• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      上皮間質(zhì)轉(zhuǎn)化在肝細(xì)胞癌侵襲轉(zhuǎn)移中的研究進(jìn)展

      2014-03-08 19:20:22綜述于聰慧審校
      醫(yī)學(xué)綜述 2014年7期
      關(guān)鍵詞:上皮肝癌通路

      張 鵬(綜述),于聰慧(審校)

      (1.北京軍區(qū)總醫(yī)院肝膽外科,北京 100700; 2.山西醫(yī)科大學(xué)研究生院,太原 030001)

      原發(fā)性肝細(xì)胞癌(hepatocellular carcinoma,HCC)是我國高發(fā)、危害極大的惡性腫瘤,其發(fā)病隱匿,侵襲性生長快速,大多數(shù)肝癌患者就診時已屬中晚期,手術(shù)切除率很低,術(shù)后復(fù)發(fā)率及病死率很高。有研究發(fā)現(xiàn),HCC的3年復(fù)發(fā)率達(dá)50%,姑息治療的晚期患者,5年生存率低至7%[1-2]。因此,尋找新的治療手段非常迫切。近年來研究發(fā)現(xiàn),上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transiformation,EMT)是腫瘤轉(zhuǎn)移的重要機(jī)制之一,EMT現(xiàn)象出現(xiàn)在原發(fā)性肝癌細(xì)胞中,并且與HCC侵襲、轉(zhuǎn)移及化療藥物耐藥相關(guān)[3-4]?,F(xiàn)對EMT在HCC侵襲轉(zhuǎn)移中的研究進(jìn)展綜述如下。

      1 調(diào)控EMT的轉(zhuǎn)錄因子

      1.1轉(zhuǎn)錄因子Twist調(diào)控EMT 轉(zhuǎn)錄因子Twist是由202個氨基酸殘基組成的結(jié)合蛋白,含有高度保守的堿性螺旋-環(huán)-螺旋結(jié)構(gòu)域。人類Twist基因定位于染色體7p21,包含2個外顯子和1個內(nèi)含子,其中外顯子1具有編碼功能,信使RNA序列全長1669 bp,開放閱讀框長609 bp。Twist蛋白在小鼠和人之間的同源性高達(dá)96%。Twist是腫瘤細(xì)胞發(fā)生EMT,獲得遷徙、侵襲及轉(zhuǎn)移能力的主要誘導(dǎo)因子之一[5]。Twist以Twist/Mi2/NuRD蛋白復(fù)合物與上皮鈣黏素的啟動子區(qū)域結(jié)合,具有獨立抑制上皮鈣黏素的表達(dá),上調(diào)纖維連接蛋白和神經(jīng)鈣黏素的表達(dá),從而減弱細(xì)胞間連接,促進(jìn)細(xì)胞侵襲及轉(zhuǎn)移,最終誘導(dǎo)EMT[6-8]。Niu等[9]和Yang[10]報道,EMT過程的轉(zhuǎn)錄因子Twist在肝癌組織中高表達(dá)預(yù)示著肝癌患者更容易肝內(nèi)或肝外轉(zhuǎn)移。信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducers and activators of transcription3,STAT3)信號途徑負(fù)責(zé)將細(xì)胞外的信號傳遞到細(xì)胞核,從而誘導(dǎo)靶基因轉(zhuǎn)錄發(fā)揮生物學(xué)效應(yīng)。Zhang等[11]研究發(fā)現(xiàn),Twist、上皮鈣黏素的表達(dá)與活化的STAT3信號相聯(lián)系,介導(dǎo)肝癌的侵襲與轉(zhuǎn)移,磷酸化的STAT3、Twist、上皮鈣黏素形成的功能信號軸(p-STAT3/Twist/上皮鈣黏素)異??赡軐?dǎo)致肝癌患者預(yù)后不良。

