郭夢(mèng)舟 崔越宏 劉天舒
復(fù)旦大學(xué)附屬中山醫(yī)院腫瘤內(nèi)科(200032)
MicroRNAs(miRNAs)是一類長(zhǎng)約20個(gè)核苷酸的內(nèi)源性非編碼小分子RNA,廣泛存在于真核生物中,在進(jìn)化中具有保守性。MiRNAs參與調(diào)節(jié)人類約1/3的基因,在細(xì)胞生長(zhǎng)、分化和凋亡過(guò)程中起重要作用,與人體生長(zhǎng)、發(fā)育和疾病密切相關(guān)。近年研究發(fā)現(xiàn)miRNAs與腫瘤關(guān)系密切,某些miRNAs可發(fā)揮類似癌基因或抑癌基因的作用,其表達(dá)紊亂或功能異??蓪?dǎo)致其靶基因調(diào)節(jié)異常,從而參與腫瘤發(fā)生、發(fā)展。胃癌為全球高發(fā)的惡性腫瘤,發(fā)病率和死亡率分別位居第4位和第2位[1],目前已發(fā)現(xiàn)多種miRNAs及其作用靶點(diǎn)與胃癌細(xì)胞的增殖、遷移、侵襲、凋亡以及化療敏感性密切相關(guān)。本文就胃癌相關(guān)miRNAs及其作用靶點(diǎn)以及靶向miRNAs在胃癌治療中應(yīng)用的研究進(jìn)展作一綜述。
通常編碼miRNAs的基因位于已知基因的內(nèi)含子中,亦有位于基因間區(qū)域者。動(dòng)物體內(nèi)編碼miRNAs的基因首先在RNA聚合酶Ⅱ的作用下形成長(zhǎng)約數(shù)百個(gè)核苷酸的初級(jí)轉(zhuǎn)錄物pri-miRNAs[2],后者在細(xì)胞核內(nèi)被RNA酶Ⅲ家族酶Drosha與雙鏈RNA結(jié)合蛋白DGCR8組成的多蛋白復(fù)合物剪切成長(zhǎng)60~70個(gè)核苷酸、具有莖環(huán)結(jié)構(gòu)的miRNAs前體pre-miRNAs[3]。pre-miRNAs由轉(zhuǎn)運(yùn)蛋白exportin-5從細(xì)胞核運(yùn)送至細(xì)胞質(zhì)[4],被另一RNA酶Ⅲ家族酶Dicer剪切成長(zhǎng)18~22個(gè)核苷酸的雙鏈miRNAs[5-6],其中一條鏈結(jié)合至miRNA誘導(dǎo)沉默復(fù)合物(miRNA-induced silencing complex, miR-ISC),成為成熟miRNAs,另一條鏈則被降解。MiR-ISC由反式激活應(yīng)答(TAR)元件RNA結(jié)合蛋白(TRBP)和Argonaute(Ago) 蛋白家族組成[5],miRNAs通過(guò)特異性識(shí)別靶mRNA的3’非翻譯區(qū)(3’ UTR)引導(dǎo)miR-ISC降解靶mRNA或抑制靶mRNA翻譯[7]。當(dāng)miRNAs與靶mRNA的堿基接近完全互補(bǔ)配對(duì)時(shí),靶mRNA被降解而失去活性;當(dāng)miRNAs與靶mRNA不完全互補(bǔ)配對(duì)時(shí),靶mRNA的翻譯受到抑制。
目前應(yīng)用實(shí)時(shí)熒光定量PCR(qRT-PCR)、RNA印跡法和微陣列分析已發(fā)現(xiàn)多種與胃癌細(xì)胞生長(zhǎng)、轉(zhuǎn)移、凋亡和化療敏感性相關(guān)的miRNAs。在胃癌中異常表達(dá)的miRNAs根據(jù)其作用可分為兩大類:具有致癌作用的miRNAs(oncogenic miRNAs, oncomiRs)和發(fā)揮抑癌作用的miRNAs(tumor-sup-pressive miRNAs, ts-miRs)。
1. OncomiRs及其作用靶點(diǎn):OncomiRs通過(guò)下調(diào)腫瘤抑制因子或其他相關(guān)靶基因達(dá)到促進(jìn)腫瘤細(xì)胞生長(zhǎng)、轉(zhuǎn)移、抑制腫瘤細(xì)胞凋亡或增加遺傳不穩(wěn)定性的效應(yīng),從而參與胃癌的發(fā)生、發(fā)展。
