• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      植物JAZ蛋白的功能概述

      2014-03-17 08:37:08孫程周曉今陳茹梅范云六王磊
      生物技術(shù)通報(bào) 2014年6期
      關(guān)鍵詞:植物體茉莉結(jié)構(gòu)域

      孫程 周曉今 陳茹梅 范云六 王磊

      (中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京 100081)

      植物JAZ蛋白的功能概述

      孫程 周曉今 陳茹梅 范云六 王磊

      (中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京 100081)

      茉莉酸作為重要的植物激素,在植物生長(zhǎng)、繁殖和抗逆等諸多方面起重要的作用。茉莉酸途徑的抑制因子JAZ(Jasmonate ZIM-domain,JAZ)蛋白(JAZs)是調(diào)節(jié)茉莉酸(JA)激素應(yīng)答的關(guān)鍵因子,在沒(méi)有JA存在時(shí),JAZs抑制DNA-結(jié)合轉(zhuǎn)錄因子活性,從而調(diào)控JA應(yīng)答基因轉(zhuǎn)錄;當(dāng)有JA存在時(shí),JAZs和冠菌素不敏感1(Coronatine insensitive 1,COI1)依賴(lài)JA分子發(fā)生互作,復(fù)合體被SCFCOI1識(shí)別并進(jìn)入26S蛋白酶解途徑降解,釋放的轉(zhuǎn)錄因子啟動(dòng)JA應(yīng)答基因轉(zhuǎn)錄。隨著研究的深入,發(fā)現(xiàn)JAZs可以與許多轉(zhuǎn)錄因子互作,不僅調(diào)控了JA信號(hào)響應(yīng),還參與了其他激素信號(hào)通路。對(duì)JAZs的互作機(jī)制進(jìn)行描述,闡述JAZs在植物激素調(diào)控網(wǎng)絡(luò)中的作用。

      JAZs TIFY 茉莉酸

      茉莉酸途徑的抑制因子JAZ(Jasmonate ZIM-domain,JAZ)蛋白(JAZs)是一類(lèi)參與多個(gè)信號(hào)通路的阻遏蛋白,它可以響應(yīng)茉莉酸(JA)的刺激,釋放所結(jié)合MYC2轉(zhuǎn)錄因子,從而啟動(dòng)JA應(yīng)答基因的轉(zhuǎn)錄。JAZs可以同其他轉(zhuǎn)錄因子以及共阻遏蛋白相互結(jié)合,把茉莉酸信號(hào)通路與其他信號(hào)通路相關(guān)聯(lián),已有研究把JA介導(dǎo)的JAZs轉(zhuǎn)錄水平變化與植物生長(zhǎng)素(AUX/IAA)[1]、乙烯(ET)[2-4]、赤霉素(GA)[5,6]和油菜素內(nèi)酯(BR)[7]等激素信號(hào)的調(diào)節(jié)相聯(lián)系起來(lái)。這些研究表明JAZ蛋白是轉(zhuǎn)錄抑制子,它的功能不僅僅能抑制茉莉酸信號(hào)傳遞應(yīng)答的轉(zhuǎn)錄,還通過(guò)與其他通路調(diào)控因子的互作,影響諸多信號(hào)通路和植物生長(zhǎng)于代謝進(jìn)程,JAZs在廣闊的激素調(diào)節(jié)網(wǎng)絡(luò)中起中心樞紐的作用。

      1 JAZ蛋白簡(jiǎn)介

      1.1 JAZs的發(fā)現(xiàn)

      茉莉酸類(lèi)化合物是植物內(nèi)源激素,(3R,7S)-JA-Ile是植物體內(nèi)茉莉酸活性分子,冠菌素(Coronatine,COR)空間結(jié)構(gòu)與JA-Ile相似,它們?cè)谥参矬w內(nèi)均起到激素刺激的作用。

      用冠菌素篩選擬南芥突變體,獲得冠菌素不敏感突變體Coronatine insensitive 1(coi1)[8]。coi1表現(xiàn)為雄性不育并喪失大部分JA應(yīng)答反應(yīng)。COI1屬F-box蛋白,形成的SCFCOI1復(fù)合體屬E3泛素連接酶的一種[9-11]。上述發(fā)現(xiàn)說(shuō)明JA應(yīng)答的起始,需要某些關(guān)鍵蛋白被降解。

      opr3(12-Oxophytodienoate reductase 3)是JA合成通路突變體[12],用JA處理opr3,經(jīng)轉(zhuǎn)錄譜分析得知1 296個(gè)基因的表達(dá)受JA調(diào)控[13]。在JA處理30 min時(shí)共有31個(gè)響應(yīng)基因,其中有7個(gè)未知基因含有28個(gè)氨基酸的ZIM基序,還有一個(gè)30 min后響應(yīng)JA的基因,也含有ZIM基序,這8個(gè)基因最初被認(rèn)為是JA應(yīng)答轉(zhuǎn)錄因子[14]。通過(guò)高通量測(cè)序又得到4個(gè)含有ZIM結(jié)構(gòu)域的基因,但它們不受JA誘導(dǎo),因?yàn)檫@12個(gè)蛋白都含有ZIM結(jié)構(gòu)域,并與茉莉酸信號(hào)傳導(dǎo)相關(guān),所以將這12個(gè)成員命名為擬南芥JAZ蛋白。