      1.2鋅指轉(zhuǎn)錄因子Snail調(diào)控EMT Snail是鋅指轉(zhuǎn)錄抑制因子家族中的一員,其在脊柱動物中包括Snail和Slug兩個亞家族,其中Snail基因家族包括Snail1、Snail2和Snail3。人Snail基因位于第20號染色體長臂20q13.1~q13.2。Snail和Slug均可與上皮細(xì)胞黏附分子上皮鈣黏素基因啟動子近端的E-box(CACGTG)序列結(jié)合下調(diào)上皮鈣黏素的表達(dá),促進(jìn)EMT發(fā)生[12]。Song等[13]報道,Snail在誘導(dǎo)EMT發(fā)生的過程中,提高了腫瘤細(xì)胞遷徒和侵襲能力,有利于腫瘤侵襲和向遠(yuǎn)處擴(kuò)散,因而導(dǎo)致癌癥患者預(yù)后不良。Niu等[9]和Yang等[10]報道,Snail的表達(dá)也與肝癌患者的不良預(yù)后相關(guān)。Miyoshi等[14]的研究證明,在肝癌細(xì)胞中,Snail不僅抑制上皮鈣黏素的表達(dá),而且可通過調(diào)控基質(zhì)金屬蛋白酶的表達(dá)而增加腫瘤的侵襲轉(zhuǎn)移能力。雖然有報道顯示轉(zhuǎn)錄因子Snail高表達(dá)于肝癌中,但目前Snail在肝癌中作為EMT過程的標(biāo)志的研究還比較少[15]。

      1.3E盒結(jié)合鋅指蛋白1/E盒結(jié)合鋅指蛋白2 E盒結(jié)合鋅指蛋白(zinc finger E-box-binding protein,ZEB)家族屬于鋅指蛋白類,包括ZEB-1和ZEB-2,ZEB-1和ZEB-2能與上皮細(xì)胞內(nèi)的上皮鈣黏素基因的啟動子序列中E-box(CACCTC/G) 序列結(jié)合,抑制其轉(zhuǎn)錄,促進(jìn)EMT的發(fā)生。ZEB-1可抑制多種重要的上皮分化和細(xì)胞黏附因子,包括細(xì)胞極性基因 Crumbs3(Crb3)、HUGL2(human lethal giant larvae homologue 2)和Pals1(protein associated with Lin seven 1)相關(guān)的緊密連接蛋白,從而抑制上皮鈣黏素,誘發(fā)EMT[16]。Dooley等[17]的研究表明,肝細(xì)胞可被轉(zhuǎn)化生長因子(trasforming growth factor,TGF)β1/Smad信號通路激活,發(fā)生EMT。目前,ZEB在EMT過程中對HCC的作用尚未見報道。

      1.4同源盒基因B7調(diào)控EMT 同源盒基因B7(homebox B7,HOXB7)屬同源盒基因Hox家族B族,位于第17號染色體上的一種轉(zhuǎn)錄調(diào)控因子,進(jìn)化上有著高度保守的DNA序列,其異常表達(dá)可能與腫瘤的發(fā)生、腫瘤增殖、分化、侵襲等有關(guān)[18-19]。HOXB7通過促進(jìn)堿性成纖維細(xì)胞生長因子等生長因子的分泌,介導(dǎo)EMT的發(fā)生,激活磷脂酰肌醇3-激酶、絲氨酸/蘇氨酸蛋白酶和促分裂原活化蛋白激酶(mitogen-activation protein kinase,MAPK)信號通路[20-21]。有文獻(xiàn)報道,HOXB7過表達(dá)后,MHcc97L-PcDNA3-HoxB7細(xì)胞上皮鈣黏素表達(dá)減低,神經(jīng)鈣黏素、波形蛋白、基質(zhì)金屬蛋白酶2表達(dá)增高;而抑制HOXB7表達(dá)后,人高轉(zhuǎn)移肝癌細(xì)胞(HCCLM3) 上皮鈣黏素表達(dá)增加,神經(jīng)鈣黏素、波形蛋白、基質(zhì)金屬蛋白、細(xì)胞周期蛋白D1和細(xì)胞周期蛋白E表達(dá)降低[22-23]。上述研究表明,HOXB7可以誘導(dǎo)EMT的發(fā)生。Wu等[20]研究證明,細(xì)胞過表達(dá)HOXB7后發(fā)生了明顯的EMT改變,細(xì)胞的侵襲和運動的能力明顯增強(qiáng),同時,通過裸鼠體內(nèi)實驗發(fā)現(xiàn)HOXB7可以促進(jìn)腫瘤局部的侵襲能力,這可能與HCC肝內(nèi)轉(zhuǎn)移有關(guān)。有文獻(xiàn)報道HOXB7在HCC患者的癌組織表達(dá)高于正常組織,且此基因高表達(dá)的患者預(yù)后差[20,24]。目前已知HOX在肝癌細(xì)胞中均異常表達(dá),且與腫瘤的分級、分化有關(guān)[18-19]。