Wang等[8]應(yīng)用qRT-PCR技術(shù)發(fā)現(xiàn),miR-301a在胃癌組織以及9種胃癌細(xì)胞株中表達(dá)上調(diào),其高表達(dá)與胃癌細(xì)胞低分化相關(guān),作用靶點(diǎn)為RUNX3。RUNX3可激活促凋亡基因Bim,并下調(diào)侵襲蛋白基質(zhì)金屬蛋白酶-9(MMP-9)表達(dá),而miR-301a可分別通過(guò)抑制RUNX3/Bim途徑和RUNX3/MMP-9途徑促進(jìn)胃癌細(xì)胞增殖、侵襲。TNFAIP1基因可誘導(dǎo)細(xì)胞凋亡,Zhang等[9]發(fā)現(xiàn)miR-373在胃腺癌組織和胃癌細(xì)胞株AGS中表達(dá)上調(diào),可通過(guò)與3’ UTR結(jié)合直接抑制靶基因TNFAIP1表達(dá),使其喪失對(duì)細(xì)胞生長(zhǎng)的抑制作用,參與促進(jìn)胃癌發(fā)生。Zhu等[10]證實(shí)白細(xì)胞介素-6受體(IL-6R)是一種抗增殖蛋白,其表達(dá)水平與miR-23a呈負(fù)相關(guān),miR-23a可通過(guò)直接抑制IL-6R促進(jìn)胃腺癌細(xì)胞株MGC-803生長(zhǎng)。此外,金屬硫蛋白2A(MT2A)亦為miR-23a的靶基因,miR-23a可通過(guò)抑制MT2A促進(jìn)胃癌細(xì)胞生長(zhǎng),對(duì)抗細(xì)胞凋亡[11]。Zhang等[12]發(fā)現(xiàn)miR-21可通過(guò)作用于抑癌基因RECK,參與促進(jìn)胃癌細(xì)胞增殖,抑制細(xì)胞凋亡。MiR-106a表達(dá)水平在多藥耐藥胃癌細(xì)胞株中顯著升高,通過(guò)抑制其靶基因RUNX3而上調(diào)多藥耐藥相關(guān)蛋白1(MRP1)表達(dá),MRP1進(jìn)而通過(guò)加速化療藥物的泵出以及抑制胃癌細(xì)胞凋亡對(duì)抗包括阿霉素、順鉑、5-氟尿嘧啶在內(nèi)的化療藥物的作用[13]。
轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)信號(hào)途徑與胃癌的發(fā)生、發(fā)展和轉(zhuǎn)移密切相關(guān),其通過(guò)與TGF-β受體Ⅱ(TGFβ-RⅡ)結(jié)合,使磷酸化的Smad3與細(xì)胞內(nèi)信使Smad4結(jié)合并易位至細(xì)胞核,激活特定靶基因,抑制細(xì)胞增殖和轉(zhuǎn)移。Zhang等[14]發(fā)現(xiàn)miR-199a可通過(guò)抑制Smad4減弱TGF- β1誘導(dǎo)的細(xì)胞周期阻滯和促凋亡效應(yīng),提高胃癌細(xì)胞在瓊脂中的錨定非依賴性生長(zhǎng)能力。Lo等[15]發(fā)現(xiàn)轉(zhuǎn)染miR-370可使胃癌細(xì)胞株更具侵襲性,并使裸鼠成瘤模型更易發(fā)生腹腔轉(zhuǎn)移。進(jìn)一步研究其作用機(jī)制,發(fā)現(xiàn)miR-370系通過(guò)抑制TGFβ-RⅡ表達(dá)、減弱TGF-β1介導(dǎo)的Smad3磷酸化而誘導(dǎo)胃癌細(xì)胞轉(zhuǎn)移。上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)是上皮細(xì)胞來(lái)源的惡性腫瘤細(xì)胞獲得遷移、侵襲能力的重要生物學(xué)過(guò)程。Hsu等[16]應(yīng)用胃癌細(xì)胞株SC-M1和裸鼠成瘤模型對(duì)miR-363進(jìn)行研究,發(fā)現(xiàn)其表達(dá)在腫瘤細(xì)胞中顯著上調(diào)。進(jìn)一步的研究發(fā)現(xiàn),miR-363系通過(guò)直接抑制抑癌基因c-Myc啟動(dòng)子結(jié)合蛋白1(MBP-1)誘導(dǎo)EMT發(fā)生并上調(diào)原癌基因c-Myc表達(dá),從而促進(jìn)胃癌細(xì)胞生長(zhǎng)、轉(zhuǎn)移。