      1.2 JAZ蛋白家族

      JAZs屬于TIFY家族,TIFY家族是植物特有的家族,在最早的綠藻中并沒(méi)有TIFY基因[15],而在所有的陸生植物中都含有TIFY家族,所以推測(cè)TIFY家族是在陸生植物進(jìn)化時(shí)產(chǎn)生的。苔蘚是最早出現(xiàn)的陸生植物,在其中鑒定出兩個(gè)TIFY成員,這兩個(gè)成員被分成兩個(gè)亞群,亞群I含有C2C2-GATA結(jié)構(gòu)域,亞群II則不含。在擬南芥中已鑒定出18個(gè)TIFY成員,同樣也分為兩個(gè)亞群。說(shuō)明在植物進(jìn)化過(guò)程中TIFY家族也不斷的發(fā)展,并賦予植物多樣化的生理功能和發(fā)育機(jī)制。

      TIFY家族包括JAZs、ZIM和PPD亞類(lèi)[16,17]。ZIM和ZLM(ZIM-LIKE)是推測(cè)的轉(zhuǎn)錄因子,含有GATA-鋅指結(jié)構(gòu);JAZs是阻遏蛋白不含DNA結(jié)合結(jié)構(gòu)域,并必須依賴(lài)蛋白間的互作行使功能[16]。

      1.3 JAZs的結(jié)構(gòu)

      JAZs成員都擁有NT、ZIM和Jas三個(gè)保守結(jié)構(gòu)域。蛋白的N末端包含一個(gè)弱保守的NT結(jié)構(gòu)域,此結(jié)構(gòu)域可與DELLA蛋白互作[18]。ZIM結(jié)構(gòu)域由36個(gè)氨基酸組成,其中包含保守的TIFY基序(TIF[F/Y]XG),JAZs形成同源或異源二聚物依賴(lài)TIFY基序[19-21]。JAZ家族C端的Jas結(jié)構(gòu)域十分保守,由12-29個(gè)氨基酸組成,在擬南芥的12個(gè)JAZ成員中Jas結(jié)構(gòu)域基本一致或有保守替換序列[22],Jas結(jié)構(gòu)域可以同很多蛋白互作,在有JA-Ile情況下負(fù)責(zé)JAZs的降解[3,6,23]。Jas結(jié)構(gòu)域中存在細(xì)胞核定位信號(hào),使JAZs具有核定位特性,如圖1所示[24]。

      圖1 JAZs結(jié)構(gòu)域

      2 JAZs與茉莉酸信號(hào)通路

      2.1 JA信號(hào)傳導(dǎo)模型

      MYC2為JA應(yīng)答基因的起始轉(zhuǎn)錄因子[25,26],而植物體的JA感應(yīng)由COI1控制,JAZs作為它們之間的聯(lián)系物于2007年被鑒定出[22,27,28],自此JA信號(hào)傳導(dǎo)模型被揭示:植物在正常生長(zhǎng)條件下,體內(nèi)JA-Ile水平很低,JAZs結(jié)合MYC2等轉(zhuǎn)錄因子并吸引TPL和NINJA共阻遏物抑制JA應(yīng)答基因轉(zhuǎn)錄,從而阻止植物體進(jìn)行JA應(yīng)答反應(yīng)。

      當(dāng)植物體處于某發(fā)育過(guò)程或受到外界脅迫時(shí),體內(nèi)JA-Ile的水平增高,JAZ阻遏蛋白被COI1結(jié)合并通過(guò)SCFCOI1/26S蛋白酶通路降解,MYC2等轉(zhuǎn)錄因子被釋放,從而啟動(dòng)相應(yīng)JA應(yīng)答基因的轉(zhuǎn)錄[29,30]。當(dāng)發(fā)生JA應(yīng)答時(shí)JAZs也被誘導(dǎo),誘導(dǎo)表達(dá)的JAZs再次抑制MYC2轉(zhuǎn)錄因子活性,從而封閉JA響應(yīng),這種調(diào)節(jié)過(guò)程類(lèi)似于反饋調(diào)節(jié),使植物體不會(huì)產(chǎn)生過(guò)于猛烈的JA應(yīng)答反應(yīng),避免植物體能量的過(guò)度消耗[31,32],如圖2所示。