      2 參與EMT的信號通路

      2.1Notch信號通路 Notch信號通路在腫瘤的發(fā)生、浸潤及轉(zhuǎn)移過程中發(fā)揮著重要作用。目前已在哺乳動物發(fā)現(xiàn)4種Notch受體(Notch基因編碼的4種跨膜蛋白)Notch1、Notch2、Notch3和Notch4和5種Notch 配體Delta-like-1、Delta-like-3、Delta-like-4、Jagged1和Jagged2;Notch信號通路通過相應(yīng)配體與受體結(jié)合而激活。中期因子是一種肝素結(jié)合生長/分化因子,在包括HCC在內(nèi)的多種類型惡性腫瘤中高表達(dá),直接參與腫瘤的生長、轉(zhuǎn)移過程。Güng?r等[25]發(fā)現(xiàn)其結(jié)合Notch2也可以使Notch信號通路激活。在不同的條件下,Notch信號通路可以促進(jìn)癌細(xì)胞生長或抑制癌細(xì)胞生長,具有雙向調(diào)控作用。目前對Notch1研究比較多,受體Notch1在腫瘤組織內(nèi)可以經(jīng)常被檢測到;配體Jagged1的高表達(dá)與預(yù)后不良有關(guān)[26-27]。Notch1是肝癌細(xì)胞生長的抑制信號,可能與誘導(dǎo)癌細(xì)胞周期停滯和凋亡有關(guān)[28]。Timmerman等[29]發(fā)現(xiàn),在內(nèi)皮細(xì)胞中,Notch1上調(diào)Snail的表達(dá),Snail與上皮鈣黏素基因啟動子結(jié)合,使上皮鈣黏素的表達(dá)降低,從而促進(jìn)EMT過程。Notch1過表達(dá)時可以磷酸化c-Jun氨基端激酶,進(jìn)而激活c-Jun氨基端激酶-MAPK信號通道,參與誘導(dǎo)肝癌細(xì)胞的凋亡。Croquelois等[30]通過特異性敲除小鼠Notch1發(fā)現(xiàn),Notch1的缺失后引起肝細(xì)胞持續(xù)分裂,最終發(fā)展為結(jié)節(jié)性再生性增生,這與肝癌有著密切的聯(lián)系。

