戴金鋒 王霄騰 陳超英 呂 賓
浙江中醫(yī)藥大學(xué)附屬第一醫(yī)院消化科(310006)
上皮-間質(zhì)轉(zhuǎn)化(EMT)指上皮細(xì)胞在特定條件下(生理或病理)轉(zhuǎn)化為間質(zhì)細(xì)胞的過程[1]。EMT按轉(zhuǎn)變的徹底性可分為部分和完全EMT;按發(fā)生背景可分為三種類型:Ⅰ型主要發(fā)生于胚胎發(fā)育過程,參與原腸胚和神經(jīng)嵴的形成,亦發(fā)生于移植和器官發(fā)育過程;Ⅱ型主要發(fā)生于器官纖維化以及炎癥過程,與損傷修復(fù)有關(guān);Ⅲ型參與腫瘤浸潤和轉(zhuǎn)移。目前研究多集中于Ⅲ型EMT與腫瘤侵襲轉(zhuǎn)移的關(guān)系,根據(jù)Correa胃癌發(fā)展模式,即慢性非萎縮性胃炎-慢性萎縮性胃炎-胃黏膜腸化生-異型增生-黏膜內(nèi)癌-浸潤性癌[2],有學(xué)者認(rèn)為EMT可能是胃炎與胃癌之間的橋梁[3]。本文就EMT與胃炎、胃黏膜屏障、胃癌啟動、侵襲轉(zhuǎn)移、耐藥、免疫逃逸之間的關(guān)系作一綜述。
1. 炎癥誘發(fā)Ⅱ型EMT:目前尚無研究證明胃正常上皮可在炎癥刺激下產(chǎn)生EMT,但多項研究表明炎癥可誘導(dǎo)膽管上皮、乳腺上皮細(xì)胞發(fā)生EMT[4-5],主要由核因子(NF)-κB[5]、MAPK[6]通路介導(dǎo)。幽門螺桿菌(Hp)可通過激活NF-κB通路刺激胃黏膜正常上皮產(chǎn)生炎癥[7],損傷胃黏膜上皮后啟動修復(fù)程序,產(chǎn)生大量轉(zhuǎn)化生長因子(TGF)、血小板衍生生長因子、上皮生長因子等,而這些細(xì)胞因子均為EMT的誘導(dǎo)因子[1,8],推測胃炎可能促進(jìn) Ⅱ 型EMT的發(fā)生。王兆宇等[9]在200例胃炎患者中發(fā)現(xiàn)128例存在間質(zhì)細(xì)胞,由于存在不同程度間質(zhì)化的細(xì)胞和腺體,故認(rèn)為此類間質(zhì)細(xì)胞由上皮轉(zhuǎn)化而非其他地方轉(zhuǎn)移而來。亦有研究[10]認(rèn)為Hp可促使間充干細(xì)胞趨向損傷部位并向間質(zhì)細(xì)胞分化而促進(jìn)EMT。
2. EMT破壞胃黏膜屏障,加重炎癥刺激:相對于皮膚、復(fù)層鱗狀上皮,胃上皮組織僅有單層柱狀上皮細(xì)胞,但抵御的酸性和消化酶環(huán)境較皮膚、復(fù)層鱗狀上皮更惡劣[11]。EMT過程中,細(xì)胞上皮鈣黏蛋白(E-cad)、緊密連接蛋白1(ZO-1)和細(xì)胞角蛋白下調(diào),β-連環(huán)蛋白入核增加,上述成分在維持正常細(xì)胞形態(tài)、細(xì)胞極性、黏附連接和組織結(jié)構(gòu)完整性中起重要作用,故EMT的發(fā)生可減少細(xì)胞間緊密連接,改變細(xì)胞極性,使細(xì)胞排列紊亂[1],即破壞第二層胃黏膜屏障[9,12],加重炎癥對胃的損傷,進(jìn)而加重 Ⅱ 型EMT,形成惡性循環(huán)。
3. EMT啟動胃癌發(fā)生:25%~40%的家族性彌漫性胃癌和7.2%的早期非家族性彌漫性胃癌異常表達(dá)CDH1基因,是目前發(fā)現(xiàn)的與此類胃癌相關(guān)的惟一基因,CDH1點突變和啟動子區(qū)過度甲基化是引起E-cad表達(dá)減少的主要原因[13-14]。Humar等[15]發(fā)現(xiàn)轉(zhuǎn)基因CDH1+/-小鼠在沒有外界致癌物質(zhì)的干預(yù)下仍可產(chǎn)生胃黏膜內(nèi)印戒細(xì)胞癌(>90%的癌細(xì)胞E-cad表達(dá)下降),發(fā)生率隨轉(zhuǎn)基因小鼠生存時間延長而增加,說明CDH1突變單獨可啟動胃印戒細(xì)胞癌的發(fā)生,CDH1啟動子區(qū)過度甲基化獨立于CDH1突變,可視為二次打擊。EMT的主要表現(xiàn)為E-cad表達(dá)下降甚至消失,有研究表明這與其啟動子區(qū)甲基化而非突變相關(guān)[16]。目前尚無EMT直接誘發(fā)胃癌的報道,但EMT過程中E-cad表達(dá)減少是否源于其啟動子區(qū)甲基化、并由此進(jìn)一步啟動胃癌發(fā)生值得研究。