分別將SC-M1/HA-MBP-1(MBP-1表達(dá))和SC-M1/pcDNA3(MBP-1不表達(dá))胃癌細(xì)胞注入免疫缺陷小鼠尾靜脈,發(fā)現(xiàn)相對(duì)于MBP-1表達(dá)組,MBP-1不表達(dá)組有數(shù)量更多的肺部轉(zhuǎn)移灶,證實(shí)miR-363系通過(guò)抑制MBP-1而提高胃癌細(xì)胞的轉(zhuǎn)移能力。Jin等[17]通過(guò)熒光素酶報(bào)告基因檢測(cè)技術(shù)發(fā)現(xiàn)活化白細(xì)胞黏附分子(ALCAM)為miR-215的靶基因,在胃癌細(xì)胞中敲除ALCAM或轉(zhuǎn)染miR-215模擬物均可促進(jìn)細(xì)胞轉(zhuǎn)移,表明miR-215系通過(guò)下調(diào)ALCAM參與胃癌進(jìn)展。
2. Ts-miRs及其作用靶點(diǎn):Ts-miRs可通過(guò)介導(dǎo)細(xì)胞周期阻滯、促進(jìn)細(xì)胞凋亡等途徑發(fā)揮抗腫瘤作用,其在胃癌中通常表達(dá)下調(diào)或缺失。
Tang等[18]應(yīng)用qRT-PCR技術(shù)發(fā)現(xiàn)miR-200b、miR-200c在胃癌組織以及7種胃癌細(xì)胞株中表達(dá)下調(diào),其表達(dá)水平與腫瘤浸潤(rùn)深度和淋巴結(jié)轉(zhuǎn)移呈負(fù)相關(guān)。進(jìn)一步研究其作用機(jī)制,發(fā)現(xiàn)兩者可通過(guò)與3’ UTR結(jié)合而直接抑制DNA甲基轉(zhuǎn)移酶(DNMT)3A、DNMT3B,或通過(guò)抑制轉(zhuǎn)錄因子SP1間接抑制DNMT1,導(dǎo)致DNA低甲基化,從而使沉默的抑癌基因如p16、RASSF1A以及上皮細(xì)胞鈣黏蛋白(E-cadherin)恢復(fù)表達(dá),抑制胃癌細(xì)胞增殖、侵襲。Song等[19]發(fā)現(xiàn)在胃癌細(xì)胞中敲除膽囊收縮素B受體(CCKBR)可抑制細(xì)胞增殖,在轉(zhuǎn)染miR-148b的胃癌細(xì)胞株和裸鼠成瘤模型中同樣可觀察到此現(xiàn)象,熒光素酶報(bào)告基因檢測(cè)證實(shí)CCKBR為miR-148b的靶基因。在胃癌細(xì)胞株和胃癌組織中,miR-212與視網(wǎng)膜母細(xì)胞瘤結(jié)合蛋白2(RBP2)含量呈負(fù)相關(guān),可通過(guò)下調(diào)RBP2恢復(fù)細(xì)胞周期蛋白依賴性激酶(CDK)抑制劑p21CIP1和p27kip1表達(dá),引起細(xì)胞周期阻滯而抑制胃癌細(xì)胞增殖[20]。Zhang等[21]證實(shí)miR-206在體內(nèi)和體外均可抑制胃癌細(xì)胞增殖,而其機(jī)制之一為miR-206作用于細(xì)胞周期蛋白D2(CCND2)而抑制其表達(dá),誘導(dǎo)細(xì)胞周期阻滯于G0/G1期。MiR-29家族(miR-29a、b、c)是另一以CCND2為作用靶點(diǎn)的ts-miRs,可直接作用于CCND2/p-Rb途徑,抑制胃癌細(xì)胞增殖;同時(shí)通過(guò)作用于CCND2和MMP-2,降低胃癌細(xì)胞的遷移、侵襲能力[22]。DNA甲基化使miR-129在胃癌中呈低表達(dá),上調(diào)miR-129能有效抑制胃癌細(xì)胞增殖,促進(jìn)細(xì)胞凋亡,該作用與下調(diào)CDK6有關(guān)[23]。Chang等[24]發(fā)現(xiàn)敲除RhoE基因可顯著增加耐藥胃癌細(xì)胞株SGC7901/DDP對(duì)順鉑的敏感性,而miR-200c可直接抑制RhoE,提示miR-200c可間接調(diào)控胃癌細(xì)胞對(duì)順鉑的敏感性。
