• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      RNA干擾技術(shù)在藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用

      2014-03-22 00:55:28孔令雷
      關(guān)鍵詞:轉(zhuǎn)運(yùn)體外排受體

      孔令雷,李 樺

      (軍事醫(yī)學(xué)科學(xué)院毒物藥物研究所藥物代謝實(shí)驗(yàn)室抗毒藥和毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100850)

      RNA干擾技術(shù)在藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用

      孔令雷,李 樺

      (軍事醫(yī)學(xué)科學(xué)院毒物藥物研究所藥物代謝實(shí)驗(yàn)室抗毒藥和毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100850)

      RNA干擾是一種利用雙鏈RNA分子特異的沉默靶基因表達(dá)的技術(shù),目前已廣泛用于基礎(chǔ)生物醫(yī)學(xué)研究。作為一種高選擇性和有效的基因調(diào)控手段,這一技術(shù)也已用于臨床疾病的治療研究和藥物轉(zhuǎn)運(yùn)體的研究。藥物轉(zhuǎn)運(yùn)體是一類(lèi)細(xì)胞膜蛋白,在藥物的吸收、分布和排泄中發(fā)揮重要作用。轉(zhuǎn)運(yùn)體功能的抑制或缺失將改變藥物的清除和藥代動(dòng)力學(xué),導(dǎo)致藥效降低或毒性增加。因此,在新藥研發(fā)以及藥物臨床應(yīng)用中,研究藥物轉(zhuǎn)運(yùn)體在藥物跨膜轉(zhuǎn)運(yùn)、組織分布、排泄清除和藥-藥相互作用中的作用,對(duì)于藥物的有效安全使用,具有重要意義。RNA干擾技術(shù)在藥物轉(zhuǎn)運(yùn)體介導(dǎo)的藥物轉(zhuǎn)運(yùn)和藥-藥相互作用研究方面,具有明顯的優(yōu)勢(shì)。本文對(duì)近年來(lái)RNA干擾技術(shù)在藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用進(jìn)行綜述,重點(diǎn)闡述這一技術(shù)在藥物轉(zhuǎn)運(yùn)體介導(dǎo)的腫瘤耐藥、藥物體內(nèi)轉(zhuǎn)運(yùn)、清除和相互作用研究中的應(yīng)用,為藥物轉(zhuǎn)運(yùn)體的功能和調(diào)節(jié)研究提供參考。

      RNA干擾;藥物轉(zhuǎn)運(yùn)體;抗藥性,腫瘤;藥物相互作用;受體,胞質(zhì)和核

      藥物轉(zhuǎn)運(yùn)體是一類(lèi)位于細(xì)胞膜、能將藥物攝取或排出細(xì)胞的蛋白或多肽,廣泛分布于體內(nèi)多種器官和組織,如肝、腸、腎和腦等,通過(guò)影響藥物的吸收、分布和排泄進(jìn)而影響藥物的效應(yīng)或安全性,并導(dǎo)致藥物相互作用[1]。轉(zhuǎn)運(yùn)體通過(guò)調(diào)控藥物在腸上皮細(xì)胞、肝細(xì)胞或腎小管上皮細(xì)胞的進(jìn)出而影響藥物在小腸的吸收以及在肝和腎的消除。此外,轉(zhuǎn)運(yùn)體也能限制或促進(jìn)藥物在腦、胎盤(pán)、腫瘤等生理屏障或細(xì)胞的通透。轉(zhuǎn)運(yùn)體功能的抑制或缺失將改變藥物在組織中的暴露,導(dǎo)致藥效降低或毒性增加。為此,在新藥物研發(fā)以及藥物的臨床應(yīng)用中,研究藥物轉(zhuǎn)運(yùn)體在候選藥物或臨床藥物跨膜轉(zhuǎn)運(yùn)、組織分布、排泄清除和藥物相互作用中的作用,對(duì)于藥物有效安全使用,具有重要的意義[2]。

      RNA干擾(RNA interference,RNAi)技術(shù)是21世紀(jì)初發(fā)現(xiàn)的一種有效的基因調(diào)節(jié)方法,并在基礎(chǔ)生物醫(yī)學(xué)研究領(lǐng)域中得到了廣泛應(yīng)用和快速發(fā)展。例如,研究基因功能,用于基因治療以及腫瘤治療等[3]。目前,多數(shù)藥物轉(zhuǎn)運(yùn)體的基因已經(jīng)被鑒別和克隆,而 RNAi技術(shù)也已用于轉(zhuǎn)運(yùn)體的研究中[2,4]。與傳統(tǒng)的基因敲除方法相比,RNAi是可逆的,使得其能通過(guò)可逆性抑制作用研究轉(zhuǎn)運(yùn)體的體內(nèi)功能,或者用于促進(jìn)有利于藥物臨床應(yīng)用的體內(nèi)處置;再者,RNAi能特異性地抑制靶基因的表達(dá),避免化學(xué)抑制劑因轉(zhuǎn)運(yùn)蛋白基因之間具有高度的同源性而導(dǎo)致的非特異性,在藥物體內(nèi)處置和藥物相互作用研究中,具有良好的應(yīng)用前景。本文將對(duì)近年來(lái)RNAi技術(shù)在藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用進(jìn)行綜述,重點(diǎn)總結(jié)這一技術(shù)在藥物轉(zhuǎn)運(yùn)體介導(dǎo)的腫瘤耐藥、藥物體內(nèi)轉(zhuǎn)運(yùn)、清除和相互作用研究中的應(yīng)用,為藥物轉(zhuǎn)運(yùn)體的功能和調(diào)節(jié)研究提供參考。

