Soil Biology and Biochemistry, 20: 361-367.
VITOUSEK P M, REINERS W A. 1975. Ecosystem succession and nutrient retention: a hypothesis [J]. Bioscience, 25: 376-381.
WANG L, CAI Z. 2008. Nitrous oxide production at different soil moisture contents in an arable soil in China [J]. Soil Science and Plant Nutrition, 54: 786-793.
WEIER K L, MACRAE I C, MYERS R J K. 1993. Denitrification in a clay soil under pasture and annual crop: estimation of potential losses using intact soil cores [J]. Soil Biology and Biochemistry, 25: 991-997.
WEIER K L, MACRAE I C, MYERS R J K. 1991. Seasonal variation in denitrification in a clay soil under a cultivated crop and a permanent pasture [J]. Soil Biology and Biochemistry, 23: 629-635.
WEIER K L. 1994. Nitrogen use and losses in agriculture in subtropical Australia [J]. Fertilizer Research, 39: 245-257.
WIJLER J, DELWICHE C C. 1954. Investigations on the denitrifying process in soil [J]. Plant and Soil, 5: 155-169.
WOLF I, BRUMME R. 2002. Contribution of nitrification and denitrification sources for seasonal N2O emissions in an acid German forest soil [J]. Soil Biology and Biochemistry, 34: 741-744.
WOLF I, BRUMME R. 2003. Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils [J]. Soil Science Society of America Journal, 67: 1862-1868.
WU Y, MA B, ZHOU L, et al. 2009. Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis [J]. Applied Soil Ecology, 43:234-240.
WULLSCHLEGER S D, TSCHAPLINSKI T J, NORBY R J. 2002. Plant water relations at elevated CO2–implications for water-limited environments [J]. Plant Cell and Environment, 25: 319-331.
XIONG Z Q, KHALIL M A K, XING G, et al. 2009. Isotopic signatures andconcentration profiles of nitrous oxide in a rice-based ecosystem during the drained crop-growing season [J]. Journal of Geophysical Research, 114, G02012. doi:10.1029/2008JG000827.
XU Y B, CAI Z C, LEI B K. 2008. Effect of NO3--N on CH4emission during denitrification in subtropical soils [J]. Journal of Environmental Sciences-China, 29: 3513-3519.
XU Y B, CAI Z C, XU Z H. 2012. Production and consumption of N2O during denitrification in subtropical soils of China [J]. Journal of Soils and Sediments, 12: 1339-1349.
XU Y B, CAI Z C. 2007. Denitrification characteristics of subtropical soils in China affected by soil parent material and land use [J]. European Journal of Soil Science, 58: 1293-1303.
XU Z H, WARD S, CHEN C R, et al. 2008. Soil carbon and nutrient pools, microbial properties and gross nitrogen transformations in adjacent natural forest and hoop pine plantations of subtropical Australia [J]. Journal of Soils and Sediments, 8: 99-105.
ZAK D R, PREGITZER K S, KING J S, et al. 2000. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis [J]. New Phytologist, 147: 201-222.
ZECH W, SENESI N, GUGGENBERGER G, et al. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics [J]. Geoderma, 79: 117-161.
ZHANG J, CAI Z, CHENG Y, et al. 2009. Denitrification and total nitrogen gas production from forest soils of Eastern China [J]. Soil Biology and Biochemistry, 41:2551-2557.
ZHANG J, CAI Z, CHENG Y, et al. 2010. Nitrate immobilization in anaerobic forest soils along a North–South transect in east China [J]. Soil Science Society of America Journal, 74: 1193-1200.
ZHANG J, CAI Z, ZHU T. 2011a. N2O production pathways in the subtropical acid forest soils in China [J]. Environmental Research, 111: 643-649.
ZHANG J, MüLLER C, ZHU T, et al. 2011b. Heterotrophic nitrification is the predominant NO3?production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China [J]. Biology and Fertility of Soils, 47: 533-542.
