• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography

    2014-03-24 02:51:18DongHoonLeeJiWonParkCheolPyoHong

    Dong-Hoon Lee, Ji-Won Park, Cheol-Pyo Hong

    1 Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea

    2 Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Republic of Korea

    3 Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Daegu, Republic of Korea

    Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography

    Dong-Hoon Lee1,2, Ji-Won Park3, Cheol-Pyo Hong1

    1 Center for Medical Metrology, Division of Convergence Technology, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea

    2 Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Republic of Korea

    3 Department of Physical Therapy, College of Medical Science, Catholic University of Daegu, Daegu, Republic of Korea

    To attain the volumetric information of the optic radiation in normal human brains, we performed diffusion tensor imaging examination in 13 healthy volunteers. Simultaneously, we used a brain normalization method to reduce individual brain variation and increase the accuracy of volumetric information analysis. In addition, tractography-based group mapping method was also used to investigate the probability and distribution of the optic radiation pathways. Our results showed that the measured optic radiation fi ber tract volume was a range of about 0.16% and that the fractional anisotropy value was about 0.53. Moreover, the optic radiation probability fi ber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect the location relatively accurately. We believe that our methods and results are helpful in the study of optic radiation fi ber tract information.

    nerve regeneration; optic radiation; diffusion tensor imaging; diffusion tensor tractography; magnetic resonance imaging; volumetric analysis; probability map; group mapping; visualization; individual variation; neural regeneration

    Lee DH, Park JW, Hong CP. Quantitative volumetric analysis of the optic radiation in the normal human brain using diffusion tensor magnetic resonance imaging-based tractography. Neural Regen Res. 2014;9(3):280-284.

    Introduction

    The human visual system consists of two major components, sensory input organs, such as the retina in the eyes, and the visual pathway[1]. The object information that is captured through the eyes is transmitted by the retina and their axons, which are comprised of nerve fi bers, to the optic chiasm[1-2]. The visual pathway continues to the lateral geniculate nucleus[1-4]. The optic radiation is a dense fi ber tract that emerges from the lateral geniculate nucleus and continues to the occipital visual cortex[1-4]. Especially, the optic radiation is an important fi ber structure that conveys visual information from the lateral geniculate nucleus to the primary visual cortex in the occipital lobe. In recent years, many studies have introduced the anatomical location and features of the optic radiation[1-10]. Knowing such above-mentioned characteristic information of the optic radiation before operation is important for surgery of the temporal lobe, longitudinal study of patients with optic neuritis, and evaluation of visual function in preterm infants[5,7-8,10-12]. Most of these studies have used diffusion tensor imaging, which is a magnetic resonance imaging technique that is used to examine the directional properties of the diffusion of water molecules[13-20]. In particular, several studies have been published on these topics related to the optic radiation, and these have described the characteristic information obtained from diffusion tensor tractography, which is derived from diffusion tensor imaging and is a robust technique that is used for visualizing and evaluating white matter fiber direction in the human brain[1-2,7-12,21]. However, these studies have focused on the anatomical characteristics of optic radiation fi ber tracts in individual brains and on comparisons of the anatomical characteristics of the optic radiation fi ber tracts between patient and control groups. Therefore, to the best of our knowledge, no diffusion tensor tractography studies of the volumetric information of optic radiation have been conducted without individual brain structure variation.

    In the current study, we attempted to analyze the volumetric information of the optic radiation and to investigate the characteristics of the optic radiation in normal human brain with diffusion tensor tractography.

    Results

    Quantitative data

    The values of the counted voxel numbers for the normalized optic radiation fi ber tracts, and the percentage of the counted voxel numbers that were divided by whole voxel numbers in the Montreal Neurologic Institute (MNI) echo-planar imaging (EPI) template are shown in Table 1. These values represent the ratio of the optic radiation fi ber tract volumetricinformation in both hemispheres of normal human brain.

    Table 1 The counted voxel numbers that were part of the extracted optic radiation fiber tracts, the calculated percentage, and the fractional anisotropy (FA) value for each subject

    Probability map

    The optic radiation probability pathway map, which represents the degree of overlapping optic radiation fi ber tracts of all subjects, was overlaid onto a standard MNI EPI template (Figure 1).

