嚴(yán)春琳,楊 靜,韓際宏,朱 彥
(1.天津中醫(yī)藥大學(xué)天津市現(xiàn)代中藥國(guó)家重點(diǎn)實(shí)驗(yàn)室-省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300193;2.天津國(guó)際生物醫(yī)藥聯(lián)合研究院中藥新藥研發(fā)中心,天津 300457;3.南開(kāi)大學(xué)生命科學(xué)院,天津 300193)
中藥抗動(dòng)脈粥樣硬化機(jī)制研究進(jìn)展
嚴(yán)春琳1,2,楊 靜1,韓際宏3,朱 彥1
(1.天津中醫(yī)藥大學(xué)天津市現(xiàn)代中藥國(guó)家重點(diǎn)實(shí)驗(yàn)室-省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300193;2.天津國(guó)際生物醫(yī)藥聯(lián)合研究院中藥新藥研發(fā)中心,天津 300457;3.南開(kāi)大學(xué)生命科學(xué)院,天津 300193)
動(dòng)脈粥樣硬化的病因及發(fā)病機(jī)制極為復(fù)雜,目前關(guān)于動(dòng)脈粥樣硬化的病因較為一致的看法是因脂質(zhì)代謝紊亂、炎癥細(xì)胞浸潤(rùn)、氧化應(yīng)激、血管內(nèi)皮細(xì)胞損傷、平滑肌細(xì)胞激活等多種機(jī)制相互作用的結(jié)果,最終導(dǎo)致斑塊的破裂,血栓形成,造成嚴(yán)重心腦血管疾病。中藥對(duì)心血管系統(tǒng)疾病具有良好的臨床防治效果,部分中藥復(fù)方和單體抗動(dòng)脈粥樣硬化的多靶點(diǎn)協(xié)同作用機(jī)制已經(jīng)得到了初步的闡明。本文從調(diào)節(jié)脂質(zhì)代謝、抗炎、抗氧化、保護(hù)血管內(nèi)皮細(xì)胞、抑制平滑肌細(xì)胞的增殖和遷移、改善凝血纖溶系統(tǒng)及穩(wěn)定斑塊等方面對(duì)相關(guān)中藥抗動(dòng)脈粥樣硬化的作用機(jī)制進(jìn)行綜述。
動(dòng)脈粥樣硬化;中藥藥理學(xué)
眾所周知,動(dòng)脈粥樣硬化(atherosclerosis,AS)是導(dǎo)致冠狀動(dòng)脈疾病發(fā)病和死亡的主要原因。AS的病因及發(fā)病機(jī)制極為復(fù)雜,它的發(fā)生發(fā)展基本上是按著脂質(zhì)條紋纖維斑塊粥樣斑塊臨床合并癥出現(xiàn)等的4個(gè)階段進(jìn)行[1]。動(dòng)脈管壁內(nèi)皮細(xì)胞(endothelial cells,EC)損傷及脂質(zhì)沉積是目前公認(rèn)的AS的始動(dòng)因素[2],其基本過(guò)程為:EC在受到炎癥、高血脂等刺激情況下,發(fā)生損傷及功能異常,血脂沉積在EC下并被增多的活性氧簇氧化修飾成氧化型低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL),血液中單核細(xì)胞與淋巴細(xì)胞浸潤(rùn)到EC下,釋放炎癥因子;血小板黏附于受損的 EC處;中膜平滑肌細(xì)胞(smooth muscle cells,SMC)遷移至內(nèi)膜并大量增殖,伴膠原等細(xì)胞外基質(zhì)的分泌增多;由單核細(xì)胞衍生的巨噬細(xì)胞及SMC攝取ox-LDL形成泡沫細(xì)胞;壞死的泡沫細(xì)胞及組織碎片形成病變深部糜粥樣部分,突出于管腔表面,再覆以較堅(jiān)硬的纖維被膜。此時(shí)脂質(zhì)進(jìn)一步沉積,沉積的脂質(zhì)進(jìn)一步加重吞噬細(xì)胞的聚集、血小板的黏附和炎性因子釋放,形成惡性循環(huán)。隨著這一過(guò)程的進(jìn)展,纖維被膜慢慢變薄,漸漸演變?yōu)椴环€(wěn)定斑塊。不穩(wěn)定斑塊糜爛或破裂而形成血栓,最終導(dǎo)致嚴(yán)重心腦血管損害。
AS的病因與發(fā)病機(jī)制極為復(fù)雜,至今為止仍然沒(méi)有確定其確切的病因及發(fā)病機(jī)制,從最早被公認(rèn)的危險(xiǎn)因素到現(xiàn)在,文獻(xiàn)陸續(xù)報(bào)道的已有300多個(gè),現(xiàn)對(duì)近年來(lái)的一些危險(xiǎn)因素和相關(guān)機(jī)制的研究歸納如下。
1.1 脂質(zhì)代謝紊亂
流行病學(xué)資料顯示,血清中膽固醇的升高與AS的發(fā)生呈正相關(guān)。隨著對(duì)脂蛋白研究的深入,發(fā)現(xiàn)主要是LDL的水平與AS的發(fā)生呈正相關(guān)[3],其機(jī)制是LDL能通過(guò)載脂蛋白B-100(apolipoprotein B-100,ApoB-100)與細(xì)胞外基質(zhì)相互作用而沉積在動(dòng)脈內(nèi)膜形成粥樣斑塊。而高密度脂蛋白(HDL)能將膽固醇逆向轉(zhuǎn)運(yùn)至肝,可降低機(jī)體膽固醇水平,從而起到抗AS的作用。
1.2 炎癥與免疫反應(yīng)
1999年,Ross等[4]提出AS的損傷反應(yīng)學(xué)說(shuō),此后,越來(lái)越多的研究結(jié)果提示AS實(shí)質(zhì)為血管受損后的一種慢性炎癥性過(guò)程。炎癥貫穿AS發(fā)生發(fā)展的整個(gè)過(guò)程:在AS起始階段,血液中的單核細(xì)胞和淋巴細(xì)胞遷移,在炎癥因子的作用下黏附至EC損傷處,穿過(guò)EC,在EC下聚集。單核細(xì)胞趨化蛋白1(monocyte chemotactic protein-1,MCP-1)可刺激單核細(xì)胞轉(zhuǎn)變成巨噬細(xì)胞,后者與ox-LDL結(jié)合形成泡沫細(xì)胞。泡沫細(xì)胞破裂或凋亡,在細(xì)胞外形成脂質(zhì)池導(dǎo)致病灶進(jìn)一步惡化。大量的細(xì)胞因子參與其中,細(xì)胞因子不僅可以直接損傷周圍的細(xì)胞,而且通過(guò)自分泌和旁分泌的形式作用于自身和其他細(xì)胞,生成更多的細(xì)胞因子以及炎性介質(zhì),形成惡性循環(huán),促AS的發(fā)生發(fā)展。