1. EMT與胃癌增殖:腫瘤細(xì)胞存在接觸性生長抑制,主要與E-cad相關(guān),故E-cad也是細(xì)胞生長抑制因子,其抑制機(jī)制為上調(diào)周期依賴蛋白激酶抑制因子(CDKI)p27Kip1,從而抑制周期依賴蛋白激酶(CDK),進(jìn)一步抑制周期素-CDK復(fù)合物,如周期素D-CDK4/6、周期素E-CDK2的形成,可誘導(dǎo)G1/S期轉(zhuǎn)變,故E-cad上調(diào)可使細(xì)胞周期阻滯于G1期而抑制細(xì)胞增殖。Tsukada等[17]將人胃癌MKN45細(xì)胞與TGF-β激活的腹膜間質(zhì)細(xì)胞共培養(yǎng)后出現(xiàn)E-cad下調(diào)和增殖加快。但有研究[18]發(fā)現(xiàn)N-cad同樣存在上述機(jī)制。EMT過程中E-cad下調(diào),N-cad上升,導(dǎo)致EMT在接觸性抑制方面對腫瘤增殖的影響不確定,取決于兩者相對變化的大小。
2. EMT與胃癌浸潤、轉(zhuǎn)移:EMT中Occuldin、ZO-1、E-cad等蛋白的下降可導(dǎo)致細(xì)胞黏附力降低,是導(dǎo)致腫瘤浸潤、轉(zhuǎn)移的重要機(jī)制[1]。腫瘤微環(huán)境中TGF-β、腫瘤壞死因子-α、成纖維細(xì)胞生長因子等可使上皮細(xì)胞發(fā)生EMT,同時基質(zhì)金屬蛋白酶(MMP)-7分泌增加,可破壞組織學(xué)屏障,便于細(xì)胞從原發(fā)腫瘤脫落后發(fā)生侵襲轉(zhuǎn)移[19]。整合素介導(dǎo)的腫瘤細(xì)胞與細(xì)胞外基質(zhì)成分的黏著是維持細(xì)胞穩(wěn)定的因素,PKCε磷酸化介導(dǎo)的vimentin磷酸化可使細(xì)胞內(nèi)吞其表面的β1-整合素導(dǎo)致腫瘤細(xì)胞運動侵襲能力增強(qiáng),而整合素連接激酶過表達(dá)可下調(diào)E-cad,以上過程均為腫瘤轉(zhuǎn)移的重要環(huán)節(jié)[20-21]。另有研究表明誘導(dǎo)EMT的原肌球蛋白相關(guān)激酶A和EMT過程中E-cad下調(diào)、細(xì)胞極性改變、抗凋亡基因表達(dá)上調(diào),黏著斑蛋白與整合素連接蛋白激活均可抑制失巢凋亡,使脫落的腫瘤細(xì)胞抗凋亡能力增強(qiáng),有助于其轉(zhuǎn)移[22]。研究[23]表明腫瘤發(fā)生EMT后預(yù)后不良,因其與腫瘤大小、轉(zhuǎn)移和腫瘤分期密切相關(guān)。
3. EMT與胃癌耐藥:腫瘤細(xì)胞在產(chǎn)生獲得性耐藥的過程中有間質(zhì)化趨勢,而本身具有間質(zhì)分化狀態(tài)的腫瘤細(xì)胞常表現(xiàn)為原發(fā)性耐藥的特點,因此EMT被認(rèn)為是腫瘤耐藥的重要機(jī)制。研究表明,調(diào)控腫瘤細(xì)胞間質(zhì)化狀態(tài)的信號途徑PI3K/Akt/GSK-3β/Snail、NF-κB/Snail/YY1/RKIP/PTEN環(huán)路、PI3K/Akt/HIF-1α、Notch-2等可通過EMT在多種抗腫瘤藥物的耐藥過程中起關(guān)鍵作用[24-25]。許春紅等[26]發(fā)現(xiàn)沉默Snail基因下調(diào)ERCC1表達(dá)、上調(diào)E-cad表達(dá)逆轉(zhuǎn)EMT的同時可逆轉(zhuǎn)人胃癌細(xì)胞株SGC7901/順鉑對順鉑的耐藥性。
4. EMT與腫瘤免疫逃逸:誘導(dǎo)和維持EMT的重要細(xì)胞因子TGF-β是免疫抑制因子,其作用包括抑制CD4+增殖、NK細(xì)胞活化和CD4+、CD8+T細(xì)胞向輔助型T細(xì)胞轉(zhuǎn)化,促進(jìn)幼稚CD4+、CD8+T細(xì)胞轉(zhuǎn)化為調(diào)節(jié)性T細(xì)胞(Tregs細(xì)胞),再由Tregs抑制效應(yīng)T細(xì)胞向病灶遷移以及胃組織細(xì)胞分泌IFN-γ、白細(xì)胞介素-17(IL-17)、趨化因子5(CCL5),促進(jìn)IL-10、CCL3(MIP-1a)和CCL4(MIP-1b)的分泌[27]。