      2.2 JAZs與COI1互作

      JAZs與COI1依賴(lài)于茉莉酸類(lèi)激素(JAs),并通過(guò)Jas結(jié)構(gòu)域發(fā)生互作。植物體為了減弱JA應(yīng)答造成的強(qiáng)大消耗,在JAZs的Jas區(qū)域發(fā)生可變剪切。擬南芥JAZ 12個(gè)成員中有9個(gè)都含有一段保守內(nèi)含子序列,當(dāng)JAZs發(fā)生可變剪切保留內(nèi)含子時(shí)轉(zhuǎn)錄被提前終止,Jas保留前20個(gè)氨基酸,并缺少保守的X5PY序列,這些可變剪接體被稱(chēng)為ΔPYJAZs,增加

      了JAZs的調(diào)控機(jī)制[33-36]。

      圖2 JA 信號(hào)傳導(dǎo)模型

      JAZ1的Jas肽段、COI1和JA-Ile的復(fù)合晶體結(jié)構(gòu)揭示了JAs分子機(jī)制[37]。在晶體結(jié)構(gòu)中F-box肽段的11個(gè)氨基酸構(gòu)成口袋區(qū),通過(guò)3個(gè)氨基酸結(jié)合(3R,7S)JA-Ile。JAs的酮基和Ile的羧基暴露在外并結(jié)合Jas結(jié)構(gòu)域。

      1,2,4,5,6-五磷酸肌醇(IP5)在分子組裝方面起到重要的作用[38]。IP5在Jas/COI1/JA-Ile復(fù)合晶體中緊靠著JA-Ile分子,結(jié)合在COI1的口袋處,位于COI1的3個(gè)精氨酸和Jas肽段的R206上。如果通過(guò)透析法去除IP5會(huì)使得阻遏蛋白復(fù)合體失活,而失活的阻遏蛋白復(fù)合體在添加IP5后會(huì)恢復(fù)活性。

      2.3 JAZs與bHLH/MYC轉(zhuǎn)錄因子互作

      MYC2、MYC3和MYC4 屬于Basic helix-loophelix(bHLH)家族,與大多數(shù)的JAZs都互作[39]。MYC2和MYC3中有一段序列可與11個(gè)JAZs成員互作,被稱(chēng)為JID(JAZ-interaction domain)。MYC2、MYC3和MYC4都可結(jié)合G-box(CACGTG)結(jié)構(gòu),說(shuō)明MYC成員間的功能存在冗余性。而三者的突變體表型略有不同,說(shuō)明MYC2、MYC3和MYC4轉(zhuǎn)錄因子對(duì)于完全啟動(dòng)JA應(yīng)答都是必要的。

      3 JAZ互作的轉(zhuǎn)錄因子

      3.1 JAZs結(jié)合WD40/bHLH/MYB復(fù)合體調(diào)控花青素積累和表皮毛發(fā)育

      GL3、EGL3和TT8屬于bHLH家族IIIf亞群,含有JID結(jié)構(gòu)域,除了三者可互相形成復(fù)合體外,還可以和8個(gè)JAZs互作。GL3/EGL3/TT8復(fù)合體可以一邊結(jié)合WD40蛋白,一邊結(jié)合不同的MYB蛋白,如此GL3/EGL3/TT8復(fù)合體調(diào)控諸多生命進(jìn)程。例如,根毛和表皮毛發(fā)育、黃酮類(lèi)化合物的合成、下胚軸上的氣孔發(fā)育和種皮上的黏液產(chǎn)生等[40]。

      JAZs還能直接結(jié)合R2R3 MYB轉(zhuǎn)錄因子PAP1和GL1,在PAP1、GL3和EGL3過(guò)表達(dá)植株中,JAZs產(chǎn)生的抑制作用被抵消,轉(zhuǎn)化體積累更多的花青素并且毛狀體發(fā)育受限程度低。WD40/bHLH/MYB復(fù)合體的形成是通過(guò)PAP1與TT8和GL1與GL3之間的互作形成的[41]。雖然bHLH轉(zhuǎn)錄因子可以通過(guò)JID結(jié)構(gòu)域互作,但目前為止還沒(méi)有R2R3 MYB蛋白與MYC互作的報(bào)道。

      3.2 JAZs結(jié)合MYB21和MYB24調(diào)控植物體雄性不育

      MYB21和MYB24屬于R2R3 MYB轉(zhuǎn)錄因子,可以通過(guò)R2R3結(jié)構(gòu)域與JAZs的Jas和NT結(jié)構(gòu)域與發(fā)生互作。MYB21和MYB24與JA介導(dǎo)的雄性不育相關(guān),在擬南芥花器發(fā)育時(shí)合成 JA-Ile,促使JA應(yīng)答降解JAZs,MYB轉(zhuǎn)錄因子被釋放調(diào)節(jié)雄蕊的正常發(fā)育[42]。

      myb21突變體生育能力減弱,基本的生殖進(jìn)程受到影響,如雄蕊伸長(zhǎng)、花粉活力和花藥破裂等。myb24雖然沒(méi)有表型,但是會(huì)使myb21的上述表型更明顯,說(shuō)明兩個(gè)蛋白功能冗余[13,43]。在coi1中過(guò)表達(dá)MYB21可以恢復(fù)植株不育的表型,但獲得的