1.3 氧化應(yīng)激
近年來(lái)國(guó)內(nèi)外大量研究表明,氧化應(yīng)激參與了AS的發(fā)生與發(fā)展過(guò)程[5]。氧化應(yīng)激是指機(jī)體組織或細(xì)胞內(nèi)氧自由基生成增加和(或)清除能力降低,導(dǎo)致氧自由基及其相關(guān)代謝產(chǎn)物的過(guò)度積聚而引起氧化損傷的過(guò)程[6]。目前研究表明,氧化應(yīng)激一方面直接對(duì)血管壁細(xì)胞造成損傷,另一方面通過(guò)影響血管壁細(xì)胞轉(zhuǎn)錄因子的水平,調(diào)節(jié)基因的表達(dá),參與AS的發(fā)生發(fā)展[7-8]。
1.4 血管內(nèi)皮細(xì)胞損傷
研究表明,EC并不單純是血管的屏障,也是一個(gè)功能強(qiáng)大的內(nèi)分泌器官,能合成和分泌多種生物活性物質(zhì),參與機(jī)體復(fù)雜的功能調(diào)節(jié)。正常血管EC能調(diào)節(jié)血管收縮及血管結(jié)構(gòu),能分泌抗凝和抗血小板物質(zhì),防止血液中的細(xì)胞向血管壁的黏附與聚集[9]。EC功能障礙與AS的發(fā)生發(fā)展密切相關(guān),受損的EC可促進(jìn)白細(xì)胞的黏附和聚集、EC下脂質(zhì)的沉積、SMC的增殖和遷移、粥樣斑塊脆性的增加與破裂。
1.5 SMC的增殖和遷移
SMC在泡沫細(xì)胞分泌的細(xì)胞因子的趨化下由中膜遷移至內(nèi)膜并大量增殖,攝取脂質(zhì)成為肌源性泡沫細(xì)胞,內(nèi)膜增厚而形成粥樣病灶或纖維脂質(zhì)斑塊,血管SMC的增殖與遷移是AS形成的關(guān)鍵因素[10]。
1.6 AS發(fā)病機(jī)制研究新進(jìn)展
在2013年的戈登學(xué)術(shù)會(huì)議上提出巨噬細(xì)胞亞群表型的改變、表觀遺傳學(xué)以及循環(huán)系統(tǒng)的中微RNA(microRNA,miRNA)在AS的發(fā)生發(fā)展中也扮演了重要的角色。
1.6.1 巨噬細(xì)胞亞群表型的改變與AS
巨噬細(xì)胞參與機(jī)體的先天性免疫和獲得性免疫。巨噬細(xì)胞存在一系列連續(xù)的功能狀態(tài),M1型和M2型是巨噬細(xì)胞連續(xù)狀態(tài)的兩個(gè)極端類型。M1型巨噬細(xì)胞通過(guò)分泌促炎性細(xì)胞因子和趨化因子,并專職提呈抗原,參與機(jī)體正向免疫應(yīng)答,發(fā)揮免疫監(jiān)視的功能;M2型巨噬細(xì)胞僅有較弱的抗原提呈能力,通過(guò)分泌抑制性細(xì)胞因子白細(xì)胞介素10 (interleukin-10,IL-10)和(或)轉(zhuǎn)化生長(zhǎng)因子-β等下調(diào)免疫應(yīng)答,參與組織修復(fù)與重建[11]。有研究表明,干擾素γ與脂多糖的聯(lián)合作用是將巨噬細(xì)胞向M1方向誘導(dǎo)的經(jīng)典刺激方法,而IL-4單獨(dú)作用則是將巨噬細(xì)胞向M2方向誘導(dǎo)的經(jīng)典刺激方法[12]。通過(guò)對(duì)巨噬細(xì)胞亞群表型轉(zhuǎn)變的研究,對(duì)AS的防治將起到重要的作用。
1.6.2 表觀遺傳學(xué)與AS
研究表明,表觀遺傳學(xué)與AS的發(fā)生發(fā)展密切相關(guān),表觀遺傳學(xué)是在不改變基因序列的前提下,通過(guò)DNA和組蛋白化學(xué)修飾、RNA干擾、染色質(zhì)重塑等多種機(jī)制影響和調(diào)節(jié)基因的功能與特性。表觀遺傳修飾,可影響基因表達(dá)而不改變當(dāng)前基因的遺傳變化,是生物復(fù)雜性的主要驅(qū)動(dòng)力,并可以在多種疾病的發(fā)生中發(fā)揮一定作用。對(duì)AS表觀遺傳學(xué)的深入研究,是未來(lái)研發(fā)AS防治藥物的潛在靶標(biāo)。表觀遺傳修飾與DNA的轉(zhuǎn)錄活性密切相關(guān),DNA甲基化和組蛋白H3賴氨酸9(H3K9)甲基化可抑制基因轉(zhuǎn)錄,DNA去甲基化和組蛋白乙?;瘎t促進(jìn)基因轉(zhuǎn)錄,而非編碼RNA通過(guò)募集甲基化的DNA以及修飾特異性的組蛋白殘基而使染色體重塑[13]。目前對(duì)組蛋白修飾的研究主要集中于組蛋白的乙?;揎棧呋M蛋白乙?;拿甘墙M蛋白乙酰轉(zhuǎn)移酶,去乙?;瘎t由組蛋白去乙?;复呋?。如Findeisen等[14]研究表明,干擾素β通過(guò)組蛋白去乙?;缸饔糜诨|(zhì)金屬蛋白酶9(matrix metalloproteinases9,MMP-9)啟動(dòng)子,抑制MMP-9啟動(dòng)子組蛋白H3的乙?;?,從而抑制激活蛋白1的結(jié)合,最終抑制MMP-9的轉(zhuǎn)錄,調(diào)節(jié)SMC的增殖遷移,穩(wěn)定AS斑塊。
1.6.3 循環(huán)系統(tǒng)的中miRNA與AS