ZHANG J, ZHU T, CAI Z, et al. 2011c. Nitrogen cycling in forest soils across climate gradients in Eastern China [J]. Plant and Soil, 342: 419-432.
ZHAO W, CAI Z C, XU Z H. 2007. Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China[J]? Plant and Soil, 297: 213-221.
ZHU T, ZHANG J, CAI Z. 2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation [J]. Plant and Soil, 343: 313-327.
丁昌璞. 2008. 中國自然土壤、旱作土壤、水稻土的氧化還原狀況和特點[J].土壤學(xué)報, 45: 66-75.
史央, 戴傳超, 陸玲. 2002. 中國科學(xué)院紅壤生態(tài)站不同土壤中的微生物類群調(diào)查[J]. 南京師范大學(xué)學(xué)報, 25: 32-36.
徐仁扣, 李九玉, 姜軍. 2014. 可變電荷土壤中特殊化學(xué)現(xiàn)象及其微觀機制的研究進展[J].土壤學(xué)報, 51(2): 1-9.
Progresses in Research on Denitrification in Tropical and Subtropical Soils of Terrestrial Ecosystems
XU Yongbo1, XU Zhihong2, CAI Zucong3
1. College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China; 2. Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, QLD 4111, Australia; 3. School of Geography Sciences, Nanjing Normal University, Nanjing 210097, China
Denitrification has been extensively studied in soils from temperate zones in industrialized countries. However, few studies quantifying denitrification rates in soils from tropical and subtropical zones have been reported. Denitrification mechanisms in tropical/subtropical soils may be different from other soils, due to their unique soil characteristics. The identification of denitrification in the area is crucial to understand the role of denitrification in the global nitrogen (N) cycle in terrestrial ecosystems, and in the interaction between global environmental changes and ecosystem responses. We review the existing literature on microbially-mediated denitrification in tropical/subtropical soils, attempting to provide a better understanding about and new research directions for denitrification in these regions. Tropical and subtropical soils might be characterized by generally lower denitrification capacity than temperate soils, with greater variability due to land use and management practices varying temporally and spatially. Factors that influence soil water content and the nature and rate of carbon (C) and N turnover are the landscape and field scale controls of denitrification. High redox potential in the field, which is mainly attributed to soil oxide enrichment, may be at least one critical edaphic variable responsible for slow denitrification rates in the humid tropical and subtropical soils. However, soil pH is not responsible for these slow denitrification rates. Organic C mineralization is more important than total N content and C/N in determining denitrification capacity in humid subtropical soils. There is increasing evidence that the ecological consequence of denitrification in tropical and subtropical soils may be different from that of temperate zones. Contribution of denitrification in tropical and subtropical regions to the global climate warming should be considered comprehensively since it could affect other greenhouse gases, such as methane (CH4) and carbon dioxide (CO2), and N deposition. Tropical/subtropical soils have developed several N conservation strategies to prevent N losses via denitrification from the ecosystems. However, the mechanisms involved in the biogeochemical regulation of tropical and subtropical ecosystem responses to environmental changes are largely unknown. These works are important for accurately modeling denitrification and all other simultaneously operating N transformations.
denitrification; environmental implication; nitrate leaching; nitrogen retention strategies; nitrous oxide
S15
A
1674-5906(2014)09-1557-10
續(xù)勇波,XU Zhihong,蔡祖聰. 熱帶亞熱帶土壤氮素反硝化研究進展[J]. 生態(tài)環(huán)境學(xué)報, 2014, 23(9): 1557-1566.
XU Yongbo, XU Zhihong, CAI Zucong. Progresses in Research on Denitrification in Tropical and Subtropical Soils of Terrestrial Ecosystems [J]. Ecology and Environmental Sciences, 2014, 23(9): 1557-1566.
國家自然科學(xué)基金項目(31101605;31260503);云南省自然科學(xué)基金項目(2010ZC083)
續(xù)勇波(1974年生),女,副教授,博士,主要從事養(yǎng)分資源利用與環(huán)境效應(yīng)研究。*通信作者
2014-06-16