某些miRNAs表達(dá)下調(diào)可影響胃癌細(xì)胞的侵襲、轉(zhuǎn)移能力,進(jìn)而影響腫瘤臨床分期和預(yù)后。Gao等[25]發(fā)現(xiàn)miR-145的表達(dá)水平在正常胃黏膜、胃癌原發(fā)灶和轉(zhuǎn)移灶中呈階梯式下降。神經(jīng)鈣黏蛋白(N-cadherin)是一種受Ca2+調(diào)節(jié)的細(xì)胞黏附分子,與細(xì)胞侵襲能力增強(qiáng)有關(guān),該研究顯示miR-145可通過(guò)與3’ UTR結(jié)合直接抑制N-cadherin,減少胃癌細(xì)胞的侵襲、轉(zhuǎn)移。UHRF1是一種表觀遺傳學(xué)調(diào)控因子,可抑制多種抑癌基因表達(dá)。Zhou等[26]證實(shí)UHRF1在胃癌組織中表達(dá)上調(diào),并與胃癌細(xì)胞低分化、淋巴結(jié)轉(zhuǎn)移、器官轉(zhuǎn)移和TNM分期密切相關(guān);將miR-146a、miR-146b轉(zhuǎn)染入胃癌細(xì)胞株可下調(diào)UHRF1,通過(guò)去甲基化形式使受UHRF1調(diào)控的抑癌基因Slit3、CDH4和RUNX3重新表達(dá),進(jìn)而抑制胃癌細(xì)胞侵襲、轉(zhuǎn)移。細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)參與細(xì)胞增殖、分化、凋亡、惡變等多種生物學(xué)過(guò)程,miR-219-2-3p可通過(guò)下調(diào)ERK1/2達(dá)到抑制胃癌細(xì)胞增殖、轉(zhuǎn)移和促進(jìn)細(xì)胞凋亡的作用[27]。在胃癌細(xì)胞株MKN45和SGC7901中,miR-146a與WASP家族富含脯氨酸同源蛋白2(WASF2)含量呈負(fù)相關(guān),Yao等[28]證實(shí)miR-146a可通過(guò)靶向WASF2抑制胃癌細(xì)胞轉(zhuǎn)移。Deng等[29]發(fā)現(xiàn)miR-26a低表達(dá)的胃癌患者總生存期、無(wú)復(fù)發(fā)生存期顯著短于miR-26a高表達(dá)者,該研究證實(shí)miR-26a在體內(nèi)和體外均可抑制胃癌細(xì)胞侵襲、轉(zhuǎn)移,堿性成纖維細(xì)胞生長(zhǎng)因子9(bFGF9)基因?yàn)槠渥饔冒悬c(diǎn)。
上述與胃癌發(fā)生、發(fā)展相關(guān)的miRNAs及其作用靶點(diǎn)總結(jié)歸納于表1。
表1 胃癌相關(guān)miRNAs及其作用靶點(diǎn)
MiRNAs通過(guò)調(diào)控靶mRNA參與腫瘤發(fā)生、發(fā)展,發(fā)揮類似癌基因或抑癌基因的作用,相關(guān)研究證實(shí)其在腫瘤與正常組織中的表達(dá)水平存在顯著差異。改變miRNAs在腫瘤組織中的表達(dá)水平可調(diào)控其作用靶點(diǎn)和通路,進(jìn)而逆轉(zhuǎn)腫瘤細(xì)胞的惡性生物學(xué)行為,在腫瘤靶向治療中具有巨大潛能。
針對(duì)具有癌基因性質(zhì)的oncomiRs,可應(yīng)用反義寡核苷酸、miRNA海綿(miRNA sponge)、鎖核酸(locked nucleic acid, LNA)等技術(shù)下調(diào)其表達(dá)。Zhang等[12]應(yīng)用反義寡核苷酸技術(shù)下調(diào)原本高表達(dá)的miRNA-21,達(dá)到了抑制胃癌細(xì)胞增殖、促進(jìn)細(xì)胞凋亡的效果。An等[11]發(fā)現(xiàn)下調(diào)miR-23a在胃癌細(xì)胞株BGC823及其裸鼠成瘤模型中的表達(dá),可使腫瘤細(xì)胞增殖受抑,腫瘤體積變小,提示抑制miR-23a可能成為治療胃癌的有效方法。