miRNA是一類長(zhǎng)度為 19~25個(gè)核苷酸的RNA,miRNA存在于基因組非編碼區(qū),在基因轉(zhuǎn)錄及轉(zhuǎn)錄后加工、細(xì)胞增殖、細(xì)胞分化、細(xì)胞凋亡、個(gè)體發(fā)育、遺傳和表觀遺傳等生命活動(dòng)中都發(fā)揮著重要作用[15-16]。近年來(lái)發(fā)現(xiàn),miRNA參與調(diào)控AS發(fā)生發(fā)展各個(gè)環(huán)節(jié)的炎性細(xì)胞,包括血管內(nèi)皮細(xì)胞和單核細(xì)胞的發(fā)育、分化及其功能的執(zhí)行。對(duì)miRNA參與調(diào)控這些細(xì)胞的機(jī)制進(jìn)行深入研究,將有可能闡明miRNA在AS發(fā)病過(guò)程中的意義與作用。如在人臍靜脈內(nèi)皮細(xì)胞中miRNA-21隨著血管所受振蕩剪切應(yīng)力增加而表達(dá)增加,miRNA-21通過(guò)增加黏附分子表達(dá)提高巨噬細(xì)胞在內(nèi)皮細(xì)胞表面的黏附,相應(yīng)的黏附分子包括血管細(xì)胞黏附分子1 (vascular cell adhesion molecule1,VCAM-1)和MCP-1,miRNA也可以作用于過(guò)氧化物酶體增殖物激活受體α(peroxisomeproliferatoractivatedreceptor alpha,PPARα),使 PPARα表達(dá)減少,AP-1的活性增高,形成正反饋的調(diào)節(jié),促進(jìn)AS的發(fā)生發(fā)展[17]。
近年來(lái)發(fā)現(xiàn),內(nèi)皮祖細(xì)胞(endothelial progenitor cell,EPC)的數(shù)量減少及功能受損與AS的發(fā)生發(fā)展密切相關(guān),并可作為心血管疾病的獨(dú)立危險(xiǎn)因子。EPC是存在于骨髓、臍血和外周血的一種具有高增殖潛能的前體細(xì)胞,在一定條件下可誘導(dǎo)分化為成熟的血管內(nèi)皮細(xì)胞。EPC在生理和病理?xiàng)l件下的血管重構(gòu)過(guò)程中發(fā)揮著重要作用[18]。EPC在AS血管內(nèi)皮損傷和修復(fù)過(guò)程中發(fā)揮極其重要的作用,其數(shù)量減少及功能受損與AS的發(fā)生發(fā)展密切相關(guān)。幾乎所有AS的危險(xiǎn)因素均伴有EPC數(shù)量的減少和遷移能力的下降[19],EPC可能成為AS的重要預(yù)測(cè)因子[20]和新的治療靶點(diǎn)。如高脂血癥是AS的主要危險(xiǎn)因素,研究表明高脂血癥通過(guò)增加氧化應(yīng)激水平,極大地降低EPC遷移活性和黏附能力[21]。
由于以上相關(guān)因素的相互作用,導(dǎo)致AS斑塊的形成,最終AS斑塊由穩(wěn)定狀態(tài)進(jìn)入不穩(wěn)定狀態(tài),斑塊破裂,血小板黏附聚集,血栓形成是急性心腦血管疾病共同的病理基礎(chǔ)。AS與眾多因子相關(guān),表1系統(tǒng)總結(jié)了AS相關(guān)的因子及其調(diào)控。
表1 與動(dòng)脈粥樣硬化相關(guān)的因子分類及其調(diào)控機(jī)制
續(xù)表1
中醫(yī)并無(wú)AS這一病名,但根據(jù)其臨床表現(xiàn)可涉及中醫(yī)學(xué)眩暈、頭痛、健忘、癡呆、中風(fēng)和胸痹等疾病。中醫(yī)從整體觀入手,辨證論治,大多數(shù)學(xué)者均認(rèn)為該病為本虛標(biāo)實(shí)之證,本虛即五臟(主要是肝、脾、腎三臟)氣血陰陽(yáng)的虧虛,標(biāo)實(shí)即瘀、痰、熱、毒等。隨著眾多醫(yī)家和學(xué)者對(duì)AS病因病機(jī)的進(jìn)一步探討,對(duì)AS病因病機(jī)取得了許多新的認(rèn)識(shí)。如“伏邪”、“脈濁”的概念。① 伏邪與AS:人體感受邪氣,未能及時(shí)清除,或邪氣潛伏于正虛之所不易祛除,則致邪氣留滯,潛伏于人體,待時(shí)而發(fā),待機(jī)而作,即謂之“伏邪”。根據(jù)中醫(yī)理論,身體中的物質(zhì),適中則為正常,缺少則為虛為虧,多余則為實(shí)為邪為濁。血中之脂質(zhì)為水谷食物中厚濁富有營(yíng)養(yǎng)之部分所化,適當(dāng)則為身體所必需,過(guò)多則為邪為害。其留滯多余者,猶如水液聚為痰濁,筆者認(rèn)為如若將此命名為“伏邪”高血脂為“脂濁,如此,創(chuàng)新中醫(yī)傳統(tǒng)的病因?qū)W概念,使之既與現(xiàn)代醫(yī)學(xué)的認(rèn)識(shí)互通,又符合傳統(tǒng)中醫(yī)理論,從而更好地利用中醫(yī)方法解決臨床問(wèn)題[25]。②脈濁與AS:中醫(yī)的脈作為奇恒之腑與西醫(yī)學(xué)的血管系統(tǒng)具有高度相關(guān)性。醫(yī)家對(duì)濁邪的認(rèn)識(shí)不同,但在中醫(yī)學(xué)中濁是一個(gè)很復(fù)雜的東西,它具有特定的致病特點(diǎn)、臨床表現(xiàn)及治療方法對(duì)于多種現(xiàn)代難治病證具有重要的臨床指導(dǎo)意義。脈為奇恒之腑,濁留于脈則致脈濁。脈濁的概念充分強(qiáng)調(diào)了脈作為奇恒之腑的獨(dú)立性和整體性,使臨床實(shí)踐中的辨證與辨病能夠更好地結(jié)合起來(lái),增強(qiáng)了中醫(yī)對(duì)動(dòng)脈粥樣硬化干預(yù)的目的性和準(zhǔn)確性[26]。
中西醫(yī)對(duì)AS的發(fā)病機(jī)制及防治均作了大量研究。西藥在治療AS中機(jī)制明確,取得了顯著的作用,但作用往往效果單一,且副作用較大。中藥以中醫(yī)理論為指導(dǎo)從宏觀著手,整體施治,對(duì)于AS這類復(fù)雜疾病具有獨(dú)特的優(yōu)勢(shì)。近年來(lái)中藥治療AS取得了較大的進(jìn)展,很大程度上彌補(bǔ)了現(xiàn)代醫(yī)學(xué)之不足。中藥抗AS主要從調(diào)節(jié)脂質(zhì)代謝,抗炎、免疫調(diào)節(jié),抗氧化、保護(hù)EC,抑制SMC的增殖與遷移、穩(wěn)定斑塊、改善凝血纖溶系統(tǒng)上取得了顯著的效果。
2.1 中藥復(fù)方