      2.2Wnt/β聯(lián)蛋白信號通路 Wnt信號通路可分為經(jīng)典信號通路和非經(jīng)典信號通路。Wnt配體和Frizzled家族跨膜蛋白受體結(jié)合后,可激活3條細(xì)胞內(nèi)信號通路,經(jīng)典信號通路:Wnt/β聯(lián)蛋白信號通路;非經(jīng)典信號通路:Wnt/Ca2+信號通路和Wnt/c-Jun氨基端激酶信號通路。經(jīng)典的Wnt/β聯(lián)蛋白信號通路包括細(xì)胞外因子Wnt、跨膜受體、β聯(lián)蛋白、降解復(fù)合物以及轉(zhuǎn)錄因子(T細(xì)胞因子/淋巴增強(qiáng)因子)。Zhao等[31]報道,Wnt/β聯(lián)蛋白通路可以通過直接控制缺氧誘導(dǎo)因子1α來誘導(dǎo)EMT的發(fā)生。同時,β聯(lián)蛋白與T細(xì)胞因子4/淋巴增強(qiáng)因子相互作用,刺激下游靶基因CyclinD1、c-myc、Slug、基質(zhì)金屬蛋白酶和vimentin等的表達(dá),使EMT發(fā)生。Wnt/c-Jun氨基端激酶信號通路主要通過Rho家族蛋白中的RhoA和細(xì)胞分裂周期蛋白42等激活。Iwai等[32]研究發(fā)現(xiàn),口腔鱗狀細(xì)胞癌胞質(zhì)中堆積大量β聯(lián)蛋白,并且Rho家族中的細(xì)胞分裂周期蛋白42和Rac水平也增加,它們通過誘導(dǎo)EMT,提高癌細(xì)胞侵襲和遷移。因此,Wnt的經(jīng)典和非經(jīng)典通路有時可以共同誘導(dǎo)EMT的產(chǎn)生。Wolfe等[33]通過敲除小鼠類法尼醇X受體使其自發(fā)產(chǎn)生HCC,發(fā)現(xiàn)小鼠Wnt/β聯(lián)蛋白信號通路明顯活化。Cheng等[34]研究發(fā)現(xiàn),Zeste增強(qiáng)子同源物2介導(dǎo)的遺傳沉默可以激活Wnt/β聯(lián)蛋白信號通路,從而導(dǎo)致HCC。Huang等[34]的研究發(fā)現(xiàn),舒林酸可通過下調(diào)β聯(lián)蛋白抑制HCC的Wnt信號通路,下調(diào)原癌基因細(xì)胞周期素D1的表達(dá)。因此,通過藥物阻斷Wnt信號通路進(jìn)行抗腫瘤治療是目前研究的新方向。

      2.3TGF-β/Smad信號通路 Smad家族主要有3種類型:受體調(diào)節(jié)型(R-Smads)、協(xié)同作用型(Co-Smads)和抑制作用型(I-Smads)。R-Smads包括 Smad1、Smad 2、Smad 3、Smad 5、Smad 8;Co-Smads包括Smad4;I-Smads包括Smad6和Smad 7。TGF-β1是誘導(dǎo)EMT 的主要因子之一,是較為公認(rèn)參與調(diào)節(jié)EMT的信號通路。R-Smads被TGF-β激活后與Co-Smad形成Smads2、3、4復(fù)合物,進(jìn)入細(xì)胞核內(nèi)調(diào)節(jié)ZEB-1、ZEB2、Snail1、Snail2等轉(zhuǎn)錄因子,促進(jìn)EMT發(fā)生。TGF-β通過受體激活Smad通路的同時,還可激活Erk、c-Jun氨基端激酶、p38、MAPK、磷脂酰肌醇-3-激酶、三磷酸鳥苷酸等細(xì)胞因子進(jìn)行Non-Smad信號通路。TGF-β通過激活Smad和Non-Smad信號通路使Snail、Smad 相互作用蛋白 1、δ-晶體蛋白增強(qiáng)子結(jié)核因子 1表達(dá)量增加,使抑制分化上皮鈣黏著蛋白表達(dá)抑制,進(jìn)而促進(jìn)細(xì)胞的EMT[35]。TGF-β還可激活EMT相關(guān)的其他信號通路,如整聯(lián)素、Notch和Wnt信號通路等。通過細(xì)胞系研究發(fā)現(xiàn),在肝癌的發(fā)生中,TGF-β與原癌基因Ras協(xié)同促進(jìn)EMT,通過激活Smad2、3,強(qiáng)有力地促進(jìn)腫瘤的轉(zhuǎn)移[36]。Battaglia等[37]對EMT的動態(tài)研究發(fā)現(xiàn),起始階段TGF-β與MAPK協(xié)同作用,維持階段則依賴磷脂酰肌醇-3-激酶/Akt通路,c-Fos是TGF-β的下游信號,對抑制肝癌轉(zhuǎn)移的起負(fù)性調(diào)控作用。Zhang等[38]研究發(fā)現(xiàn),地塞米松能抑制TGF誘導(dǎo)的EMT過程,可能阻止腫瘤轉(zhuǎn)移,但該藥對機(jī)體的不良反應(yīng)較大。