      1 藥物轉(zhuǎn)運(yùn)體

      已知的藥物轉(zhuǎn)運(yùn)體分為兩類(lèi):ATP-結(jié)合盒轉(zhuǎn)運(yùn)體(ATP-binding cassette,ABC)和溶質(zhì)載體(solute carrier,SLC)[5]。ABC類(lèi)轉(zhuǎn)運(yùn)體主要通過(guò)ATP供能介導(dǎo)細(xì)胞對(duì)藥物的外排,與藥物外排轉(zhuǎn)運(yùn)相關(guān)的轉(zhuǎn)運(yùn)體主要有 P-糖蛋白(P-glycoprotein,P-gp),多藥耐藥相關(guān)蛋白(multi-drug resistanceassociated protein,MRP)和乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP)等。SLC類(lèi)轉(zhuǎn)運(yùn)體主要介導(dǎo)細(xì)胞對(duì)藥物的攝取,包括有機(jī)陰離子轉(zhuǎn)運(yùn)體(organic anion transporter,OAT)、有機(jī)陰離子轉(zhuǎn)運(yùn)多肽(organic anion transport polypeptides,OATP)、有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體(organic cation transporter,OCT)等[6]。攝取和外排轉(zhuǎn)運(yùn)體通過(guò)動(dòng)態(tài)的相互作用共同調(diào)節(jié)細(xì)胞內(nèi)藥物或內(nèi)源性物質(zhì)的蓄積和轉(zhuǎn)運(yùn)。

      藥物轉(zhuǎn)運(yùn)體具有多樣性和復(fù)雜性,藥物轉(zhuǎn)運(yùn)體家族存在多個(gè)亞家族和亞型,如ABCC亞家族包括12種亞型(ABCC1~ABCC12),這些轉(zhuǎn)運(yùn)體亞型之間有大量重疊的底物,而有些重疊的底物也是藥物代謝酶的誘導(dǎo)劑或抑制劑。因此,在缺少藥物基因組學(xué)信息的情況下,很難確定不同轉(zhuǎn)運(yùn)體在藥物轉(zhuǎn)運(yùn)分布及藥物相互作用中的作用。

      2 RNA干擾技術(shù)

      RNAi是由雙鏈RNA介導(dǎo)的序列特異的基因沉默現(xiàn)象,它在轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平和翻譯水平上阻斷基因的表達(dá),具有高效性和高特異性的特點(diǎn)[7]。RNAi不僅已廣泛用于基因功能研究,作為一種高選擇性和有效性的治療方法也已經(jīng)用于臨床研究[3]。RNAi通過(guò)內(nèi)源性微小RNA(miRNA)或外源性的小干擾RNA(siRNA)或短發(fā)夾RNA (shRNA)發(fā)揮作用。化學(xué)合成的siRNA應(yīng)用簡(jiǎn)單方便,但由于缺少細(xì)胞內(nèi)的放大機(jī)制,只能對(duì)靶基因產(chǎn)生暫時(shí)的抑制作用,其有效性取決于靶序列,轉(zhuǎn)染方式和靶蛋白的半衰期。載體或病毒介導(dǎo)的shRNA主要由生物化學(xué)和基因的方法合成,通過(guò)質(zhì)粒或病毒載體進(jìn)入細(xì)胞后能夠?qū)Π谢虍a(chǎn)生長(zhǎng)效穩(wěn)定的抑制作用,其有效性取決于shRNA的優(yōu)化、載體的選擇以及有效的傳遞方式[8]。miRNA是一種高度保守的小的非編碼RNA,由接近20~25 nt的單鏈RNA分子組成,能夠在轉(zhuǎn)錄后水平對(duì)靶基因進(jìn)行調(diào)節(jié),對(duì)細(xì)胞生理和病理功能發(fā)揮重要作用。目前,siRNA,shRNA和miRNA均已在藥物轉(zhuǎn)運(yùn)體研究得到應(yīng)用。

      3 RNA干擾技術(shù)逆轉(zhuǎn)藥物轉(zhuǎn)運(yùn)體相關(guān)的腫瘤耐藥

      耐藥性是導(dǎo)致腫瘤和其他疾病治療失敗的主要原因之一。耐藥性產(chǎn)生的主要機(jī)制包括細(xì)胞內(nèi)可溶性藥物吸收的減少、細(xì)胞內(nèi)遺傳和表型的改變以及疏水性藥物通過(guò)細(xì)胞表面轉(zhuǎn)運(yùn)體外排的增加[9]。其中,外排轉(zhuǎn)運(yùn)體介導(dǎo)的藥物外排所致的耐藥性發(fā)生,是目前研究的熱點(diǎn)。外排轉(zhuǎn)運(yùn)體P-gp,MRP和BCRP的表達(dá)上調(diào)是耐藥性產(chǎn)生的主要機(jī)制,已成為腫瘤化學(xué)治療的主要障礙[10-11]。通過(guò)抑制藥物轉(zhuǎn)運(yùn)體的表達(dá)和功能,可增加耐藥細(xì)胞的藥物暴露,是目前逆轉(zhuǎn)藥物耐受的主要手段之一。但是,臨床上應(yīng)用化學(xué)抑制劑克服腫瘤耐藥的療效有限,且會(huì)引起嚴(yán)重的毒性反應(yīng)[12]。而RNAi技術(shù)能特異性地抑制轉(zhuǎn)運(yùn)體基因的表達(dá)和功能,提高化學(xué)治療效果,降低因化學(xué)抑制劑帶來(lái)的風(fēng)險(xiǎn),為逆轉(zhuǎn)腫瘤耐藥提供了新的思路和方法。