中醫(yī)藥治療疾病立足于整體,辨證論治,中藥在抗AS方面療效肯定。研究表明,大量中藥復(fù)方能從不同角度調(diào)控AS的發(fā)生與發(fā)展,在AS的研究領(lǐng)域具有潛在的特色和優(yōu)勢(shì)。大部分學(xué)者認(rèn)為AS的病機(jī)為“本虛標(biāo)實(shí)”,本虛涉及肝、脾、腎諸臟,標(biāo)實(shí)多為瘀、痰、熱、毒等。所以在治療上,大都采用祛瘀化痰,清熱解毒、益氣固本等治療方法。表2中復(fù)方中藥,分別具有不同程度的活血(桃仁、紅花等),祛痰(瓜蔞、薤白等),清熱解毒(金銀花、玄參等),益氣固本(黃芪、黨參等)功效,契合了AS本虛標(biāo)實(shí),瘀、痰、熱、毒互結(jié)之病因病機(jī)。
2.2 中藥有效成分
隨著對(duì)中藥有效成分抗AS研究的不斷深入,其機(jī)制的研究也日趨廣泛,已深入到細(xì)胞及分子水平,其可通過(guò)多種機(jī)制防治AS及其并發(fā)癥。AS發(fā)病機(jī)制復(fù)雜,中藥對(duì)于復(fù)雜疾病,能從多途徑、多環(huán)節(jié)、多靶點(diǎn)干預(yù)AS病理過(guò)程,具有多靶點(diǎn)協(xié)同作用的優(yōu)勢(shì)和潛力。如丹參酮ⅡA為唇形科植物丹參(Salvia miltiorrhiza Bge.)的干燥根及根莖中的有效成分。研究表明,丹參酮ⅡA可以降低TC,TG,LDL-C及升高HDL-C,通過(guò)調(diào)節(jié)血脂水平來(lái)調(diào)控AS[73];通過(guò)抑制相關(guān)的炎癥因子如:NF-κB,VCAM-1等抑制炎性反應(yīng),抑制 AS的發(fā)生發(fā)展[73-74];調(diào)節(jié)ET水平,降低氧化應(yīng)激對(duì)血管壁的損傷[75];下調(diào)TXA2水平,上調(diào) PGI2水平,抑制血小板的聚集,改善血流變相關(guān)指標(biāo)[75],改善凝血纖溶系統(tǒng),抑制血栓的形成,能從多途徑、多環(huán)節(jié)、多靶點(diǎn)起到防治AS及其并發(fā)癥的作用(表3)。
表2 中藥復(fù)方抗動(dòng)脈粥樣硬化作用機(jī)制
表3 中藥有效成分抗AS作用機(jī)制
目前認(rèn)為AS是一種慢性炎癥性疾病,其發(fā)病機(jī)制十分復(fù)雜,涉及脂質(zhì)代謝紊亂,氧化應(yīng)激,內(nèi)皮細(xì)胞的損傷,SMC的增殖和遷移等多個(gè)方面,最終以斑塊的破裂造成急性心腦血管疾病,嚴(yán)重威脅人們的健康。中醫(yī)藥以整體觀為指導(dǎo),辨證論治,能系統(tǒng)治療,多靶點(diǎn)整合起效,且毒副作用小,對(duì)于復(fù)雜疾病的治療有其獨(dú)特的優(yōu)勢(shì)。但是中藥治療AS具體的起效成分及作用機(jī)制在細(xì)胞和分子生物學(xué)上的研究還不夠廣泛和深入。因此,將新的科學(xué)技術(shù)及治療理念引入到中藥的研究領(lǐng)域,對(duì)于深入探究中藥防治AS的作用機(jī)制必將取得更大的成就。如高內(nèi)涵技術(shù)的應(yīng)用、脂代謝組學(xué)深入研究、表觀遺傳修飾等。高內(nèi)涵分析技術(shù)是一種應(yīng)用高分辨率的熒光數(shù)碼影像系統(tǒng),在細(xì)胞水平上實(shí)現(xiàn)檢測(cè)標(biāo)的多元化和功能化的篩選技術(shù),旨在獲得被篩樣品對(duì)細(xì)胞產(chǎn)生的多維立體和實(shí)時(shí)快速的生物效應(yīng)信息。高內(nèi)涵分析技術(shù)非常適用于中藥的復(fù)雜成分和多靶點(diǎn)作用機(jī)制的研究,對(duì)揭示中藥復(fù)方的科學(xué)性和合理性,促進(jìn)中藥現(xiàn)代化的發(fā)展有重要意義。而脂質(zhì)代謝組學(xué)作為重要的代謝組學(xué)分支,從系統(tǒng)水平上研究生物體內(nèi)的脂質(zhì)代謝,揭示其相互作用及與其他生物分子的作用,是一門(mén)研究脂質(zhì)代謝調(diào)控在各種生命現(xiàn)象中作用機(jī)制的新學(xué)科,隨著對(duì)脂代謝組學(xué)研究的日益廣泛和深入,將有助于人們更深入地理解脂代謝在AS發(fā)生發(fā)展的作用,為中藥抗AS的提供新的研究方向。表觀遺傳修飾可能是鏈接環(huán)境因素與遺傳因素的橋梁,深入了解表觀遺傳修飾如 DNA甲基化、組蛋白修飾以及miRNA對(duì)AS形成和發(fā)展的影響及其作用機(jī)制,將進(jìn)一步闡明AS的發(fā)病機(jī)制。并且由于表觀遺傳修飾可逆性,這可能為AS的治療提供新的策略和靶點(diǎn)。經(jīng)過(guò)進(jìn)一步的研究與探析,中藥防治AS將取得更大的成就。
[1] Li YL.Pathology(病理學(xué))[M].6th ed.Beijing: People′s Medical Publishing Press.2004.
[2] Williams JK,Sukhova GK,Herrington DM,Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys [J].J Am Coll Cardiol,1998,31(3):684-691.
[3] Sk?lén K,Gustafsson M,Rydberg EK,Hultén LM,Wiklund O,Innerarity TL,et al.Subendothelial retention of atherogenic lipoproteins in early atherosclerosis[J].Nature,2002,417(6890):750-754.
[4] Ross R.Atherosclerosis-an inflammatory disease [J].N Engl J Med,1999,340(2):115-126.
[5] Papaharalambus CA,Griendling KK.Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury[J].Trends Cardiovasc Med,2007,17(2):48-54.