      種子很少。過(guò)表達(dá)MYB21并沒(méi)有恢復(fù)coi1中與JA應(yīng)答相關(guān)的表型,如對(duì)JA介導(dǎo)的根伸長(zhǎng)抑制不敏感,花青素積累或是對(duì)蕈蚊(Bradysia impatiens)敏感等。這些結(jié)果說(shuō)明MYB21起到調(diào)節(jié)生育的作用,并且和其他JA介導(dǎo)的生長(zhǎng)和防御應(yīng)答不太相關(guān)。

      3.3 JAZs結(jié)合EIN3/EIL1調(diào)控JA/ET信號(hào)通路

      ET是重要的植物激素,可與JAs共同調(diào)節(jié)植物體防御,抵抗植物腐生病原菌并控制植物體的發(fā)育進(jìn)程[44]。ET與其受體結(jié)合使其下游的CTR1(Constitutive ethylene response1)激酶失活。這個(gè)反應(yīng)會(huì)促進(jìn)一系列的Et響應(yīng)轉(zhuǎn)錄因子的激活,并調(diào)節(jié)ET響應(yīng)基因的表達(dá)[45]。

      Ethylene insensitive 3(EIN3)和EIN3-like1(EIL1)轉(zhuǎn)錄因子負(fù)責(zé)促進(jìn)ET傳感的下游基因轉(zhuǎn)錄。JA與ET具有協(xié)同和依賴(lài)作用,這是通過(guò)彼此調(diào)控蛋白間的互作實(shí)現(xiàn)的。相關(guān)研究證明JAZ1、JAZ3和JAZ9都可以同EIN3和EIL1互作,并且互作是通過(guò)JAZs的Jas結(jié)構(gòu)域?qū)崿F(xiàn)的[3]。

      ET存在時(shí)EIN3和EIL1可激活一系列的病原菌抵抗因子和植物發(fā)育調(diào)節(jié)因子,ET效應(yīng)基因在這時(shí)都保持穩(wěn)定表達(dá)狀態(tài)。當(dāng)JAZs結(jié)合EIN3和EIL1時(shí)會(huì)部分的抑制它們的活性,這樣ET轉(zhuǎn)錄因子EIN3和EIL1通過(guò)與JAZs的聯(lián)系使得ET調(diào)控分級(jí)進(jìn)行。當(dāng)有JA存在時(shí),JAZ被降解,使得EIN3和EIL1全部激活,因此JA信號(hào)通路和ET信號(hào)通路在抵抗植物腐蝕病原菌方面有協(xié)同作用。

      4 JAZs互作的阻遏蛋白

      4.1 JAZs結(jié)合DELLAs調(diào)控植物的生長(zhǎng)與防御

      GA是一種萜類(lèi)激素,是植物種子萌發(fā)、莖和子葉下胚軸伸長(zhǎng)、花的發(fā)育等生長(zhǎng)過(guò)程中所必須的。DELLA蛋白(DELLAs)是GA信號(hào)傳遞的重要調(diào)節(jié)因子,在沒(méi)有GA時(shí)DELLAs與PIF3轉(zhuǎn)錄因子結(jié)合,抑制GA誘導(dǎo)的基因表達(dá)。當(dāng)植物體合成GA時(shí),會(huì)被GA受體(GID1)識(shí)別,接著相繼與4個(gè)DELLA成員依次結(jié)合并被E3連接酶識(shí)別,形成SCFSLY1復(fù)合體后,DELLAs被泛素化降解,DELLAs結(jié)合的轉(zhuǎn)錄因子被釋放,激活GA應(yīng)答基因的轉(zhuǎn)錄,促進(jìn)植物體的光合生長(zhǎng)[46]。

      DELLAs主要作用是抑制GA信號(hào)傳遞,同時(shí)還能促進(jìn)JA應(yīng)答基因的轉(zhuǎn)錄。DELLAs成員RGA可以同JAZ1、JAZ3和JAZ9互作,互作區(qū)域分別為JAZ的NT結(jié)構(gòu)域和RGA C末端的DELLA結(jié)構(gòu)域[47]。RGA與MYC2競(jìng)爭(zhēng)性的結(jié)合JAZ1,并且不能形成三者的復(fù)合體,說(shuō)明DELLAs可以隔絕JAZ與MYC2的互作,在抑制植物體進(jìn)行光合生長(zhǎng)的同時(shí),還促進(jìn)植物體進(jìn)入防御應(yīng)答狀態(tài)。