      近期的研究表明,針對(duì)外排轉(zhuǎn)運(yùn)體的siRNA實(shí)驗(yàn)研究,展示了該技術(shù)能顯著抑制腫瘤細(xì)胞的轉(zhuǎn)運(yùn)體表達(dá)和功能,成功逆轉(zhuǎn)腫瘤耐藥,提高化學(xué)治療的效果。表1匯總了RNAi技術(shù)在藥物耐藥性研究中的應(yīng)用文獻(xiàn)。多柔比星和表柔比星均屬阿霉素類(lèi)藥物,能夠有效地治療多種惡性腫瘤。研究發(fā)現(xiàn),應(yīng)用MDR1的siRNA能夠抑制耐多柔比星的MCF-7乳腺癌細(xì)胞中MDR1的蛋白表達(dá),恢復(fù)多柔比星在細(xì)胞內(nèi)的累積和分布,提高耐藥細(xì)胞對(duì)多柔比星的化學(xué)敏感性[13-14]。在多種人腫瘤細(xì)胞系中,MRP1的siRNA能夠明顯抑制MRP1 mRNA和蛋白的表達(dá),提高表柔比星對(duì)腫瘤細(xì)胞的有效性[15]。Pichler等[16]用生物素發(fā)光的方法發(fā)現(xiàn),RNAi技術(shù)能夠分別有效抑制MDR1在腫瘤細(xì)胞、小鼠腫瘤組織以及肝的表達(dá)和功能,說(shuō)明 RNAi技術(shù)在體內(nèi)逆轉(zhuǎn)MDR1的可行性。Patutina和Matsui[17-18]兩課題組分別通過(guò)特異的mdr1a/1b siRNA,同時(shí)抑制mdr1a/1b在小鼠體內(nèi)的表達(dá),提高了化學(xué)治療的敏感性。此外,Honjo等[19]報(bào)道應(yīng)用siRNA能夠有效抑制成纖維樣滑膜細(xì)胞和大鼠滑膜中的P-gp表達(dá),提高地塞米松的抗炎作用,改善類(lèi)風(fēng)濕性關(guān)節(jié)炎的治療。RNAi作為一種高效的序列特異性的基因敲除技術(shù),在多基因調(diào)控的耐藥治療領(lǐng)域取得了迅速發(fā)展,展現(xiàn)了很好的應(yīng)用前景。

      表1 RNA干擾技術(shù)在逆轉(zhuǎn)耐藥性研究中的應(yīng)用

      4 RNA干擾技術(shù)在藥物處置研究中的應(yīng)用

      轉(zhuǎn)運(yùn)體通過(guò)調(diào)控藥物在腸上皮細(xì)胞、肝細(xì)胞和腎小管上皮細(xì)胞的攝取和外排,影響藥物在小腸的吸收以及在肝和腎的消除;轉(zhuǎn)運(yùn)體也能調(diào)控藥物在腦、胎盤(pán)、腫瘤和T細(xì)胞等的通透性,影響藥物在這些組織器官或細(xì)胞的分布,從而改變藥物在體內(nèi)的處置行為。鑒別藥物是否是轉(zhuǎn)運(yùn)體的底物、抑制劑或誘導(dǎo)劑,以及評(píng)價(jià)不同轉(zhuǎn)運(yùn)體在某個(gè)藥物處置中的作用,是轉(zhuǎn)運(yùn)體介導(dǎo)的藥物處置研究中首先要解決的問(wèn)題。轉(zhuǎn)運(yùn)體底物的鑒別多用化學(xué)抑制劑或重組的表達(dá)系統(tǒng)來(lái)進(jìn)行。由于化學(xué)抑制劑多存在非特異性和底物交叉性,并不能真實(shí)反映轉(zhuǎn)運(yùn)體在底物轉(zhuǎn)運(yùn)中的作用。另外,重組表達(dá)系統(tǒng)如轉(zhuǎn)染Madin-Darby犬腎細(xì)胞(MDCK)-MDR1等雖然能夠特異性地鑒別某種轉(zhuǎn)運(yùn)體的底物,但由于轉(zhuǎn)運(yùn)體數(shù)量眾多,且構(gòu)建重組系統(tǒng)需要較長(zhǎng)時(shí)間,限制了重組系統(tǒng)的應(yīng)用[29]。基因敲除動(dòng)物模型在體內(nèi)基因功能的研究中發(fā)揮了重要的作用。經(jīng)典的敲除方法主要通過(guò)破壞靶基因結(jié)構(gòu)如內(nèi)源性序列的缺失,外源性序列的插入來(lái)完成的?;赗NAi的特異性及其不改變基因組結(jié)構(gòu)的特點(diǎn),RNAi技術(shù)已成為建立功能缺失細(xì)胞和動(dòng)物模型的一種新方法,對(duì)于轉(zhuǎn)運(yùn)體功能研究和底物鑒別也是一種非常有效的技術(shù),表2匯總的文獻(xiàn)研究表明,該技術(shù)已經(jīng)廣泛用于這一目的。

      Caco-2單層細(xì)胞表達(dá)有多種外排轉(zhuǎn)運(yùn)體,主要用于藥物的雙向轉(zhuǎn)運(yùn)研究。Darnell等[30]將慢病毒介導(dǎo)的P-gp和MRP2的shRNA導(dǎo)入Caco-2細(xì)胞中,研究了P-gp和MRP2在抗凝血藥希美加群(ximelagatran)排泄中的作用。他們發(fā)現(xiàn),是P-gp而不是MRP2參與了希美加群、羥基美拉加群和美拉加群的轉(zhuǎn)運(yùn)。Li等[31]采用慢病毒介導(dǎo)的P-gp,MRP2和BCRP的shRNA,在Caco-2細(xì)胞上研究了他汀類(lèi)藥物的外排作用,結(jié)果發(fā)現(xiàn)阿托伐他汀、氟伐他汀和羅舒伐他汀由P-gp、BCRP和MRP2介導(dǎo)外排轉(zhuǎn)運(yùn),而洛伐他汀和辛伐他汀的轉(zhuǎn)運(yùn)則不通過(guò)P-gp,BCRP和MRP2的介導(dǎo)。上述研究表明,將RNAi技術(shù)與Caco-2細(xì)胞模型相結(jié)合,為藥物和轉(zhuǎn)運(yùn)體相互作用的研究提供了一個(gè)有效工具,在RNAi的Caco-2細(xì)胞上,可以評(píng)價(jià)特定轉(zhuǎn)運(yùn)體在藥物跨膜轉(zhuǎn)運(yùn)中的作用,并預(yù)測(cè)潛在的藥物相互作用。