[6] Zhao K,Yang WS.Oxidative stress and endothelial damage caused by hypertension[J].Tianjin Med J (天津醫(yī)藥),2006,34(12):907-909.
[7] Higashi Y,Noma K,Yoshizumi M,Kihara Y.Endothelial function and oxidative stress in cardiovas-cular diseases[J].Circ J,2009,73(3):411-418.
[8] Antoniades C,Shirodaria C,Leeson P,Antonopoulos A,Warrick N,Van-Assche T,et al.Association of plasma asymmetrical dimethylarginine(ADMA)with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling:implications for endothelial function in human atherosclerosis[J]. Eur Heart J,2009,30(9):1142-1150.
[9] Hu ZY,Wang QJ,Ding XS.Review on endothelial dysfunction in atherosclerosis and drug therapy [J].Chin J Clin Pharmacol Ther(中國(guó)臨床藥理學(xué)與治療學(xué)),2006,11(5):481-484.
[10] Qin C, Liu Z.In atherogenesis,the apoptosis of endothelial cell itself could directly induce overproliferation of smooth muscle cells[J].Med Hypotheses,2007,68(2):275-277.
[11] Yang Y,Xu XY.Research progress on the role of macrophages in endometriosis[J].Chongqing Med(重慶醫(yī)學(xué)),2011,40(15):1532-1534.
[12] Chen T, Liang X, Yuan ZY.Introduction and identification of M1/M2 phenotype of RAW264.7 cells[J].Mol Cardiol China(中國(guó)分子心臟病學(xué)雜志),2011,12(2):117-120.
[13] Bonasio R,Tu S,Reinberg D.Molecular signals of epigenetic states[J].Science,2010,330(6004): 612-616.
[14] Findeisen HM,Gizard F,Zhao Y,Qing H,Heywood EB,Jones KL,et al.Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition[J]. Arterioscler Thromb Vasc Biol,2011,31(4):851-860.
[15] Bahadori M.New advances in RNAs[J].Arch Iran Med,2008,11(4):435-443.
[16] Sonkoly E,Pivarcsi A.Advances in microRNAs: implications for immunity and inflammatory diseases[J].J Cell Mol Med,2009,13(1):24-38.
[17] Zhou J,Wang KC,Wu W,Subramaniam S,Shyy JY,Chiu JJ,et al.MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation[J].Proc Natl Acad Sci USA,2011,108(25):10355-10360.
[18] Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation:from biomarker to therapeutic agent[J].Biomark Med,2011,5(6): 731-744.
[19] Liu Y, Wei J, Hu S, Hu L.Beneficial effects of statins on endothelial progenitor cells[J].Am J Med Sci,2012,344(3):220-226.
[20] Bakogiannis C,Tousoulis D,Androulakis E,Briasoulis A,Papageorgiou N,Vogiatzi G,et al.Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes[J].Curr Med Chem,2012,19(16):2597-2604.
[21] Haddad P, Dussault S, Groleau J, Turgeon J,Maingrette F,Rivard A.Nox2-derived reactive oxygen species contribute to hypercholesterolemiainduced inhibition of neovascularization:effects on endothelial progenitor cells and mature endothelial cells[J].Atherosclerosis,2011,217(2):340-349.