      JAZs主要作用是抑制茉莉酸信號(hào)傳遞,同時(shí)還能促進(jìn)GA應(yīng)答基因的轉(zhuǎn)錄。JAZs與DELLAs結(jié)合,干擾DELLAs與PIF3轉(zhuǎn)錄因子的互作。因?yàn)镴AZs隔絕了DELLAs與PIF3的互作,所以抵消了DELLAs產(chǎn)生的生長(zhǎng)抑制,促進(jìn)了生物體進(jìn)行光合發(fā)育。

      GA起到促進(jìn)植物體生長(zhǎng)的目的,JA起到促進(jìn)植物體防御的機(jī)制,但是最有趣的是它們行使功能卻是更傾向于抵消對(duì)方的轉(zhuǎn)錄應(yīng)答效應(yīng)。通過(guò)對(duì)JAZs與DELLAs功能的研究,清楚的闡明了植物體內(nèi)GA與JA相互協(xié)同的精細(xì)調(diào)控關(guān)系,從而使植物體具有協(xié)調(diào)生長(zhǎng)與抵抗逆境的能力[48]。

      4.2 JAZs與共阻遏物NINJA、TPL和HDA6互作

      NINJA(Novel interactor of JAZ)能與大多數(shù)JAZs互作,同時(shí)NINJA能與Groucho/Tup1家族共阻遏物TPL(Topless)和TPL-like等發(fā)生互作。此機(jī)制說(shuō)明JAZs抑制MYC轉(zhuǎn)錄因子的轉(zhuǎn)錄活性是通過(guò)結(jié)合NINJA和TPL阻遏蛋白實(shí)現(xiàn)的[49,50]。

      JAZ1和NINJA通過(guò)ZIM結(jié)構(gòu)域互作,對(duì)TIFY基序進(jìn)行缺失會(huì)造成JAZ1和NINJA的互作消失。擬南芥JAZs中只有JAZ7和JAZ8不能與NINJA互作,因?yàn)樗鼈冊(cè)赥IFYXG基序的第5位氨基酸有一個(gè)天冬酰胺(圖3-A),推測(cè)是它抑制了JAZs與NINJA的互作,但是并沒(méi)有直接的試驗(yàn)證據(jù)。

      JAZs含有EAR和EAR-like基序(圖3-B),此基序?yàn)門(mén)PL或TPR的結(jié)合位點(diǎn),在理論上JAZs可以直接同TPL蛋白結(jié)合,但試驗(yàn)證明只有JAZ5和JAZ8可以直接結(jié)合TPL。TPL與JAZs互作直接抑制JA應(yīng)答基因轉(zhuǎn)錄,相似而不同于JAZs互作于NINJA再結(jié)合TPL的機(jī)制。

      JAZ1可以與染色質(zhì)修飾酶HDA6(Histone deacetylase 6)互作抑制JA介導(dǎo)的轉(zhuǎn)錄應(yīng)答[3]。JAZ3和JAZ9也可以與HDA6互作,JAZ1與HDA6

      互作區(qū)域位于NT或ZIM結(jié)構(gòu)域,目前還沒(méi)有相關(guān)試驗(yàn)說(shuō)明。

      對(duì)hda6進(jìn)行JAs誘導(dǎo)發(fā)現(xiàn),ERF1位點(diǎn)表達(dá)量增高,同樣對(duì)HDA6過(guò)表達(dá)植株誘導(dǎo)發(fā)現(xiàn),ERF1位點(diǎn)表達(dá)量減少,說(shuō)明組蛋白去乙?;贘A應(yīng)答基因的轉(zhuǎn)錄調(diào)控中起到了關(guān)鍵的作用,特別是作為協(xié)同阻遏物來(lái)調(diào)控ERF1位點(diǎn)。不同,因此鑒定JAZs功能的關(guān)鍵就是找到它的互作因子。研究發(fā)現(xiàn),JAZ家族成員間可以形成同源或異源二聚體,而且JAZs行使功能大多都以二聚體形式執(zhí)行,但是這種二聚體的存在形式有何作用還沒(méi)有得到清晰解釋?zhuān)?5]。

      圖3 JAZs的NT結(jié)構(gòu)域及ZIM結(jié)構(gòu)域保守序列

      隨著越來(lái)越多的作物基因組測(cè)序工作的完成,使得系統(tǒng)分析TIFY家族成員逐漸變得相對(duì)容易,JAZs研究的工作重點(diǎn)將從全家族基因的預(yù)測(cè)與鑒定轉(zhuǎn)向每個(gè)JAZs成員的功能鑒定。在研究各物種JAZs功能的過(guò)程中,經(jīng)驗(yàn)證明,鑒定JAZs的功能需要找到其調(diào)控的互作因子,而對(duì)于JAZs的研究不能只停留于表面的單基因功能鑒定,還需要總結(jié)歸納JAZs家族在各代謝過(guò)程中起到的作用,將JAZs所調(diào)控的網(wǎng)絡(luò)串聯(lián)起來(lái),解析在龐大的生物進(jìn)程中JAZs參與調(diào)控的信號(hào)途徑,及其對(duì)植物體生長(zhǎng)、發(fā)育和抗逆的貢獻(xiàn)。