      表2 RNA干擾技術(shù)在轉(zhuǎn)運(yùn)體功能和底物鑒別中的應(yīng)用

      原代培養(yǎng)肝細(xì)胞表達(dá)Ⅰ相和Ⅱ相代謝酶以及多種轉(zhuǎn)運(yùn)體,與生理環(huán)境接近,已廣泛用于轉(zhuǎn)運(yùn)體介導(dǎo)的藥物肝攝取、代謝和膽汁排泄研究,并可準(zhǔn)確地預(yù)測(cè)肝膽藥物分布[32]。Liao等[33]將 OATP1B1,1B3和2B1的siRNA導(dǎo)入三明治培養(yǎng)的人肝細(xì)胞中,顯著降低肝OATP的表達(dá),西立伐他汀的肝攝取由此降低了20%~30%,其代謝產(chǎn)物的肝攝取也降低50%。siRNA干擾肝細(xì)胞的結(jié)果提示,同時(shí)服用OATP抑制劑能顯著地改變西立伐他汀的藥代動(dòng)力學(xué),引起藥物相互作用。

      由于人肝細(xì)胞的供體較少且價(jià)格昂貴,限制了其在藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用。三明治培養(yǎng)的大鼠肝細(xì)胞由于分離培養(yǎng)相對(duì)簡(jiǎn)單方便,可廣泛用于藥物肝攝取和膽汁外排的研究[34]。Yue等[35]應(yīng)用腺病毒介導(dǎo)的BCRP shRNA,成功敲除大鼠肝細(xì)胞的BCRP,而不影響P-gp,MRP2,BSEP,MRP4和OATP1A1的表達(dá)。應(yīng)用這一BCRP敲除模型評(píng)價(jià)呋喃妥因的肝處置發(fā)現(xiàn),呋喃妥因的肝細(xì)胞內(nèi)濃度顯著增加,而呋喃妥因的膽管外排指數(shù)和體外膽汁清除率分別降至對(duì)照組的11%和14%,表明呋喃妥因的膽汁排泄主要由BCRP介導(dǎo),與BCRP抑制劑或誘導(dǎo)劑同時(shí)服用,可能引起藥物相互作用。

      現(xiàn)有文獻(xiàn)報(bào)道已經(jīng)證實(shí),siRNA在體外細(xì)胞模型上的特異性和有效性,應(yīng)用siRNA評(píng)價(jià)體內(nèi)轉(zhuǎn)運(yùn)體對(duì)藥物處置的作用及調(diào)節(jié)成為下一個(gè)研究熱點(diǎn),但目前的文獻(xiàn)報(bào)道較少。van de Water等[36]通過(guò)靜脈注射放射性標(biāo)記的siRNA觀察其生物學(xué)分布發(fā)現(xiàn),siRNA主要聚集在腎并經(jīng)尿排泄。注射1 h后,腎中的siRNA含量比其他組織高40倍。除此之外,該研究還通過(guò)注射MRP2 siRNA,觀察了腎近曲小管中MRP2的功能。注射MRP2 siRNA 4 d后,尿中的鈣黃綠素排泄率顯著下降。而MRP4 siRNA不能改變鈣黃綠素的排泄。因此,siRNA為研究腎轉(zhuǎn)運(yùn)體的功能提供了新的方法。

      5 RNA干擾技術(shù)在核受體調(diào)節(jié)藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用

      鑒于藥物轉(zhuǎn)運(yùn)體在藥物的吸收、分布和排泄中發(fā)揮的重要作用,其表達(dá)和功能的調(diào)節(jié)對(duì)于藥物的有效和安全應(yīng)用具有重要意義。轉(zhuǎn)運(yùn)體的表達(dá)和功能主要受到核受體調(diào)控[43-44],后者通過(guò)調(diào)節(jié)藥物轉(zhuǎn)運(yùn)體基因的表達(dá)進(jìn)而對(duì)內(nèi)源性和外源性物質(zhì)的轉(zhuǎn)運(yùn)產(chǎn)生重大影響,導(dǎo)致不可預(yù)知的藥物相互作用的發(fā)生。核受體家族主要包括孕烷X受體(pregnane X receptor,PXR)、組成型雄烷受體(constitutive androstane receptor,CAR)和芳香烴受體(aryl hydrocarbon receptor,AHR)等,廣泛參與藥物轉(zhuǎn)運(yùn)體的調(diào)節(jié)[45-46]。表3總結(jié)了RNAi技術(shù)在核受體調(diào)控藥物轉(zhuǎn)運(yùn)體研究中的部分應(yīng)用。

      PXR和CAR是調(diào)節(jié)藥物代謝酶和轉(zhuǎn)運(yùn)體的主要核受體,在多種癌細(xì)胞中的表達(dá)增高,如前列腺癌、乳腺癌、腸癌、結(jié)腸癌和子宮內(nèi)膜癌等,對(duì)Ⅰ相及Ⅱ相代謝酶和外排轉(zhuǎn)運(yùn)體的基因轉(zhuǎn)錄調(diào)節(jié)發(fā)揮重要作用。因此,PXR和CAR與腫瘤的耐藥性密切相關(guān),RNAi通過(guò)抑制核受體的激活使轉(zhuǎn)運(yùn)體的表達(dá)下調(diào),從而逆轉(zhuǎn)腫瘤耐藥性[47]。PXR是調(diào)節(jié)藥物代謝酶和轉(zhuǎn)運(yùn)體基因的最重要的核受體,在許多組織和細(xì)胞中表達(dá),包括肝細(xì)胞、腸細(xì)胞、淋巴細(xì)胞、內(nèi)皮細(xì)胞和血腦屏障等。PXR的激活能調(diào)節(jié)多種轉(zhuǎn)運(yùn)體,包括P-gp,MRP2,BCRP和OATP等。Rigalli等[48]研究了抗南美錐蟲(chóng)藥芐硝唑?qū)BC轉(zhuǎn)運(yùn)體和代謝酶的調(diào)節(jié)作用發(fā)現(xiàn),芐硝唑能增加P-gp和MRP2的蛋白表達(dá),而給予PXR siRNA后則完全逆轉(zhuǎn)P-gp和MRP2的上調(diào);隨后他們用報(bào)告基因法發(fā)現(xiàn),芐硝唑能激活PXR,應(yīng)用P-gp siRNA證實(shí)了P-gp參與了芐硝唑的轉(zhuǎn)運(yùn)。這些結(jié)果表明,芐硝唑通過(guò)激活PXR使P-gp的表達(dá)上調(diào),進(jìn)而增加了其自身的外排。利尿藥螺內(nèi)酯同樣可以誘導(dǎo)P-gp的表達(dá),給予PXR的siRNA可使PXR的蛋白水平降低74%,并完全逆轉(zhuǎn)螺內(nèi)酯對(duì)P-gp的誘導(dǎo)作用[49]。這些研究結(jié)果提示,PXR的配體藥物通過(guò)激活PXR誘導(dǎo)P-gp的表達(dá),使P-gp底物的自身轉(zhuǎn)運(yùn)和代謝等藥代動(dòng)力學(xué)行為發(fā)生改變,從而影響其有效性和安全性。