    Discussion

    In the current study, we analyzed the volumetric information of optic radiation fi ber tracts in the human brain with brain normalization methods with a standard brain template image. In addition, we visualized a probability fi ber pathway map in order to investigate the probability and distribution of the optic radiation pathway. Since the introduction of diffusion tensor imaging and fi ber tracking methods, these techniques have been widely used to elucidate the anatomical structure and to perform quantitative analyses of neural fi ber tracts at the subcortical level[16-17,19,22-38]. Many studies have been conducted on the optic radiation, although the majority of these studies have focused on examining the anatomical structures or landmarks of surgical planning in patients[3,4,9,11-12,21,25]. Schoth et al.[21]have reported anisotropy changes in blind humans compared to healthy control subjects with diffusion tensor tractography. Winston et al.[4]have described the use of optic radiation fi ber tractography in epilepsy surgical planning and anterior temporal lobe resections. Ciccarelli et al.[7]have indicated anatomical changes after optic neuritis, and they showed that optic radiation fiber tract location was different between patient and normal control groups. Moreover, some quantitative fi ber tracking analyses and approaches have been used in patients with arteriovenous malformations and premature newborns in order to evaluate the optic radiation fi ber tracts[5-6,26]. In the quantitative analyses, FA values, diffusivity indices, and leftto-right asymmetry indices were measured in these patients.

    In this study, we measured the volumetric information of the optic radiation fi ber tracts in order to determine the proportion of optic radiation fi ber tracts in the whole brain of the normal human brain. The extracted optic radiation fiber tracts were normalized to a standard brain template, the MNI EPI template, in order to remove the individual differences of all of the subjects and to allow for a direct comparison of our volumetric analysis results under the same conditions. The results of this study demonstrated that the optic radiation fi ber tract had a tiny volume of information that was less than 1% of visual performance compared to the volume information of the whole brain. Moreover, the optic radiation probability fi ber pathway that was determined with diffusion tensor tractography-based group mapping was able to detect location with relative accuracy.

    Figure 1 The results of the optic radiation probability pathway map in healthy subjects.

    This study had some limitations. First, a limited number of subjects were enrolled in this study. Based on our results, the 13 healthy subjects exhibited a similar tendency for the percentage of counted voxel numbers. However, these fi ndings are dif fi cult to generalize to our results. In a future study, we plan to study a larger number of subjects. Second, the setting of the region of interest is a user-dependent process. This problem can be solved through fi ber tracking that is combined with functional magnetic resonance imaging examinations of visual stimulation in a future study. Third, we evaluated only the optic radiation fi ber tract of all of the optic fibers in the human brain. Moreover, the Fuzzy art with Add Clustering Technique (FACT) algorithm, which was used in this study, is used for limited fi ber tracking and reconstruction. The FACT algorithm was considered for determining the dominant fiber direction, and the largest eigenvalue components in each voxel were used as an indicator of fi ber orientation. Therefore, a fi ber-crossing region or a voxel that was eligible for various fi ber directions might have resulted in some erroneous points in the FACT algorithm-based fiber tracking. Further study is needed with other fi ber tracking and reconstruction algorithms, such as probabilistic approaches or with an advanced fast marching algorithm. The probabilistic fi ber tracking algorithm allows for the direction of the tensor in the voxel to be multidirectional, but it is not limited to a dominant direction, as is the FACT algorithm. The advanced fast marching takes into account all of the information that is contained in the diffusion tensor[2]. Thereby, every tensor is classi fi ed as linear, planar, or spherical ellipsoid[2,27]. In other words, the method that was described above is able to evaluate brain areas thatcontain fiber-crossing regions, such as the optic chiasm. They have important implications for more accurate fiber tracking for all of the optic nerve that is not limited to the optic radiation, which is a topic for future research.

    In conclusion, we analyzed and measured the volume information of the optic radiation fi ber tract in the normal human brain and found that the optic radiation fi ber tract had a relatively small range of volume information compared to that of the whole brain. To the best of our knowledge, this is the first volumetric analysis study of the optic radiation fi ber tract with diffusion tensor tractography and of wholebrain volume information. We believe that our approaches provide preliminary data for researchers who are studying treatments for patients with diseases that are related to the visual pathway in the brain.