EMT引起的表型改變也可減少靶細(xì)胞與細(xì)胞毒性T細(xì)胞間突觸介導(dǎo)的細(xì)胞自我吞噬而降低免疫監(jiān)視功能[28]。但近來有研究認(rèn)為EMT是機(jī)體免疫系統(tǒng)識別并抑制腫瘤生長的一種反應(yīng),因其在該過程中檢測到NK2組D受體表達(dá)升高使其易被NK細(xì)胞識別殺傷[29]。類似的研究還有促進(jìn)腫瘤EMT的T-box轉(zhuǎn)錄因子Brachyury高表達(dá)于胃癌細(xì)胞,可促進(jìn)腫瘤患者和正常人血液中T細(xì)胞增殖[30]。Langerhans細(xì)胞作為樹突狀細(xì)胞的成員,表面同樣表達(dá)上皮標(biāo)志蛋白,有助于其黏附并定居于黏膜上皮,而發(fā)生EMT后促進(jìn)了其游走能力,更易轉(zhuǎn)移到病灶發(fā)揮作用[31]。EMT在腫瘤免疫中的角色有待進(jìn)一步研究。
綜上所述,目前關(guān)于體內(nèi)胃炎與EMT關(guān)系的報道少見,但體外研究已證實Ⅱ型EMT與炎癥損傷修復(fù)有關(guān),原因可能是胃炎與EMT無關(guān)或胃炎引起EMT需漫長的時間和復(fù)雜的環(huán)境或現(xiàn)實存在的現(xiàn)象被忽視。有鑒于此,病理醫(yī)師在今后的工作中可關(guān)注胃炎患者活檢組織中間質(zhì)細(xì)胞的存在與否,及其與炎癥范圍、程度和持續(xù)時間等的關(guān)系。此外,EMT在腫瘤發(fā)展過程中是腫瘤細(xì)胞對腫瘤微環(huán)境的適應(yīng)性改變,還是機(jī)體抑制腫瘤進(jìn)展的反應(yīng)需進(jìn)一步研究證實。但肯定的是EMT在胃癌發(fā)生、發(fā)展過程中起重要作用,兩者之間關(guān)系的明確有助于胃癌的預(yù)防和治療。
1 Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119 (6): 1420-1428.
2 Correa P. A human model of gastric carcinogenesis[J]. Cancer Res, 1988, 48 (13): 3554-3560.
3 Fuxe J, Karlsson MC. TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation[J]. Semin Cancer Biol, 2012, 22 (5-6): 455-461.
4 Zhao L, Yang R, Cheng L, et al. LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells[J]. J Surg Res, 2011, 171 (2): 819-825.
5 Chua HL, Bhat-Nakshatri P, Clare SE, et al. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2[J]. Oncogene, 2007, 26 (5): 711-724.
6 Nguyen DP, Li J, Tewari AK. Inflammation and prostate cancer: the role of interleukin-6 (IL-6)[J]. BJU Int, 2014, 113 (6): 986-992.
7 黃宣, 呂賓, 趙敏, 等. 溫郁金二萜類化合物C對幽門螺桿菌誘導(dǎo)人胃GES-1上皮細(xì)胞炎癥的抑制作用及其對NF-κB信號通道的影響[J]. 中國藥理學(xué)通報, 2013, 29 (4): 562-567.
8 Wynn TA.Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2008, 214 (2): 199-210.
9 王兆宇, 鄧濤. 200例胃炎患者胃黏膜腺體間質(zhì)化改變探討[J]. 中國初級衛(wèi)生保健, 2011, 25 (6): 140-141.