[22] Tedgui A,Mallat Z.Cytokines in atherosclerosis: pathogenic and regulatory pathways[J].Physiol Rev,2006,86(2):515-581.
[23] Henn V,Slupsky JR,Gr?fe M,Anagnostopoulos I,F(xiàn)?rster R,Müller-Berghaus G,et al.CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells[J].Nature,1998,391(6667):591-594.
[24] Miniati DN, Hoyt EG, Feeley BT, Poston RS,Robbins RC.Ex vivo antisense oligonucleotides to proliferating cell nuclear antigen and Cdc2 kinase inhibit graft coronary artery disease[J].Circulation,2000,102(19 Suppl 3):Ⅲ237-Ⅲ242.
[25] Liang H.To investigate the etiology and pathogenesis of atherosclerosis from Fuxie theory[J].J Changchun Univ TCM(長(zhǎng)春中醫(yī)藥大學(xué)學(xué)報(bào)),2009,25(5):802-803.
[26] Chen WQ,Wang YL.Based on the″pulse cloud″theoryon the pathogenesisofatherosclerosis further understanding[J].J TCM(中醫(yī)雜志),2013,54(17):1450-1452.
[27] Xu B,Nie B,Xu Y,Wu SX,Guo P,Chen LX. Study on regularity ofcompatibility based on ApoE-/-mice atherosclerosis modelofSimiao Yong′an decoction active sites[J].Liaoning J TCM (遼寧中醫(yī)雜志),2013,40(6):1250-1252.
[28] Zhu HB,Hao JJ,Zhu X.Effect of Simiao soup on the SOCS1 and SOCS3 in atherosclerotic rat[J]. Chin Hosp Pharm J(中國(guó)醫(yī)院藥學(xué)雜志),2013,33(14):1122-1125.
[29] Zhang JP,Xu YZ,Li M,Li LJ,Peng L,Zhang GY,et al.Effect of Simiao Yong′an Decoction on oxidative stress and inflammation on atherosclerosis model rabbits[J].J TCM(中醫(yī)雜志),2010,51 (1):72-74.
[30] Zhu HB,Hao JJ,Zhang G,Zhu X.Protective effect of Simiao soup on atherosclerosis oxidative damage in rats[J].J China-Jpn Friendship Hosp(中日友好醫(yī)院學(xué)報(bào)),2013,27(3):168-171.
[31] Huang W, Dong C, Liu H, Yang YB,Ren JJ. Xuefu Zhuyu soup influence on atherosclerosis prostacyclin and thromboxane A2in rats[J]. Lishizhen Med Mater Med Res(時(shí)珍國(guó)醫(yī)國(guó)藥),2012,23(5):1130-1132.
[32] Dong C,Huang W,Yang Y,Ji PX,Liu HR,Yao Q.The effect and mechanism of Xuefu Zhuyu Decoction on the rats with atherosclerosis[J].Her Med(醫(yī)藥導(dǎo)報(bào)),2013,32(5):579-582.
[33] Dong C,Huang W, Geng ZH,Gao S.Effects of Xuefu Zhuyu decoction on intercellular adhesion molecule and lipid peroxidation of experimental atherosclerosis rats[J].J Hebei Univ(Nat Sci Ed)〔河北大學(xué)學(xué)報(bào)(自然科學(xué)版)〕,2012,32(6):650-654.
[34] Xie H,Luo NYY,Long ZJ,Zhou XQ,Yang FA,Lei YP.The effect of Xuefuzhuyu Decoction and its seperating prescription on expression of ERK2 mRNA in atherosclerotic vascular smooth muscle cells[J].Chin J Integr Med Cardio-/Cerebrovas Dis(中西醫(yī)結(jié)合心腦血管病雜志),2008,6(12): 1422-1423.
[35] Luo YY, Xie H, Xie HB, Zhou XQ,Liu XH. Effects of Xuefu Zhuyu decoction on neointimal formation of atherosclerosis in rabbits[J].J TCM Univ Hunan(湖南中醫(yī)藥大學(xué)學(xué)報(bào)),2008,28 (5):33-35.
[36] Xie X,Wu J,Shao XH,Zhu CL,Ding YQ.Experimental study of Yiqiyangyin Fang on atherosclerosis immune and inflammatory factors IL-6,MMP-9 and NF-κB in rats[J].J Sichuan TCM(四川中醫(yī)),2013,31(6):58-60.
[37] Xie X,Wu J,Zhu CL,Shao XH,Ding YQ.Experimental study of Yiqiyangyin Fang on atherosclerosis immune and inflammatory factors hs-CRP,sVCAM-1 and sICAM-1 in rats.[J].Jiangsu J TCM(江蘇中醫(yī)藥),2013,45(3):73-74.
[38] Jia YQ,Hou GY,Si QJ,Liu ZX,Zhao H.Experimental study of Dahuang Zhechong pill on the formation of atherosclerotic plaque and expression of CD40[J].Hebei J TCM(河北中醫(yī)),2010,32 (3):426-427,463.
[39] Si QJ,Zhang YH,Wang XG,Jiang YJ,Wang GJ. Effects of Dahuang Zhechong pillon the expression of NF-κB pathway and inflammatory factors in atherosclerosis rats[J].Chin J Exp Tradit Med Form(中國(guó)實(shí)驗(yàn)方劑學(xué)雜志),2013,19 (7):254-258.
[40] Han CJ,Liu JT,Zhang Y,Li M,Pang XM,Mao JJ.Mechanism of Dahuang Zhechong pill against atherosclerosis induced by balloon angioplasty in rabbits[J].J Chin Med Mater(中藥材),2011,34 (12):1919-1922.
[41] Zhang L, Li DY.Dahuang Zhechong pill on rat model of atherosclerosis and the expression of ET-1 NO randomized controlled study of effect[J]. J Pract Tradit Chin Intern Med(實(shí)用中醫(yī)內(nèi)科雜志),2012,26(4):27-28.