    Subjects and Methods

    Design

    An observational neuroimaging study.

    Time and setting

    This experiment was performed at the Department of Physical Medicine and Rehabilitation, Yeungnam University Hospital, Republic of Korea in June 2009.

    Subjects

    Thirteen healthy subjects (men, 6; age, 35 ± 2.16 years) were recruited into this study through advertisements. They had no previous history of neurological disease, optic nerve pathology, head injury, or physical disease. All subjects understood the purpose of the study and provided written informed consents prior to their participation. This study was approved by the Institutional Review Board of Yeungnam University Hospital in Republic of Korea.

    Methods

    Diffusion tensor imaging acquisition

    All diffusion tensor imaging datasets were acquired with a 1.5-T magnetic resonance imaging system (Gyroscan Intera, Philips Healthcare, Best, the Netherlands) with a six-channel phased-array sensitivity-encoding (SENSE) head coil by using single-shot echo-planar imaging (EPI) with parallel acquisition in the transverse plane. The imaging parameters were as follows: repetition time/echo time, 10,726/76 ms; matrix, 128 × 128; fi eld of view, 221 mm; slice thickness, 2.3 mm; and reduction factor for SENSE, 2. Diffusion weighting was applied along 32 non-collinear diffusion-sensitizing gradients with a b-value of 1,000 s/mm2. We obtained 63–67 contiguous transverse slices that covered the entire brain with no slice gaps. During the acquisition, radiologists routinely checked for gross head movement or other motion in real time[25].

    Diffusion tensor imaging analysis

    Eddy current corrections of the diffusion tensor imaging data were performed with the tool in FSL 4.0.1 (Analysis Group, FMRIB, Oxford, UK) with a 12-parameter affine registration[4-5,12,25,39]. Each diffusion-weighted image was registered to non-diffusion weighted images (b = 0). The diffusion tensor imaging datasets were analyzed with DtiStudio 3.0.3 (Department of Radiology, Johns Hopkins University, Baltimore, MD, USA), which was based on the fi ber assignment by the continuous tracking (FACT) algorithm[22,40-43]. Propagation in each fi ber tract was terminated if a voxel with a fractional anisotropy (FA) value less than 0.25 was reached or if the turning angles of 2 consecutive vectors were over70° during tracking[10]. An FA threshold of 0.25–0.35 for fiber tract reconstruction has been recommended by Mori et al. and Stieltjes et al.[10,23,44]. A relatively large angle threshold was used so that the optic radiation course in acute angles could be examined[10,26]. The region of interest was manually drawn in both lateral geniculate nucleus on the transverse plane at the level of the transition from the posterior limb of the internal capsule to the cerebral peduncle on a color-coded FA map, and the volume of the region of interest was standardized for all subjects (9 voxels)[3,7]. The color-coded FA map showed the fi ber pathway directions with 3 colors as follows: red (left-right direction), green (anterior-posterior), and blue (superior-inferior)[45-46].

    Quantitative measurements and probability map of the optic radiation

    After both optic radiation fiber tracts were extracted with the region of interest described above, we performed quantitative measurements and created a probability pathway map of the optic radiation. These methods were conducted based on the brain normalization method in order to avoid individual brain variation. The procedure is shown in Figure 2 and is described as follows. (1) Each subject’s non-diffusion image (b = 0 image) was co-registered to the standard Montreal Neurologic Institute (MNI) space with an EPI template with SPM2 (Wellcome Department of Cognitive Neurology, London, UK). (2) The transformation matrices for each subject that were created with the coregistration process in (1) were then applied to the extracted optic radiation fi ber tracts of each subject for normalization to the MNI space. (3) For the quantitative measurements, the voxels that the optic radiation fi ber tract passed through in the normalized brain of each subject were counted with ImageJ (US National Institutes of Health, Bethesda, MD, USA) software. We calculated the percentage of the optic radiation fi ber tracts with the counted voxel numbers divided by the whole-brain voxel numbers in the MNI EPI template. (4) In order to assess optic radiation fi ber tracts quantitatively, the FA values in the extracted optic radiation fi ber tracts for each subject were measured. (5) Finally, each individual normalized optic radiation was averaged pixel-by-pixel and overlaid on the MNI EPI template in order to obtain and investigate the optic radiation probability pathway map with MRIcro (Chris Rorden, USA, http://www.mricro.com) software.