針對(duì)具有抑癌基因性質(zhì)的ts-miRs,可構(gòu)建病毒或脂質(zhì)體載體將miRNAs模擬物轉(zhuǎn)染入相應(yīng)組織以上調(diào)其表達(dá)。Tang等[18]將miR-200b、miR-200c模擬物轉(zhuǎn)染入胃癌細(xì)胞株MGC-803和AGS,發(fā)現(xiàn)細(xì)胞增殖、遷移、侵襲能力受到明顯抑制。Gong等[22]發(fā)現(xiàn)轉(zhuǎn)染miR-29家族高表達(dá)模擬物可明顯抑制胃癌細(xì)胞株HGC-27和MGC-803的生長(zhǎng)、轉(zhuǎn)移,裸鼠成瘤實(shí)驗(yàn)顯示miR-29家族高表達(dá)可顯著減小腫瘤體積,減輕腫瘤質(zhì)量。Gao等[25]通過(guò)裸鼠成瘤實(shí)驗(yàn)發(fā)現(xiàn)miR-145表達(dá)組小鼠不發(fā)生腫瘤轉(zhuǎn)移,而對(duì)照組則出現(xiàn)腫瘤侵犯鄰近組織和肌肉組織的現(xiàn)象;將miR-145表達(dá)胃癌細(xì)胞注入小鼠尾靜脈,該組小鼠肺部轉(zhuǎn)移灶數(shù)量較對(duì)照組顯著減少,表明miR-145可用于胃癌遠(yuǎn)處轉(zhuǎn)移的治療。
胃癌細(xì)胞對(duì)化療藥物的耐藥性是提高胃癌患者生存率和生活質(zhì)量的一大障礙,研究表明調(diào)控某些miRNAs可影響腫瘤細(xì)胞的化療敏感性,從而改變治療效果。Eto等[30]將miR-21抑制劑轉(zhuǎn)染入人表皮生長(zhǎng)因子受體2(HER2)陽(yáng)性胃癌細(xì)胞株NUGC4,發(fā)現(xiàn)胃癌細(xì)胞對(duì)曲妥珠單抗的敏感性顯著增加,而轉(zhuǎn)染miR-21模擬物的作用與之相反。該研究證實(shí)miR-21抑制劑系通過(guò)調(diào)控PTEN/AKT途徑促進(jìn)胃癌細(xì)胞凋亡,從而提高曲妥珠單抗的療效。Chen等[31]發(fā)現(xiàn)將miR-200c轉(zhuǎn)染入耐藥胃癌細(xì)胞株SGC7901/DDP可提高其對(duì)順鉑、5-氟尿嘧啶、紫杉醇和阿霉素的敏感性,其機(jī)制與miR-200c通過(guò)E-cadherin途徑間接調(diào)控細(xì)胞凋亡相關(guān)基因如Bax、Bcl-2有關(guān)。
綜上所述,miRNAs與相應(yīng)靶基因組成的錯(cuò)綜復(fù)雜的調(diào)控網(wǎng)絡(luò)參與了腫瘤的發(fā)生、發(fā)展,對(duì)胃癌相關(guān)miRNAs及其作用靶點(diǎn)的探討將為胃癌發(fā)生機(jī)制的研究提供新的思路。盡管miRNAs與胃癌的發(fā)生、發(fā)展和治療密切相關(guān),但將其轉(zhuǎn)化為臨床治療手段仍存在諸多困難,如如何解決脫靶效應(yīng)、表達(dá)載體的毒性反應(yīng)以及減少免疫反應(yīng)等問(wèn)題。相信隨著研究的不斷深入,針對(duì)miRNAs的靶向治療將為包括胃癌在內(nèi)的多種疾病提供新的治療手段。
1 Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005, 55 (2): 74-108.
2 Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ[J]. EMBO J, 2004, 23 (20): 4051-4060.
3 Lee Y, Ahn C, Han J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing[J]. Nature, 2003, 425 (6956): 415-419.
4 Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes Dev, 2003, 17 (24): 3011-3016.