[42] Zhang L,Li DY.Effect of Dahuang Zhechong pill on the expression of NO and NOS in atherosclerosis rats[J].Jilin J TCM(吉林中醫(yī)藥),2012,32 (3):280-281.
[43] Xu XM,Wang JY.Effects of Danhong injection on blood lipid and hemorheology of rabbits with atherosclerosis[J].Chin J Lab Diagn(中國(guó)實(shí)驗(yàn)診斷學(xué)),2009,13(6):820-821.
[44] Guan GF,Hua XP,Wang L,Du L,Kong XH.The effects of Danhong injection on vascular inflammation in rabbit model with atherosclerosis[J].Chin J Integr Med Cardio-/Cerebrovasc Dis(中西醫(yī)結(jié)合心腦血管病雜志),2006,4(10):884-886.
[45] Guan GF,Hua XP,Wang LD,Kong L,Kong XH. Effects of Danhong injection on lipid metabolism and vascular endothelial function in rabbit model with experimental atherosclerosis[J].J Clin Cardiol (臨床心血管病雜志),2007,23(4):304-306.
[46] Gao LN,Cui YL,Wang QS,Wang SX.Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy[J].J Ethnopharmacol,2013,149(3):772-782.
[47] Wan LM,Tan L,Wang ZR,Liu SX,Wang YL,Liang SY,et al.Preventive and therapeutic effects of Danhong injection on lipopolysaccharide induced acute lung injury in mice[J].J Ethnopharmacol,2013,149(1):352-359.
[48] Yang XW,Zhao HS,Shang S,Guo JJ,Liu FQ,Mu Y,et al.Effect of Quyuhuatan Decoction on blood lipid level of rats with atherosclerosis[J]. Beijing J TCM(北京中醫(yī)藥),2012,31(12):927-929.
[49] Yu J,Gong YP,Chen M,Chen Y.Research on Quyuhuatan decoction and kidney tonifying dampness Decoction on hyperlipidemia rats vascular cell adhesion factor-1 expression[J].Zhejiang J TCM (浙江中醫(yī)雜志),2010,45(3):176-177.
[50] Shang S,Xu LP,Yang XW,Mu Y,Zhao HS,Guo JJ,et al.Protective effect of Quyuhuatan decoction on cardiovascular damage with atherosclerosis in rats[J].Beijing J TCM,2012,3(2):143-147.
[51] Wang M, Liu XQ, Chen HQ, Yu X,Gu QQ,Wang QZ.Effects of baicalin on serum adiponectin,high-sensitivity C-reactive protein and tumor necrosis factor α in ApoE deficiency mice[J].Chin J Gerontol (中國(guó)老年學(xué)雜志),2013,33(1):101-103.
[52] Guo ZY.Protective effect of baicalin on lipid peroxidation and oxidative damage of endothelial cells [J].J Chin Med Mater(中藥材),2012,35(2): 288-291.
[53] Li X, Yan RH, Peng J.Baicalin suppressed inflammatory reaction by decreasing nuclear factorκB and soluble monocyte chemoattractant protein-1 in hyperlipdemia rat[J].Chin J Arterioscler(中國(guó)動(dòng)脈硬化雜志),2010,18(8):611-613.
[54] Hu HJ,Han M,Sun RH,Liu B,Wen JK.Baicalin inhibits VSMC proliferation and neointimal hyperplasia in rats[J].Basic Med Clin(基礎(chǔ)醫(yī)學(xué)與臨床),2010,30(12):1252-1256.
[55] Jiang F,Qian J,Chen S,Zhang W,Liu C.Ligustrazine improves atherosclerosis in rat via attenuation of oxidative stress[J].Pharm Biol,2011,49 (8):856-863.
[56] Wang GF,Shi CG,Sun MZ,Wang L,Wu SX,Wang HF,et al.Tetramethylpyrazine attenuates atherosclerosis development and protects endothelial cells from ox-LDL[J].Cardiovasc Drugs Ther,2013,27(3):199-210.
[57] Jiang X.Investigation on efficacy of ligustrazine′s antagonism to free radicals in SD rats with atherosclerosis[J].J Hubei Univ TCM(湖北中醫(yī)藥大學(xué)學(xué)報(bào)),2011,13(3):14-15.
[58] Wang GF,Zhao X,Li N,Cui HM.The effects of ligustrazine on expressions of Bcl-2 and Bax in ox-LDL-induced atherosclerotic model through improving endothelial functions[J].Chin J Clin(Electron Ed)〔中華臨床醫(yī)師雜志(電子版)〕,2011,5(23): 6898-6901.
[59] Yang WH,Gong GQ,Zhou Y,Zhang ZX,Li J. Effect and mechanism of tetramethylpyrazine on antithrombotic[J].Chin J Clin Pharmacol Ther(中國(guó)臨床藥理學(xué)與治療學(xué)),2012,17(3):241-245.
[60] Yang Q,Wang S,Xie Y,Wang J,Li H,Zhou X,et al.Effect of salvianolic Acid B and paeonol on blood lipid metabolism and hemorrheology in myocardial ischemia rabbits induced by pituitrin[J].Int J Mol Sci,2010,11(10):3696-3704.
[61] Chen XL,Zhang YY,Gu RY.Salvianolic acid B on immune pathways of OX40/and OX40L in rats with atherosclerosis[J].Shaanxi J TCM(陜西中醫(yī)),2012,33(6):758-761.
[62] Bao Y,Wang L,Xu Y,Yang Y,Wang L,Si S,et al.Salvianolic acid B inhibits macrophage uptake of modified low density lipoprotein(mLDL)in a scavenger receptor CD36-dependent manner[J]. Atherosclerosis,2012,223(1):152-159.