      表3 RNA干擾技術(shù)在核受體調(diào)節(jié)藥物轉(zhuǎn)運(yùn)體研究中的應(yīng)用

      CAR功能與PXR相似,能識(shí)別許多結(jié)構(gòu)不同的化合物,如雄甾烷代謝產(chǎn)物、膽酸等。最近的研究表明,CAR調(diào)節(jié)的基因與PXR存在很大重疊性,如CYP酶、Ⅱ相酶、膽酸和藥物轉(zhuǎn)運(yùn)體等[50-51]。CAR主要分布在肝、腎、小腸、腦和睪丸等組織。CAR激動(dòng)劑CITCO能夠上調(diào)卵巢癌細(xì)胞中MDR1和UGT1A1的表達(dá),CAR的siRNA能下調(diào)MDR1和UGT1A1的表達(dá),同時(shí)促進(jìn)抗癌藥物引起的細(xì)胞生長(zhǎng)抑制和凋亡,提高卵巢癌的化學(xué)治療[52]。

      肝X受體(liver X receptor,LXR)屬于核激素受體超家族,分為L(zhǎng)XRα和LXRβ。LXRβ在全身分布廣泛,LXRα則主要分布于肝、腎、小腸和脂肪組織。LXR激動(dòng)劑TO901317能誘導(dǎo)肝MRP2的表達(dá),但對(duì)MDR1和BCRP沒(méi)有影響,給予LXRα的siRNA能阻斷 MRP2的表達(dá),表明 LXR參與了MRP2的調(diào)控,可能會(huì)影響藥物的膽汁排泄[53]。因此,應(yīng)用RNAi技術(shù)不僅有助于了解核受體對(duì)靶基因調(diào)控的作用,還可以對(duì)藥物轉(zhuǎn)運(yùn)的潛在作用有更深的理解。

      6 展望

      目前,已發(fā)現(xiàn)的藥物轉(zhuǎn)運(yùn)體超過(guò)400種,多數(shù)轉(zhuǎn)運(yùn)體已經(jīng)被克隆和鑒別。面對(duì)如此眾多的轉(zhuǎn)運(yùn)體,鑒別其在藥物轉(zhuǎn)運(yùn)中的功能并用于疾病的治療,成為研究的熱點(diǎn)。RNAi技術(shù)將大大促進(jìn)對(duì)這些轉(zhuǎn)運(yùn)體基因功能的研究,與傳統(tǒng)的基敲除技術(shù)相比,RNAi技術(shù)具有投入少,周期短,操作簡(jiǎn)單等優(yōu)勢(shì)。隨著對(duì)RNAi機(jī)制研究的不斷深入,RNAi技術(shù)將成為研究藥物轉(zhuǎn)運(yùn)體基因功能不可或缺的工具。此外,隨著藥物轉(zhuǎn)運(yùn)體基因功能的闡明,在臨床上應(yīng)用特異干擾RNA與化學(xué)藥物聯(lián)合治療可以提高藥物的療效,避免藥物不良反應(yīng)。

      雖然RNAi技術(shù)以其特異性和高效性在生物學(xué)領(lǐng)域中迅速發(fā)展,取得許多令人振奮的研究成果,但仍有下列問(wèn)題需要解決。① siRNA的有效性。siRNA的有效性受多種因素的影響,包括靶序列,有效的傳遞系統(tǒng)以及靶蛋白的半衰期。目前,siRNA的設(shè)計(jì)方法已經(jīng)取得很大進(jìn)展,但有效siRNA序列的選擇仍然是一個(gè)技術(shù)難題,siRNA的有效性需要反復(fù)進(jìn)行實(shí)驗(yàn)篩選。哺乳動(dòng)物細(xì)胞內(nèi)缺少RNAi擴(kuò)增機(jī)制,siRNA分子或表達(dá)載體能否進(jìn)入每一個(gè)靶細(xì)胞是基因敲除成功的關(guān)鍵。但是由于轉(zhuǎn)染細(xì)胞的類(lèi)型不同以及轉(zhuǎn)染試劑的毒性使轉(zhuǎn)染過(guò)程的優(yōu)化比較困難。藥物轉(zhuǎn)運(yùn)體通常具有較長(zhǎng)的半衰期,轉(zhuǎn)染后觀察到蛋白敲除和功能改變需要較長(zhǎng)的時(shí)間。此外,影響siRNA有效性的另一個(gè)主要問(wèn)題是脫靶效應(yīng)即非靶基因的抑制,導(dǎo)致siRNA非特異性的發(fā)生[58]。②siRNA的傳遞系統(tǒng)。siRNA的大小及其所帶的負(fù)電荷使其很難穿過(guò)細(xì)胞膜,因此應(yīng)用中最重要的步驟是將siRNA有效傳遞進(jìn)入靶細(xì)胞。目前,脂質(zhì)體、納米材料等已經(jīng)成功的用于siRNA的傳遞,但是尚未從根本上解決問(wèn)題[59]。③毒性反應(yīng)。siRNA或shRNA的導(dǎo)入可能激活體內(nèi)干擾素反應(yīng)基因,非特異性地全面抑制內(nèi)源性mRNA的翻譯,并導(dǎo)致細(xì)胞凋亡。另外,雙鏈RNA通過(guò)與RNA結(jié)合蛋白相互作用也能夠引起自身免疫反應(yīng)[60]。雖然RNAi技術(shù)還存在以上問(wèn)題,但隨著RNAi機(jī)制的逐漸闡明,這些問(wèn)題將有望得到解決。

      總之,RNAi技術(shù)被認(rèn)為是基因治療,轉(zhuǎn)運(yùn)體功能研究和藥物研發(fā)中的一項(xiàng)革命性方法。目前,RNAi已經(jīng)成功用于逆轉(zhuǎn)轉(zhuǎn)運(yùn)體介導(dǎo)的腫瘤耐藥性、轉(zhuǎn)運(yùn)體功能和底物鑒別研究和藥物基于轉(zhuǎn)運(yùn)體的相互作用研究。RNAi技術(shù)的特異性和有效性使之成為研究藥物轉(zhuǎn)運(yùn)體的有效工具,將有望在藥物代謝、腫瘤治療等方面發(fā)揮重要作用。

      [1] Kusuhara H,Sugiyama Y.Role of transporters in the tissue-selective distribution and elimination of drugs:transporters in the liver,small intestine,brain and kidney[J].J Control Release,2002,78 (1-3):43-54.