10 Zhang Q, Wang M, Huang F, et al.H.pyloriinfection-induced MSC differentiation into CAFs promotes epithelial-mesenchymal transition in gastric epithelial cells[J]. Int J Mol Med, 2013, 32 (6): 1465-1473.
11 McColl KE. The elegance of the gastric mucosal barrier: designed by nature for nature[J]. Gut, 2012, 61 (6): 787-788.
12 Tarnawski AS, Ahluwalia A, Jones MK. The mechanisms of gastric mucosal injury: focus on microvascular endothelium as a key target[J]. Curr Med Chem, 2012, 19 (1): 4-15.
13 Barber M, Murrell A, Ito Y, et al. Mechanisms and sequelae of E-cadherin silencing in hereditary diffuse gastric cancer[J]. J Pathol, 2008, 216 (3): 295-306.
14 Corso G, Pedrazzani C, Pinheiro H, et al.E-cadherin genetic screening and clinic pathologic characteristics of early onset gastric cancer[J]. Eur J Cancer, 2011, 47 (4): 631-639.
15 Humar B, Blair V, Charlton A, et al. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man[J]. Cancer Res, 2009, 69 (5): 2050-2056.
16 Beswick EJ, Pinchuk IV, Earley RB, et al. Role of gastric epithelial cell-derived transforming growth factor in reduced cd4+T cell proliferation and development of regulatory T cells duringhelicobacterpyloriinfection[J]. Infect Immun, 2011, 79 (7): 2737-2745.
17 Tsukada T, Fushida S, Harada S, et al. The role of human peritoneal mesothelial cells in the fibrosis and progression of gastric cancer[J]. Int J Oncol, 2012, 41 (2): 476-482.
18 Levenberg S, Yarden A, Kam Z, et al. p27 is involved in N-cadherin-mediated contact inhibition of cell growth and S-phase entry[J]. Oncogene, 1999, 18 (4): 869-876.
19 Yin Y, Grabowska AM, Clarke PA, et al.Helicobacterpyloripotentiates epithelial: Mesenchymal transition in gastric cancer: Links to soluble HB-EGF, gastrin and matrix metalloproteinase-7[J]. Gut, 2010, 59 (8):1037-1045.
20 Gotzmann J, Mikula M, Eger A, et al. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis[J]. Mutat Res, 2004, 566 (1): 9-20.
21 Phua DC, Humbert PO, Hunziker W. Vimentin regulates scribble activity by protecting it from proteasomal degradation[J]. Mol Biol Cell, 2009, 20 (12): 2841-2855.
22 Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis[J]. J Cell Sci, 2013, 126 (Pt1): 21-29.
23 Shin NR, Jeong EH, Choi CI, et al. Overexpression of Snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer[J]. BMC Cancer, 2012, 12: 521.
24 Güng?r C, Zander H, Effenberger KE, et al. Notch signaling activated by replication stress-induced expression of midkine drives epithelial-mesenchymal transition and chemoresistance in pancreatic cancer[J]. Cancer Res, 2011, 71 (14): 5009-5019.
25 Han Z, Hong L, Han Y, et al. Phospho-Akt mediates multidrug resistance of gastric cancer cells through regulation of p-gP, Bcl-2 and Bax[J]. J Exp Clin Cancer Res, 2007, 26 (2): 261-268.
26 許春紅, 郭慧敏, 王軍, 等. amiRNA-Snai1逆轉(zhuǎn)人胃癌細(xì)胞株SGC7901/DDP對順鉑的耐藥性及其機(jī)制研究[J]. 胃腸病學(xué), 2012, 17 (3): 146-150.
27 Nguyen TL, Sullivan NL, Ebel M, et al.Antigen-specific TGF-β-induced regulatory T cells secrete chemokines, regulate T cell trafficking, and suppress ongoing auto-immunity[J]. J Immunol, 2011, 187: 1745-1753.
28 Akalay I, Janji B, Hasmim M, et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis[J]. Cancer Res, 2013, 73 (8): 2418-2427.
29 López-Soto A, Huergo-Zapico L, Galván JA, et al. Epithelial-esenchymal transition induces an antitumor immune response mediated by NKG2D receptor[J]. J Immunol, 2013, 190 (8): 4408-4419.
30 Fernando RI, Litzinger M, Trono P, et al. The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells[J]. J Clin Invest, 2010, 120 (2): 533-544.
31 Konradi S, Yasmin N, Haslwanter D, et al.Langerhans cell maturation is accompanied by induction of N-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2[J]. Eur J Immunol, 2014, 44 (2): 553-560.