    Author contributions:Lee DH participated in study conception, design and analysis and manuscript development. Park JW contributed to data acquisition and analysis. Hong CP contributed tostudy design, manuscript development, oversight and research supervision. All authors approved the final version of this paper.

    Con fl icts of interest:None declared.

    Peer review:This study was designed to provide information about the average size and degree of diffusion anisotropy of the optic radiation in addition to a probability map describing the likelihood of optic radiation pathway. The proposed analysis was applied to 13 healthy subjects with a mean age of 35 years and the results were demonstrated according to the analysis. This type of analysis and results are considered to be an addition to the field of diffusion tensor imaging because of inaccurate diffusion tensor imaging measurement, approximate tensor model and relatively low resolution diffusion tensor imaging. The difficulties are to verify the segmented optic radiation using various tractography segmentation algorithms. Quantitative measurements of optic radiation probability map and the estimated optic radiation size and anisotropy can help identify healthy subjects and be used as a reference for comparing healthy to pathological subjects.

    [1] El-Rafei A, Engelhorn T, W?rntges S, et al. A framework for voxel-based morphometric analysis of the optic radiation using diffusion tensor imaging in glaucoma. Magn Reson Imaging. 2011;29: 1076-1087.

    [2] Staemp fl i P, Rienmueller A, Reischauer C, et al. Reconstruction of the human visual system based on diffusion tensor imaging fi ber tracking. J Magn Reson Imaging. 2007;26:886-893.

    [3] Sherbondy AJ, Dougherty RF, Napel S, et al. Identifying the human optic radiation using diffusion imaging and fi ber tractography. J Vis. 2008;8:12.1-1211.

    [4] Winston GP, Mancini L, Stretton J, et al. Diffusion tensor imaging tractography of the optic radiation for epilepsy surgical planning: a comparison of two methods. Epilepsy Res. 2011;97:124-132.

    [5] Bassi L, Ricci D, Volzone A, et al. Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain. 2008;131:573-582.

    [6] Berman JI, Glass HC, Miller SP, et al. Quantitative fi ber tracking analysis of the optic radiation correlated with visual performance in premature newborns. Am J Neuroradiol. 2009;30:120-124.

    [7] Ciccarelli O, Toosy AT, Hickman SJ, et al. Optic radiation changes after optic neuritis detected by tractography-based group mapping. Hum Brain Mapp. 2005;25:308-316.

    [8] Kolbe S, Bajraszewski C, Chapman C, et al. Egan, Diffusion tensor imaging of the optic radiations after optic neuritis. Hum Brain Mapp. 2012;33:2047-2061.

    [9] Nilsson D, Starck G, Ljungberg M, et al. Intersubject variability in the anterior extent of the optic radiation assessed by tractography. Epilepsy Res. 2007;77:11-16.

    [10] Yamamoto A, Miki Y, Urayama S, et al. Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. Am J Neuroradiol. 2007;28:92-96.

    [11] Powell HW, Parker GJ, Alexander DC, et al. MR tractography predicts visual fi eld defects following temporal lobe resection. Neurology. 2005;65:596-599.

    [12] Winston GP, Daga P, Stretton J, et al. Optic radiation tractography and vision in anterior temporal lobe resection. Ann Neurol. 2012;71:334-341.

    [13] Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247-254.

    [14] Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267.

    [15] Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed. 2002;15:435-455.

    [16] Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265-269.

    [17] Mori S, van Zijl PC. Fiber tracking: principles and strategies-a technical review. NMR Biomed. 2002;15:468-480.

    [18] Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893-906.

    [19] Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637-648.

    [20] Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77-87.

    [21] Schoth F, Burgel U, Dorsch R, et al. Diffusion tensor imaging in acquired blind humans. Neurosci Lett. 2006;398:178-182.

    [22] Jiang H, van Zijl PC, Kim J, et al. DtiStudio: resource program for diffusion tensor computation and fi ber bundle tracking. Comput Methods Programs Biomed. 2006;81:106-116.

    [23] Mori S, Kaufmann WE, Davatzikos C, et al. Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med. 2002;47:215-223.