      [2] Yu AM.Small interfering RNA in drug metabolism and transport[J].Curr Drug Metab,2007,8(7): 700-708.

      [3] Lares MR,Rossi JJ,Ouellet DL.RNAi and small interfering RNAs in human disease therapeutic applications[J].Trends Biotechnol,2010,28(11): 570-579.

      [4] Abbasi M, Lavasanifar A, Uludag H.Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer[J].Med Res Rev,2013,33(1):33-53.

      [5] Keogh JP.Membrane transporters in drug development[J].Adv Pharmacol,2012,63:1-42.

      [6] Yoshida K, Maeda K, Sugiyama Y.Hepatic and intestinal drug transporters:prediction of pharmacokinetic effects caused by drug-drug interactions and genetic polymorphisms[J].Annu Rev Pharmacol Toxicol,2013,53:581-612.

      [7] Lee SH, Sinko PJ.siRNA-getting the message out[J].Eur J Pharm Sci,2006,27(5):401-410.

      [8] Aagaard L, Rossi JJ.RNAitherapeutics:principles,prospects and challenges[J].Adv Drug Deliv Rev,2007,59(2-3):75-86.

      [9] Kerbel RS.Molecular and physiologic mechanisms of drug resistance in cancer:an overview[J]. Cancer Metastasis Rev,2001,20(1-2):1-2.

      [10] Zhang Q, Li F.Combating P-glycoprotein-mediated multidrug resistance using therapeutic nanoparticles[J].Curr Pharm Des,2013,19(37): 6655-6666.

      [11] Li H,Yang BB.Friend or foe:the role of microRNA in chemotherapy resistance[J].Acta Pharmacol Sin,2013,34(7):870-879.

      [12] Liang XJ,Chen C,Zhao Y,Wang PC.Circumventing tumor resistance to chemotherapy by nanotechnology[J].Methods Mol Biol,2010,596:467-488.

      [13] Chen Y,Bathula SR,Li J,Huang L.Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer[J]. J Biol Chem,2010,285(29):22639-22650.

      [14] D?nmez Y, Gündüz U.Reversalofmultidrug resistance by small interfering RNA(siRNA)in doxorubicin-resistant MCF-7 breast cancer cells [J].Biomed Pharmacother,2011,65(2):85-89.

      [15] Wu Z,Li X,Zeng Y,Zhuang X,Shen H,Zhu H,et al.In vitro and in vivo inhibition of MRP gene expression and reversal of multidrug resistance by siRNA[J].Basic Clin Pharmacol Toxicol,2011,108(3):177-184.

      [16] Pichler A,Zelcer N,Prior JL,Kuil AJ,Piwnica-Worms D.In vivo RNA interference-mediated ablation of MDR1 P-glycoprotein[J].Clin Cancer Res,2005,11(12):4487-4494.

      [17] Matsui Y,Kobayashi N,Nishikawa M,Takakura Y. Sequence-specific suppression of mdr1a/1b expression in mice via RNA interference[J]. Pharm Res,2005,22(12):2091-2098.

      [18] Patutina OA,Mironova NL,Popova NA,Kaledin VI,Nikolin VP,Vlassov VV,et al.The siRNA targeted to mdr1b and mdr1a mRNAs in vivo sensitizes murine lymphosarcoma to chemotherapy[J].BMC Cancer,2010,10:204.

      [19] Honjo K, Takahashi KA, Mazda O,Kishida T,Shinya M,Tokunaga D,et al.MDR1a/1b gene silencing enhances drug sensitivity in rat fibroblastlike synoviocytes[J].J Gene Med,2010,12(2): 219-227.

      [20] Stein U,Walther W,Stege A,Kaszubiak A,F(xiàn)ichtner I,Lage H.Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA [J].Mol Ther,2008,16(1):178-186.

      [21] Xiao H,Wu Z,Shen H,Luo AL,Yang YF,Li XB,et al.In vivo reversal of P-glycoprotein-mediated multidrug resistance by efficient delivery of stealth RNAi[J].Basic Clin Pharmacol Toxicol,2008,103(4):342-348.

      [22] Abbasi M,Aliabadi HM,Moase EH,Lavasanifar A,Kaur K,Lai R,et a.siRNA-mediated down-regulation of P-glycoprotein in a xenograft tumor model in NOD-SCID mice[J].Pharm Res,2011,28(10): 2516-2529.

      [23] Patil YB,Swaminathan SK,Sadhukha T,Ma L,Panyam J.The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance[J].Biomaterials,2010,31(2):358-365.

      [24] Borel F,van Logtenstein R,Koornneef A,Maczuga P,Ritsema T,Petry H,et al.In vivo knock-down of multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs and by artificial miRNAs[J].J RNAi Gene Silencing,2011,7: 434-442.

      [25] Ma JJ,Chen BL,Xin XY.Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene[J].Arch Gynecol Obstet,2009,279(2):149-157.

      [26] Xie SM,F(xiàn)ang WY,Liu Z,Wang SX,Li X,Liu TF,et al.Lentivirus-mediated RNAi silencing targeting ABCC2 increasing the sensitivity of a human nasopharyngeal carcinoma cell line against cisplatin[J]. J Transl Med,2008,6:55.