      5 展望

      目前,對(duì)JAZs的研究取得了許多成果,這也使得人們對(duì)JA信號(hào)通路的研究進(jìn)展迅速。闡明在細(xì)胞核中JAZs發(fā)生互作的機(jī)制,有助于深入了解JA信號(hào)模型的本質(zhì)。JAZ阻遏蛋白起到調(diào)控樞紐的作用,它把JA信號(hào)通路與其他信號(hào)通路相互聯(lián)系在一起,深入對(duì)JAZs的了解將有助于詮釋植物的激素調(diào)控網(wǎng)絡(luò)。在植物激素介導(dǎo)的信號(hào)傳遞過(guò)程中,JAZs作為樞紐蛋白起著重要的調(diào)控作用,在今后的研究中詮釋JAZs的精確功能將成為研究重點(diǎn)[32,50-55]。

      近兩年對(duì)經(jīng)濟(jì)作物中JAZs的研究進(jìn)展迅速。目前,已經(jīng)有相關(guān)報(bào)道的經(jīng)濟(jì)作物包括水稻、大豆、葡萄和煙草[56-59]。但是,在上述幾種作物中過(guò)表達(dá)JAZs所產(chǎn)生的表型卻不盡相同:在水稻中過(guò)表達(dá)TIFY11b可以增加籽粒大小[60];在大豆中過(guò)表達(dá)GsJAZ2可以增加植株對(duì)鹽堿的敏感性[61];在煙草中過(guò)表達(dá)NaJAZd和NaJAZh分別可以抑制花蕾脫落和促進(jìn)尼古丁的合成[62-64]。JAZ家族各成員間的功能有差異,這是由于每個(gè)JAZ成員所能互作的因子

      [1] Tiryaki I, Staswick PE. AnArabidopsismutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1[J]. Plant Physiology, 2002, 130:887-894.

      [2] Pré M, Atallah M, Champion A, et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense[J]. Plant Physiology, 2008, 147:1347-1357.

      [3] Zhu Z, An F, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy inArabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:12539-12544.

      [4] Adams E, Turner J. COI1, a jasmonate receptor, is involved in ethylene-induced inhibition ofArabidopsisroot growth in the light[J]. Journal of Experimental Botany, 2010, 61:4373-4386.

      [5] Navarro L, Bari R, Achard P, et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling[J]. Curr Biol, 2008, 18:650-655.

      [6] Hou X, Lee LYC, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19:884-894.

      [7] Ren C, Han C, Peng W, et al. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth

      by jasmonate inArabidopsis[J]. Plant Physiology, 2009, 151:1412-1420.

      [8] Feys BJ, Benedetti CE, Penfold CN, Turner JG.Arabidopsismutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J]. The Plant Cell Online, 1994, 6:751-759.

      [9] Xie DX, Feys BF, James S, et al. COI1:anArabidopsisgene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280:1091-1094.

      [10] Turner JG, Ellis C, Devoto A. The jasmonate signal pathway[J]. The Plant Cell Online, 2002, 14:S153-S164.

      [11] Xu L, Liu F, Lechner E, et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response inArabidopsis[J]. The Plant Cell Online, 2002, 14:1919-1935.

      [12] Stintzi A. TheArabidopsismale-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. Proceedings of the National Academy of Sciences, 2000, 97:10625-10630.

      [13] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development inArabidopsisidentified by transcriptional profiling[J]. Plant J, 2006, 46:984-1008.

      [14] Shikata M, Matsuda Y, Ando K, et al. Characterization ofArabidopsisZIM, a member of a novel plant-specific GATA factor gene family[J]. Journal of Experimental Botany, 2004, 55:631-639.

      [15] Derelle E, Ferraz C, Rombauts S, et al. Genome analysis of the smallest free-living eukaryoteOstreococcus tauriunveils many unique features[J]. Proc Natl Acad Sci USA, 2006, 103:11647-11652.

      [16] Vanholme B, Grunewald W, Bateman A, et al. The tify family previously known as ZIM[J]. Trends Plant Sci, 2007, 12:239-244.

      [17] Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98:128-136.

      [18] Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends Plant Sci, 2012, 17:22-31.

      [19] Chini A, Fonseca S, Chico JM, et al. The ZIM domain mediates homo-and heteromeric interactions betweenArabidopsisJAZ proteins[J]. The Plant Journal, 2009, 59:77-87.

      [20] Chung HS, Howe GA. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 inArabidopsis[J]. The Plant Cell Online, 2009, 21:131-145.

      [21] Pauwels L, Barbero GF, Geerinck J, et al. NINJA connects the corepressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464:788-791.

      [22] Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448:661-665.

      [23] Song S, Qi T, Huang H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development inArabidopsis[J]. The Plant Cell Online, 2011, 23:1000-1013.