[63] Pan CH,Chen CW,Sheu MJ,Wu CH.Salvianolic acid B inhibits SDF-1α-stimulated cell proliferation and migration of vascular smooth muscle cells by suppressing CXCR4 receptor[J].Vasc Pharmacol,2012,56(1-2):98-105.
[64] Xie LX,Durairajan SS,Lu JH,Liu CL,Kum WF,Wang Y,et al.The effect of salvianolic acid B combined with laminar shear stress on TNF-alphastimulated adhesion molecule expression in human aortic endothelial cells[J].Clin Hemorheol Microcirc,2010,44(4):245-258.
[65] Hur KY,Kim SH,Choi MA,Williams DR,Lee YH,Kang SW,et al.Protective effects of magnesium lithospermate B against diabetic atherosclerosis via Nrf2-ARE-NQO1 transcriptional pathway[J].Atherosclerosis,2010,211(1):69-76.
[66] Zhang FX,Guan N,Sun DP,Li CG,Guo WS. The mechanism of resveratrol from increases of the expression of cholesterol ester hydrolase to inhibit atherosclerosis[J].Acad J Chin PLA Med Sch(解放軍醫(yī)學(xué)院學(xué)報(bào)),2013,34(2):164-166.
[67] Qu Q,Jiao JJ,Wang CH,Wang QQ,Du YX. Influence of resveratrol on expression of nuclear factor-κB in aorta of rat with atherosclerosis[J].J Anhui Agri Sci(安徽農(nóng)業(yè)科學(xué)).2010,38(4): 1671-1672,1694.
[68] Bai YX.Study of the effect and the mechanism of resveratrol on platelet aggregation in hyperlipidemia rats[J].Chin J Clin Pharmacol Ther(中國(guó)臨床藥理學(xué)與治療學(xué)),2013,18(7):769-773.
[69] Deng ZY,Kuang R,Zhu SM,Wang D,Kang H,Zhao J.Effects of resveratrol on multiple anti-oxidant systems in hyperlipidemia rats[J].Chin Pharmacol Bull(中國(guó)藥理學(xué)通報(bào)),2013,29(1):147-148.
[70] Ruan JM,Zhu PL,Jiang N,Shang XL,Lin F. Effects of resveratrol on expression of PPARγ and related inflammatory factors in rabbits with atherosclerosis[J].Chin J Arterioscler(中國(guó)動(dòng)脈硬化雜志),2013,21(3):203-208.
[71] Wakabayashi I, Takeda Y.Inhibitory effects of resveratrol on MCP-1,IL-6,and IL-8 production in human coronary artery smooth muscle cells[J]. Naunyn Schmiedebergs Arch Pharmacol,2013,386(9):835-839.
[72] Gao P,Si LY,Xu Q,Wang XM.Inhibitory effect of resveratrol on proliferation of vascular smooth muscle cells induced by angiotensinⅡand its underlying mechanism[J].Med J Chin PLA(解放軍醫(yī)學(xué)雜志),2013,38(4):269-273.
[73] Wang JX,Shen XJ.Experimental study of tanshinoneⅡA in regulation of NF-κB pathway and antiatherosclerosis[J].Henan TCM(河南中醫(yī)),2013,33(5):681-683.
[74] Li HZ,Lu YH,Chen Q,Huang GS.Effects of tanshinoneⅡA on expression of VCAM-1 in atherosclerotic mice[J].Chin J Gerontol(中國(guó)老年學(xué)雜志),2011,31(19):3736-3737.
[75] Li ZL,Shi QL,Zhu PX.Intervention effect of tanshinoneⅡA on vascular endothelial cell function in patients with atherosclerosis[J].J Nanchang Univ (Med Sci)〔南昌大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)〕,2012,52 (7):44-45,48.
Advances in anti-atheroscIerosis mechanisms of traditionaI Chinese medicine
YAN Chun-lin1,2,YANG Jing1,HAN Ji-hong3,ZHU Yan1
(1.Tianjin State Key Laboratory of Modern Chinese Medicine,Tianjin University of Traditional Chinese Medicine,Tianjin 300193,China;2.Research and Development Center of Chinese Medicine,Tianjin International Joint Academy of Biotechnology and Medicine,Tianjin 300457,China;3.College of Life Sciences,Nankai University,Tianjin 300193,China)
Cardiovascular and cerebrovascular diseases,including coronary heart disease,peripheral vascular disease and atherosclerosis,are the first cause of death worldwide.The pathogenesis of atherosclerosis is a complex process that involves a number of cellular processes and molecular mechanisms,such as disorder of lipid metabolism,inflammatory cell infiltration,oxidative stress,vascular endothelial cells injury and activation of smooth muscle cells.Their interaction eventually leads to plaque rupture and thrombus formation,causing serious cardiovascular and cerebrovascular events.Chinese medicine has displayed rich anti-AS activities and clinical applications.This review summarizes the antiatherosclerosis effects and possible mechanisms of Chinese medicine in regulating lipid metabolism,anti-inflammation and antioxidation,protecting endothelial cells,inhibiting the proliferation and migration of smooth muscle cells,improving coagulation and fibrinolysis systems and stabilizing the plaque.
atherosclerosis;pharmacology(TCD)
ZHU Yan,E-mail:yanzhu.harvard@gmail.com
R285,R966
:A
:1000-3002(2014)06-0904-10
10.3867/j.issn.1000-3002.2014.06.014
Foundation item:The project supported by National Science and Technology Major Project(2013ZX 09201020);and Tianjin Key Program of Applied Infrastructure and Cutting-edge Technology Research(12JCZDJC26500)
2013-11-18 接受日期:2014-02-10)
(本文編輯:喬 虹)
國(guó)家科技重大專項(xiàng)(2013ZX 09201020);天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃重點(diǎn)項(xiàng)目(12JCZDJC26500)
嚴(yán)春琳(1989-),女,碩士研究生,主要從事心血管藥理的研究,E-mail:yanchunlin08@163.com
朱 彥,E-mail:yanzhu.harvard@gmail.com