      [27] Li JM,Wang YY,Zhao MX,Tan CP,Li YQ,Le XY,et al.Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking[J]. Biomaterials,2012,33(9):2780-2790.

      [28] Li YT,Chua MJ,Kunnath AP,Chowdhury EH. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs[J]. Int J Nanomed,2012,7:2473-2481.

      [29] Tian X,Zhang P,Zamek-Gliszczynski MJ,Brouwer KL.Knocking down transport:applications of RNA interference in the study of drug transport proteins [J].Drug Metab Rev,2005,37(4):705-723.

      [30] Darnell M,Karlsson JE, Owen A,Hidalgo IJ,Li J,Zhang W,et al.Investigation of the involvement of P-glycoprotein and multidrug resistance-associated protein 2 in the efflux of ximelagatran and its metabolites by using short hairpin RNA knockdown in Caco-2 cells[J].Drug Metab Dispos,2010,38 (3):491-497.

      [31] Li J,Volpe DA,Wang Y,Zhang W,Bode C,Owen A,et al.Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs[J]. Drug Metab Dispos,2011,39(7):1196-1202.

      [32] Hewitt NJ,Lechón MJ,Houston JB,Hallifax D,Brown HS,Maurel P,et al.Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins,and pharmaceutical practice for the use of hepatocytes in metabolism,enzyme induction,transporter,clearance,and hepatotoxicity studies[J].Drug Metab Rev,2007,39(1):159-234.

      [33] Liao M, Raczynski AR, Chen M, Chuang BC,Zhu Q,Shipman R,et al.Inhibition of hepatic organicanion-transportingpolypeptidebyRNA interference in sandwich-cultured human hepatocytes:an in vitro model to assess transporter-me-diated drug-drug interactions[J].Drug Metab Dispos,2010,38(9):1612-1622.

      [34] Swift B,Pfeifer ND, Brouwer KL.Sandwich-cultured hepatocytes:an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity[J].Drug Metab Rev,2010,42 (3):446-471.

      [35] Yue W, Abe K, Brouwer KL.Knocking down breast cancer resistance protein(Bcrp)by adenoviral vector-mediated RNA interference(RNAi)in sandwich-cultured rat hepatocytes:a novel tool to assess the contribution of Bcrp to drug biliary excretion[J].Mol Pharm,2009,6(1):134-143.

      [36] van de Water FM,Boerman OC,Wouterse AC,Peters JG,Russel FG,Masereeuw R.Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules[J].Drug Metab Dispos,2006,34(8):1393-1397.

      [37] Yue W,Lee JK,Abe K,Sugiyama Y,Brouwer KL. Decreased hepatic breast cancer resistance protein expression and function in multidrug resistance-associated protein 2-deficient(TR-)rats[J].Drug Metab Dispos,2011,39(3):441-447.

      [38] Tian X,Zamek-Gliszczynski MJ,Zhang P,Brouwer KL.Modulation of multidrug resistance-associated protein 2(Mrp2)and Mrp3 expression and function with small interfering RNA in sandwich-cultured rat hepatocytes[J].Mol Pharmacol,2004,66 (4):1004-1010.

      [39] Watanabe T, Onuki R, Yamashita S, Taira K,Sugiyama Y.Construction of a functional transporter analysis system using MDR1 knockdown Caco-2 cells[J].Pharm Res,2005,22(8):1287-1293.

      [40] Celius T,Garberg P,Lundgren B.Stable suppression of MDR1 gene expression and function by RNAi in Caco-2 cells[J].Biochem Biophys Res Commun,2004,324(1):365-371.

      [41] Yang K,Pfeifer ND,Hardwick RN,Yue W,Stewart PW,Brouwer KL.An experimental approach to evaluate the impact of impaired transport function on hepatobiliary drug disposition using Mrp2-deficient TR-rat sandwich-cultured hepatocytes in combination with Bcrp knockdown[J].Mol Pharm,2014,11(3):766-775.

      [42] Aliabadi HM, Landry B,Mahdipoor P,Hsu CY,Uludaˇg H.Effective down-regulation ofbreast cancer resistance protein(BCRP)by siRNA delivery using lipid-substituted aliphatic polymers[J]. Eur J Pharm Biopharm,2012,81(1):33-42.

      [43] Pavek P,Smutny T.Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier[J].Drug Metab Rev,2014,46(1):19-32.

      [44] Pavek P,Smutny T.Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier[J].Drug Metab Rev,2014,46(1):19-32.

      [45] Chen T.Overcoming drug resistance by regulating nuclear receptors[J].Adv Drug Deliv Rev,2010,62(13):1257-1264.

      [46] Chen Y,Tang Y,Guo C,Wang J,Boral D,Nie D. Nuclearreceptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters[J].Biochem Pharmacol,2012,83(8):1112-1126.

      [47] Yu M,Ocana A,Tannock IF.Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance:why has it failed to provide clinical benefit?[J].Cancer Metastasis Rev,2013,32(1-2):211-227.

      [48] Rigalli JP,Perdomo VG,Luquita MG,Villanueva SS,Arias A,Theile D,et al.Regulation of biotransformation systems and ABC transporters by benznidazole in HepG2 cells:involvement of pregnane X-receptor[J].PLoS Negl Trop Dis,2012,6 (12):e1951.

      [49] Rigalli JP,Ruiz ML,Perdomo VG,Villanueva SS,Mottino AD,Catania VA.Pregnane X receptor mediates the induction ofP-glycoprotein by spironolactone in HepG2 cells[J].Toxicology,2011,285(1-2):18-24.

      [50] Chan GN,Hoque MT,Bendayan R.Role of nuclear receptors in the regulation of drug transporters in the brain[J].Trends Pharmacol Sci,2013,34 (7):361-372.

      [51] Wallace BD, Redinbo MR.Xenobiotic-sensing nuclear receptors involved in drug metabolism:a structural perspective[J].Drug Metab Rev,2013,45(1):79-100.

      [52] Wang Y,Masuyama H,Nobumoto E,Zhang G,Hiramatsu Y.The inhibition of constitutive androstane receptor-mediated pathway enhances the effects of anticancer agents in ovarian cancer cells [J].Biochem Pharmacol,2014,90(4):356-366.