      [24] Grunewald W, Vanholme B, Pauwels L, et al. Expression of theArabidopsisjasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin[J]. EMBO Reports, 2009, 10:923-928.

      [25] Berger S, Bell E, Mullet JE. Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding[J]. Plant Physiology, 1996, 111:525-531.

      [26] Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. JASMONATEINSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses inArabidopsis[J]. The Plant Cell Online, 2004, 16:1938-1950.

      [27] Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448:666-671.

      [28] Yan Y, Stolz S, Chételat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway[J]. Science Signaling, 2007, 19:2470.

      [29] Chico JM, Chini A, Fonseca S, Solano R. JAZ repressors set the rhythm in jasmonate signaling[J]. Current Opinion in Plant Biology, 2008, 3008, 11:486-494.

      [30] Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60:183-205.

      [31] Figueroa P. TheArabidopsisJAZ2 promoter contains a G-box and thymidine-rich module that are necessary and sufficient for

      jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins[J]. Plant and Cell Physiology, 2012, 53:330-343.

      [32] Leon J. Role of plant peroxisomes in the production of jasmonic acid-based signals[J]. Subcell Biochem,(2013,69:299-313.

      [33] Chung HS, Cooke TF, DePew CL, et al. Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling[J]. Plant J, 2010, 63:613-622.

      [34] Jiang S,Yao J,Ma KW,et al. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors[J]. PLoS Pathog,2013,9:e1003715.

      [35] Zhou W,Yao R,Li H,et al. New perspective on the stabilization and degradation of the F-box protein COI1 inArabidopsis[J]. Plant Signal Behav,2013(8). pii:e24973. doi:10. 4161/psb. 24973.

      [36] Gimenez-Ibanez S,Boter M,F(xiàn)ernandez-Barbero G,et al. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection inArabidopsis[J]. PLoS Biol,2014,12:e1001792.

      [37] Sheard LB, Tan X, Mao H, et al. Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468:400-405.

      [38] Mosblech A, Thurow C, Gatz C, et al. Jasmonic acid perception by COI1 involves inositol polyphosphates inArabidopsis thaliana[J]. Plant J, 2011, 65:949-957.

      [39] Cheng Z, Sun L, Qi T, et al. The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response inArabidopsis[J]. Molecular Plant, 2011, 4:279-288.

      [40] Qi T,Huang H,Wu D,et al.ArabidopsisDELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. Plant Cell,2014,26:1118-1133.

      [41] Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes inArabidopsis[J]. Plant Physiology, 2003, 133:1367-1375.

      [42] Wang W,Liu G,Niu H,et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco(Nicotiana tabacumL. cv. TN90)[J]. J Exp Bot, 2014,65:2147-2160.

      [43] Mandaokar A, Kumar VD, Amway M, Browse J. Microarray and differential display identify genes involved in jasmonate-dependent anther development[J]. Plant Mol Biol, 2003, 52:775-786.

      [44] Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks[J]. The Plant Cell Online, 2002, 14:S131-S151.

      [45] Guo H, Ecker JR. The ethylene signaling pathway:new insights[J]. Current Opinion in Plant Biology, 2004, 7(1):40-49.

      [46] Gao XH, Xiao SL, Yao QF, et al. An updated GA signaling ‘relief of repression’ regulatory model[J]. Molecular Plant, 2011, 4:601-606.

      [47] Yang DL, Yao J, Mei CS, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. Proc Natl Acad Sci USA, 2012, 109:E1192-1200.

      [48] Hou X,Ding L,Yu H . Crosstalk between GA and JA signaling mediates plant growth and defense[J]. Plant Cell Rep,2013,32:1067-1074.

      [49] Acosta IF,Gasperini D,Chetelat A,et al. Role of NINJA in root jasmonate signaling[J]. Proc Natl Acad Sci USA,2013,110:15473-15478.

      [50] Perez AC,Goossens A. Jasmonate signalling:a copycat of auxin signalling?[J]. Plant Cell Environ,2013,36:2071-2084.

      [51] Moreno JE,Shyu C,Campos ML,et al. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10[j]. Plant Physiol,2013,162:1006-1017.

      [52] Zhu X,Zhu JK. Double repression in jasmonate-mediated plant defense[j]. Mol Cell,2013,50:459-460.

      [53] Ballare CL. Light regulation of plant defense[J]. Annu Rev Plant Biol,2014,65:335-363.

      [54] Sasaki-Sekimoto Y,Saito H,Masuda S,et al. Comprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling[J]. Plant Signal Behav,2014,9(1). pii:e27639. [Epub ahead of print].

      [55] Wasternack C. Perception,signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie's lab and the Chuanyou Li's lab[J]. Plant Cell Rep,2014,33:707-718.

      [56] Rustioni L,Rocchi L,Guffanti E,et al Characterization of grape(Vitis viniferaL. )berry sunburn symptoms by reflectance[J]. J

      Agric Food Chem,2014,[Epub ahead of print].