      2.4Hedgehog信號通路 Hedgehog信號通路主要包括以下成員:配體Hedgehog(存在3個同源基因:S-Hedgehog、D-Hedgehog、I-Hedgehog)、跨膜受體Ptch(Ptch1、Ptch2)和Smo、下游轉(zhuǎn)錄因子Gli蛋白(Gli1、Gli2、Gli3)。受體Ptch能與3種配體結(jié)合;配體Hedgehog與Pich結(jié)合時,解除Smo的抑制效應(yīng),激活下游的轉(zhuǎn)錄調(diào)節(jié)因子Gli,最終誘導(dǎo)目標(biāo)基因表達(dá)。Hedgehog信號通路在正常肝細(xì)胞不表達(dá)[39]。Hedgehog信號通路在PLC/PRF/5、HepG2及SMMC-7721肝癌細(xì)胞株中則異?;罨饕@示Smo過度表達(dá),且Smo/Pich比值與腫瘤大小正相關(guān),說明Smo與腫瘤增殖密切相關(guān)。Sicklick等[40]報道,Hedgehog信號通路在低分化細(xì)胞中異?;罨米铚┉h(huán)巴胺阻斷該通路后,腫瘤的EMT現(xiàn)象及腫瘤細(xì)胞遷移受限。這說明EMT發(fā)生在Hedgehog通路活化的肝癌細(xì)胞中,且與癌細(xì)胞侵襲力相關(guān)。

      3 信號通路之間的聯(lián)系

      Sahlgren報道[41],Hedgehog信號轉(zhuǎn)導(dǎo)可上調(diào)Notch的配體JAG2,JAG2與Notch結(jié)合后激活Notch信號通路,進(jìn)而抑制上皮鈣黏素表達(dá),誘導(dǎo)EMT。Xu等[42]報道,Wnt通路與TGF-β/Smad通路關(guān)系密切,通過調(diào)節(jié)Snail1因子抑制上皮鈣黏素的表達(dá),從而激活β聯(lián)蛋白/T細(xì)胞因子/淋巴樣增強(qiáng)因子1,間接導(dǎo)致間質(zhì)細(xì)胞基因產(chǎn)物的表達(dá),參與EMT的發(fā)生。

      4 小 結(jié)

      EMT不僅是胚胎發(fā)育過程中必需的生理機(jī)制,其在腫瘤轉(zhuǎn)移和侵襲過程中也有重要作用,近年來EMT與腫瘤侵襲轉(zhuǎn)移的機(jī)制研究成為熱點之一。轉(zhuǎn)基因模型的建立為EMT的研究提供了更科學(xué)的工具。盡管目前對于EMT機(jī)制的理解已經(jīng)有了進(jìn)展,但還沒有研制出比較完善的針對性的靶向藥物。通過對EMT過程中信號通路和轉(zhuǎn)錄因子的進(jìn)一步了解,將對深入探討HCC的侵襲及轉(zhuǎn)移有重要意義,尋找EMT的調(diào)節(jié)因素,以及有效的阻斷手法,對于HCC的診斷和治療有重要意義。掌握HCC侵襲轉(zhuǎn)移的機(jī)制及應(yīng)用靶向藥物治療肝癌迫在眉睫。

      [1] Mulcahy MF.Management of hepatocellular cancer[J].Curr Treat Options Oncol,2005,6(5):423-435.

      [2] Bosch FX,Ribes J,Díaz M,etal.Primary liver cancer:worldwide incidence and trends[J].Gastroenterology,2004,127(5 Suppl 1):S5-S16.