      [53] Chisaki I,Kobayashi M,Itagaki S,Hirano T,Iseki K. Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver[J].Biochim Biophys Acta,2009,1788(11):2396-2403.

      [54] Tompkins LM,Li H,Li L,Lynch C,Xie Y,NakanishiT,et al.A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells[J].Biochem Pharmacol,2010,80(11):1754-1761.

      [55] Meyer zu Schwabedissen HE,Tirona RG,Yip CS,Ho RH,Kim RB.Interplay between the nuclear receptor pregnane X receptor and the uptake transporter organic anion transporter polypeptide 1A2 selectively enhances estrogen effects in breast cancer [J].Cancer Res,2008,68(22):9338-9347.

      [56] Zhang Y,Lu M,Sun X,Li C,Kuang X,Ruan X. Expression and activity of p-glycoprotein elevated by dexamethasone in cultured retinal pigment epithelium involve glucocorticoid receptor and pregnane X receptor[J].Invest Ophthalmol Vis Sci,2012,53(7):3508-3515.

      [57] Chan GN,Hoque MT,Cummins CL,Bendayan R. Regulation of P-glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells[J].J Neurochem,2011,118(2):163-175.

      [58] Rao DD, Senzer N, Cleary MA, Nemunaitis J. Comparative assessment of siRNA and shRNA off target effects:what is slowing clinical development [J].Cancer Gene Ther,2009,16(11):807-809.

      [59] Kesharwani P,Gajbhiye V,Jain NK.A review of nanocarriers for the delivery of small interfering RNA[J].Biomaterials,2012,33(29):7138-7150.

      [60] Deng Y,Wang CC,Choy KW,Du Q,Chen J,Wang Q,et al.Therapeutic potentials of gene silencing by RNA interference:principles,challenges,and new strategies[J].Gene,2014,538 (2):217-227.

      RNA interference technique and its appIication to drug transporter research

      KONG Ling-lei,LI Hua
      (State Key Laboratory of Toxicology and Medical Countermeasures,Laboratory of Drug Metabolism and Pharmacokinetics,Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China)

      RNA interference(RNAi)is a powerful technique that utilizes double-stranded RNA molecules to specifically knock down the expression of the targeted gene.The RNAi technique has a broad application to basic biomedical research.Thanks to its high selectivity and effectivity,this technique is also used clinically as a disease intervention and therapeutic method as well as in the research of drug transporters.Drug transporters are membrane proteins that play important roles in the absorption,distribution and elimination of a wide range of drugs.Inhibition or deletion of transporters may affect clearance and pharmacokinetics of drugs and lead to altered toxicity or therapeutic efficacy.Therefore,in drug development and clinical application,it has become critically important to characterize the roles of transporters in transmembrane transport,tissue distribution,clearance of drugs and drug-drug interactions. However,the diversity and complexity of transporters make it difficult to identify and confirm the role of transporters in drug transportation and drug-drug interactions using chemical inhibitors of transporters. RNAi is an excellent method in delineating their specific roles in drug distribution,elimination and drugdrug interactions.This article reviews recent studies using RNAi to silence gene expression of specific transporters and the application to the research of transporters mediated cancer resistance,drug disposition,clearance and drug-drug interactions.

      RNA interference;drug transporter;drug resistance,neoplasm;drug interaction;receptors,cytoplasmic and nucler

      LI Hua,Tel:(010)66930664,E-mail:amms_h(yuǎn)li@126.com

      R965.2

      :A

      :1000-3002(2014)06-0939-08

      10.3867/j.issn.1000-3002.2014.06.018

      Foundation item:The project supported by National Natural Science Foundation of China(81302760);The Chinese Postdoctoral Science Foundation Project(2013M542510);National Science and Technology Major Project of China (2008ZXJ09006001);and National Science and Technology Major Project of China(2012ZX09301003-001)

      2014-08-18 接受日期:2014-11-18)

      (本文編輯:喬 虹)

      國(guó)家自然科學(xué)基金(81302760);中國(guó)博士后基金(2013M542510);國(guó)家科技重大專(zhuān)項(xiàng)(2008ZXJ09006001);國(guó)家科技重大專(zhuān)項(xiàng)(2012ZX09301003-001)

      孔令雷(1982-),男,博士后,主要從事神經(jīng)藥理及藥物代謝研究。

      李 樺,Tel:(010)66930664,E-mail: amms_h(yuǎn)li@126.com

      猜你喜歡
      轉(zhuǎn)運(yùn)體外排受體
      轉(zhuǎn)運(yùn)體的研究進(jìn)展及在中藥研究上的應(yīng)用
      膠東國(guó)際機(jī)場(chǎng)1、4號(hào)外排渠開(kāi)挖支護(hù)方案研究
      大腸桿菌ABC轉(zhuǎn)運(yùn)體研究進(jìn)展
      高尿酸血癥治療藥物及其作用靶點(diǎn)研究進(jìn)展
      外排體促進(jìn)骨再生的研究進(jìn)展
      基于特異質(zhì)大鼠膽紅素相關(guān)轉(zhuǎn)運(yùn)體功能抑制探討首烏藤肝損傷機(jī)制
      三排式吻合器中的雙吻合釘推進(jìn)器對(duì)
      Toll樣受體在胎膜早破新生兒宮內(nèi)感染中的臨床意義
      2,2’,4,4’-四溴聯(lián)苯醚對(duì)視黃醛受體和雌激素受體的影響
      Toll樣受體:免疫治療的新進(jìn)展
      微博| 通渭县| 林州市| 原阳县| 静海县| 赤壁市| 泽普县| 祁门县| 榆林市| 临安市| 慈利县| 罗平县| 怀安县| 泰安市| 宁明县| 玉门市| 鄱阳县| 定陶县| 璧山县| 尖扎县| 庆城县| 潮州市| 苍梧县| 清远市| 德格县| 清镇市| 炉霍县| 万山特区| 轮台县| 浦北县| 江陵县| 固始县| 罗源县| 如皋市| 呼和浩特市| 阿拉善左旗| 柏乡县| 凯里市| 顺义区| 理塘县| 安泽县|