      [57] Ishiga Y,Ishiga T,Uppalapati SR,Mysore KS. Jasmonate ZIM-domain(JAZ)protein regulates host and nonhost pathogeninduced cell death in tomato andNicotiana benthamiana[J]. PLoS One,2013,8:e75728.

      [58] Toda Y,Tanaka M,Ogawa D,et al. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J]. Plant Cell,2013,25:1709-1725.

      [59] Toda Y,Yoshida M,Hattori T,Takeda S. RICE SALT SENSITIVE3 binding to bHLH and JAZ factors mediates control of cell wall plasticity in the root apex[J]. Plant Signal Behav,2013,8:e26256.

      [60] Hakata M, Kuroda M, Ohsumi A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem[J]. Biosci Biotechnol Biochem, 2012, 76:2129-2134.

      [61] Zhu D, Cai H, Luo X, et al. Over-expression of a novel JAZ family gene fromGlycine soja, increases salt and alkali stress tolerance[J].Biochemical and Biophysical Research Communications, 2012, 426(2):273-279.

      [62] Oh Y, Baldwin IT, Gális I. NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis inNicotiana attenuataplants[J].Plant Physiology, 2012, 159:769-788.

      [63] Oh Y, Baldwin IT, Galis I. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission inNicotiana attenuataplants[J]. PloS One, 2013, 8:e57868.

      [64] Dewey RE,Xie J. Molecular genetics of alkaloid biosynthesis inNicotiana tabacum[J]. Phytochemistry,2013,94:10-27.

      [65] Memelink J. Regulation of gene expression by jasmonate hormones[J]. Phytochemistry, 2009, 70:1560-1570.

      (責(zé)任編輯 狄艷紅)

      Comprehensive Overview of JAZ Proteins in Plants

      Sun Cheng Zhou Xiaojin Chen Rumei Fan Yunliu Wang Lei
      (Biotechnology Research Institute of Chinese Academy of Agricultural Sciences,Beijing 100081)

      Jasmonates(JA)as an important phytohormone regulates many aspects of plant development, reproduction, and defence. Within the JA signaling cascades, jasmonate zim-domain(JAZ)proteins that are triggered by jasmonates play a central role. JAZ proteins regulate JA-responsive gene transcription by inhibiting DNA-binding transcription factors(TFs)in the absence of JA. However, in the presence of JA, JAZ proteins interact in a hormone-dependent manner with Coronatine Insensitive 1(COI1). After recognition component of the E3 ubiquitin ligase SCFCOI1, as a result, JAZ proteins are ubiquitinated and subsequently degraded in the 26S proteasome, releasing TFs from inhibition and activating JA-responsive gene transcription. This conclusion indicate that JAZ proteins, which function as transcriptional repressors of the JA signaling response, are not merely regulators of the JA signaling pathway, but, through interaction with other proteins, also serve as signaling hubs in the wider hormone regulatory network, plays important roles in plants..

      JAZs TIFY Jasmonates

      2013-05-21

      轉(zhuǎn)基因?qū)m?xiàng)(2010ZX08010-002)

      孫程,男,碩士研究生,研究方向:植物分子生物學(xué)與基因工程;E-mail:caas_sc@163.com

      王磊,男,研究員,博士生導(dǎo)師,研究方向:植物基因工程;E-mail:wanglei01@caas.cn

      猜你喜歡
      植物體茉莉結(jié)構(gòu)域
      初中生物學(xué)概念系統(tǒng)化內(nèi)生的實(shí)踐
      水中的茉莉
      文苑(2020年12期)2020-04-13 00:55:10
      茉莉雨
      茉莉雨
      意林彩版(2019年11期)2019-11-22 11:49:05
      蛋白質(zhì)結(jié)構(gòu)域劃分方法及在線(xiàn)服務(wù)綜述
      高中生物穿膜問(wèn)題的突破
      植物體上的斐波那契數(shù)列
      植物體細(xì)胞雜交技術(shù)知識(shí)歸納及試題分析
      重組綠豆BBI(6-33)結(jié)構(gòu)域的抗腫瘤作用分析
      茉莉情
      戲劇之家(2016年1期)2016-02-25 11:15:20
      抚宁县| 萨迦县| 乐安县| 罗源县| 雷州市| 嵊泗县| 铜陵市| 资兴市| 离岛区| 龙胜| 宁海县| 康定县| 珠海市| 德庆县| 阿坝| 怀来县| 博兴县| 共和县| 凤凰县| 荆州市| 芜湖市| 德州市| 黎川县| 成都市| 芷江| 建德市| 同仁县| 邵阳县| 乡城县| 五家渠市| 佛学| 五台县| 咸丰县| 长丰县| 陈巴尔虎旗| 小金县| 新野县| 海安县| 嘉祥县| 临海市| 宝兴县|