5 Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature, 2005, 436 (7051): 740-744.
6 Lee Y, Hur I, Park SY, et al. The role of PACT in the RNA silencing pathway[J]. EMBO J, 2006, 25 (3): 522-532.
7 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing[J]. Nat Rev Mol Cell Biol, 2005, 6 (5): 376-385.
8 Wang M, Li C, Yu B, et al. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer[J]. J Gastroenterol, 2013, 48 (9): 1023-1033.
9 Zhang X, Li X, Tan Z, et al. MicroRNA-373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis[J]. Oncol Lett, 2013, 6 (5): 1427-1434.
10 Zhu LH, Liu T, Tang H, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor[J]. FEBS J, 2010, 277 (18): 3726-3734.
11 An J, Pan Y, Yan Z, et al. MiR-23a in amplified 19p13.13 loci targets metallothionein 2A and promotes growth in gastric cancer cells[J]. J Cell Biochem, 2013, 114 (9): 2160-2169.
12 Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression[J]. Lab Invest, 2008, 88 (12): 1358-1366.
13 Zhang Y, Lu Q, Cai X. MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3[J]. FEBS Lett, 2013, 587 (18): 3069-3075.
14 Zhang Y, Fan KJ, Sun Q, et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-beta signalling pathway[J]. Nucleic Acids Res, 2012, 40 (18): 9286-9297.
15 Lo SS, Hung PS, Chen JH, et al. Overexpression of miR-370 and downregulation of its novel target TGFβ-RⅡ contribute to the progression of gastric carcinoma[J]. Oncogene, 2012, 31 (2): 226-237.
16 Hsu KW, Wang AM, Ping YH, et al. Downregulation of tumor suppressor MBP-1 by microRNA-363 in gastric carcinogenesis[J]. Carcinogenesis, 2014, 35 (1): 208-217.
17 Jin Z, Selaru FM, Cheng Y, et al. MicroRNA-192 and -215 are upregulated in human gastric cancerinvivoand suppress ALCAM expressioninvitro[J]. Oncogene, 2011, 30 (13): 1577-1585.
18 Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression[J]. Clin Cancer Res, 2013, 19 (20): 5602-5612.
19 Song YX, Yue ZY, Wang ZN, et al. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation[J]. Mol Cancer, 2011, 10: 1.
20 Zeng JP, Fang M, Wang LX, et al. MicroRNA-212 inhibits proliferation of gastric cancer by directly repressing retinoblastoma binding protein 2[J]. J Cell Biochem, 2013, 114 (12): 2666-2672.
21 Zhang L, Liu X, Jin H, et al. miR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2[J]. Cancer Lett, 2013, 332 (1): 94-101.
22 Gong J, Li J, Wang Y, et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer[J]. Carcinogenesis, 2014, 35 (2): 497-502.
23 Wu J, Qian J, Li C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression[J]. Cell Cycle, 2010, 9 (9): 1809-1818.
24 Chang L, Guo F, Wang Y, et al. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE[J]. Pathol Oncol Res, 2014, 20 (1): 93-98.
25 Gao P, Xing AY, Zhou GY, et al. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer[J]. Oncogene, 2013, 32 (4): 491-501.
26 Zhou L, Zhao X, Han Y, et al. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis[J]. FASEB J, 2013, 27 (12): 4929-4939.
27 Lei H, Zou D, Li Z, et al. MicroRNA-219-2-3p functions as a tumor suppressor in gastric cancer and is regulated by DNA methylation[J]. PLoS One, 2013, 8 (4): e60369.
28 Yao Q, Cao Z, Tu C, et al. MicroRNA-146a acts as a metastasis suppressor in gastric cancer by targeting WASF2[J]. Cancer Lett, 2013, 335 (1): 219-224.
29 Deng M, Tang HL, Lu XH, et al. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer[J]. PLoS One, 2013, 8 (8): e72662.
30 Eto K, Iwatsuki M, Watanabe M, et al. The microrna-21/pten pathway regulates the sensitivity of her2-positive gastric cancer cells to trastuzumab[J]. Ann Surg Oncol, 2014, 21 (1): 343-350.
31 Chen Y, Zuo J, Liu Y, et al. Inhibitory effects of miRNA-200c on chemotherapy-resistance and cell proliferation of gastric cancer SGC7901/DDP cells[J]. Chin J Cancer, 2010, 29 (12): 1006-1011.