      [3] Turley EA,Veiseh M,Radisky DC,etal.Mechanisms of disease:epithelial-mesenchymal transition—does cellular plasticity fuel neoplastic progression?[J].Nat Clin Pract Oncol,2008,5(5):280-290.

      [4] Polyak K,Weinberg RA.Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J].Nat Rev Cancer,2009,9(4):265-273.

      [5] Ansieau S,Bastid J,Doreau A,etal.Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence[J].Cancer Cell,2008,14(1):79-89.

      [6] Fu J,Qin L,He T,etal.The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis[J].Cell Res,2011,21(2):275-289.

      [7] Yang J,Mani SA,Donaher JL,etal.Twist,a master regulator of morphogenesis,plays an essential role in tumor metastasis[J].Cell,2004,117(7):927-939.

      [8] Vesuna F,van Diest P,Chen JH,etal.Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer[J].Biochem Biophys Res Commun,2008,367(2):235-241.

      [9] Niu RF,Zhang L,Xi GM,etal.Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma[J].J Exp Clin Cancer Res,2007,26(3):385-394.

      [10] Yang MH,Chen CL,Chau GY,etal.Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma[J].Hepatology,2009,50(5):1464-1474.

      [11] Zhang CH,Xu GL,Jia WD,etal.Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance[J].J Surg Res,2012,174(1):120-129.

      [12] Wu Y,Zhou BP.TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion[J].Br J Cancer,2010,102(4):639-644.

      [13] Song IS,Wang AG,Yoon SY,etal.Regulation of glucose metabolism-related genes and VEGF by HIF-1alpha and HIF-1beta,but not HIF-2alpha,in gastric cancer[J].Exp Mol Med,2009,41(1):51-58.

      [14] Miyoshi A,Kitajima Y,Sumi K,etal.Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells[J].Br J Cancer,2004,90(6):1265-1273.

      [15] Sharili AS,Allen S,Smith K,etal.Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy[J].Tumour Biol,2011,32(3):515-526.

      [16] Aigner K,Dampier B,Descovich L,etal.The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity[J].Oncogene,2007,26(49):6979-6988.

      [17] Dooley S,Hamzavi J,Ciuclan L,etal.Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage[J].Gastroenterology,2008,135(2):642-659.

      [18] Shah N,Sukumar S.The Hox genes and their roles in oncogenesis[J].Nat Rev Cancer,2010,10(5):361-371.

      [19] De Souza Setubal Destro MF,Bitu CC,Zecchin KG,etal.Overexpression of HOXB7 homeobox gene in oral cancer induces cellular proliferation and is associated with poor prognosis[J].Int J Oncol,2010,36(1):141-149.

      [20] Wu X,Chen H,Parker B,etal.HOXB7,a homeodomain protein,is overexpressed in breast cancer and confers epithelial-mesenchymal transition[J].Cancer Res,2006,66(19):9527-9534.

      [21] Liao WT,Jiang D,Yuan J,etal.HOXB7 as a prognostic factor and mediator of colorectal cancer progression[J].Clin Cancer Res,2011,17(11):3569-3578.

      [22] Li JC,Yang XR,Sun HX,etal.Up-regulation of Krüppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma[J].Gastroenterology,2010,139(6):2146-2157.

      [23] Liu L,Ren ZG,Shen Y,etal.Influence of hepatic artery occlusion on tumor growth and metastatic potential in a human orthotopic hepatoma nude mouse model:relevance of epithelial-mesenchymal transition[J].Cancer Sci,2010,101(1):120-128.

      [24] Kanai M,Hamada J,Takada M,etal.Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas[J].Oncol Rep,2010,23(3):843-851.

      [25] Güng?r C,Zander H,Effenberger KE,etal.Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer[J].Cancer Res,2011,71(14):5009-5019.

      [26] Shi TP,Xu H,Wei JF,etal.Association of low expression of notch-1 and jagged-1 in human papillary bladder cancer and shorter survival[J].J Urol,2008,180(1):361-366.

      [27] Reedijk M,Pinnaduwage D,Dickson BC,etal.JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer[J].Breast Cancer Res Treat,2008,111(3):439-448.

      [28] Qi R,An H,Yu Y,etal.Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis[J].Cancer Res,2003,63(23):8323-8329.

      [29] Timmerman LA,Grego-Bessa J,Raya A,etal.Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation[J].Genes Dev,2004,18(1):99-115.

      [30] Croquelois A,Blindenbacher A,Terracciano L,etal.Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice[J].Hepatology,2005,41(3):487-496.

      [31] Zhao JH,Luo Y,Jiang YG,etal.Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α[J].Cancer Invest,2011,29(6):377-382.

      [32] Iwai S,Yonekawa A,Harada C,etal.Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells[J].Int J Oncol,2010,37(5):1095-1103.

      [33] Wolfe A,Thomas A,Edwards G,etal.Increased activation of the Wnt/β-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice[J].J Pharmacol Exp Ther,2011,338(1):12-21.

      [34] Cheng AS,Lau SS,Chen Y,etal.EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis[J].Cancer Res,2011,71(11):4028-4039.

      [35] Shirakihara T,Saitoh M,Miyazono K.Differential regulation of epithelial and mesenchymal markers by deltaEF1 proteins in epithelial mesenchymal transition induced by TGF-beta[J].Mol Biol Cell,2007,18(9):3533-3544.

      [36] Lehmann K,Janda E,Pierreux CE,etal.Raf induces TGF-β production while blocking its apoptotic but not invasive responses:a mechanism leading to increased malignancy in epithelial cells[J].Genes Dev,2000,14(20):2610-2622.

      [37] Battaglia S,Benzoubir N,Nobilet S,etal.Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition[J].PLoS One,2009,4(2):e4355.

      [38] Zhang L,Lei W,Wang X,etal.Glucocorticoid induces mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-mesenchymal transition and cell migration[J].FEBS Lett,2010,584(22):4646-4654.

      [39] Berman DM,Karhadkar SS,Maitra A,etal.Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours[J].Nature,2003,425(6960):846-851.

      [40] Sicklick JK,Li YX,Jayaraman A,etal.Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis[J].Carcinogenesis,2006,27(4):748-757.

      [41] Sahlgren C,Gustafsson MV,Jin S,etal.Notch signaling mediates hypoxia-induced tumor cell migration and invasion[J].Proc Natl Acad Sci U S A,2008,105(17):6392-6397.

      [42] Xu J,Iamouille S,Derynck R.TGF-beta-induced epithelial to mesenchymal transition[J].Cell Res,2009,19(2):156-172.

      猜你喜歡
      上皮肝癌通路
      LCMT1在肝癌中的表達(dá)和預(yù)后的意義
      Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
      CXXC指蛋白5在上皮性卵巢癌中的表達(dá)及其臨床意義
      microRNA在肝癌發(fā)生發(fā)展及診治中的作用
      手部上皮樣肉瘤1例
      proBDNF-p75NTR通路抑制C6細(xì)胞增殖
      Rab27A和Rab27B在4種不同人肝癌細(xì)胞株中的表達(dá)
      通路快建林翰:對重模式應(yīng)有再認(rèn)識
      microRNA在肝癌診斷、治療和預(yù)后中的作用研究進(jìn)展
      Hippo/YAP和Wnt/β-catenin通路的對話
      遺傳(2014年2期)2014-02-28 20:58:11
      江陵县| 海南省| 高州市| 日土县| 林周县| 隆化县| 西乌| 蓝田县| 海阳市| 澜沧| 乳源| 威宁| 乌什县| 朔州市| 珲春市| 乌兰察布市| 霍邱县| 克东县| 华池县| 铜川市| 樟树市| 拜泉县| 贵定县| 富顺县| 安福县| 普陀区| 元氏县| 绥阳县| 雷州市| 巴楚县| 辉南县| 山阳县| 信宜市| 河西区| 桃江县| 山东省| 旅游| 湖口县| 岗巴县| 宁波市| 丹棱县|