    [24] White ML, Zhang Y. Three-tesla diffusion tensor imaging of Meyer’s loop by tractography, color-coded fractional anisotropy maps, and eigenvectors. Clin Imaging. 2010;34:413-417.

    [25] Yogarajah M, Focke NK, Bonelli S, et al. Defining Meyer’s loop-temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain. 2009;132:1656-1668.

    [26] Okada T, Miki Y, Kikuta K, et al. Diffusion tensor fiber tractography for arteriovenous malformations: quantitative analyses to evaluate the corticospinal tract and optic radiation. Am J Neuroradiol. 2007;28:1107-1113.

    [27] Westin CF, Maier SE, Mamata H, et al. Processing and visualization for diffusion tensor MRI. Med Image Anal. 2002;6:93-108.

    [28] Seo JP, Lee MY, Kwon YH, et al. Delayed gait recovery in a stroke patient. Neural Regen Res. 2013;8:1514-1518.

    [29] Li J, Chen X, Zhang J, et al. Intraoperative diffusion tensor imaging predicts the recovery of motor dysfunction after insular lesions. Neural Regen Res. 2013;8:1400-1409.

    [30] Kuhnt D, Bauer MH, Sommer J, et al. Optic radiation fi ber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging-initial experience. PLoS One. 2013;8:e70973

    [31] Surova Y, Szczepankiewicz F, Latt J, et al. Assessment of global and regional diffusion changes along white matter tracts in Parkinsonian disorders by MR tractography. PLoS One. 2013;8:e66022.

    [32] Seo JP, Jang SH. Traumatic thalamic injury demonstrated by diffusion tensor tractography of the spinothalamic pathway. Brain Inj. 2013;27:749-753.

    [33] Cauley KA, Filippi CG. Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots- clinical applications. Am J Roentgenol. 2013;201:W326-335.

    [34] Yeo SS, Jang SH. Corticospinal tract recovery in a patient with traumatic transtentorial herniation. Neural Regen Res. 2013;8:469-473.

    [35] El-Rafei A, Engelhorn T, Warntges S, et al. Glaucoma classi fi cation based on visual pathway analysis using diffusion tensor imaging. Magn Reson Imaging. 2013;31:1081-1091.

    [36] Seo JP, Choi BY, Chang CH, et al. Diffusion tensor imaging fi ndings of optic radiation in patients with putaminal hemorrhage. Eur Neurol. 2013;69:236-241.

    [37] Wang S, Qiu D, So KF, et al. Radiation induced brain injury: assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. J Neurooncol. 2013;112:9-15.

    [38] Yeo SS, Kim SH, Kim OL, et al. Optic radiation injury in a patient with traumatic brain injury. Brain Inj. 2012;26:891-895.

    [39] Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208-219.

    [40] Krishnan AP, Asher IM, Davis D, et al. Evidence that MR diffusion tensor imaging (tractography) predicts the natural history of regional progression in patients irradiated conformally for primary brain tumors. Int J Radiat Oncol Biol Phys. 2008;71:1553-1562.

    [41] Kim CH, Koo BB, Chung CK, et al. Thalamic changes in temporal lobe epilepsy with and without hippocampal sclerosis: a diffusion tensor imaging study. Epilepsy Res. 2010;90:21-27.

    [42] Lima M, Yamamoto A, Brion V, et al. Reduced-distortion diffusion MRI of the craniovertebral junction. Am J Neuroradiol. 2012;33:1321-1325.

    [43] Wiltshire K, Concha L, Gee M, et al. Corpus callosum and cingulum tractography in Parkinson’s disease. Can J Neurol Sci. 2010; 37:595-600.

    [44] Stieltjes B, Kaufmann WE van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage. 2001;14:723-735.

    [45] Lee SK, Kim DI, Kim J, et al. Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in development CNS anomalies. Radiographics. 2005;25:53-65.

    [46] Huang H, Yamamoto Akria, Hossain MA, et al. Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains. J Neurosci. 2008;28:1427-1433.

    Copyedited by Ng WH, El-Rafei A, Li CH, Song LP, Liu WJ, Zhao M

    10.4103/1673-5374.128223

    Cheol-Pyo Hong, Ph.D., 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340, Republic of Korea, dosagehong@kriss.re.kr.

    http://www.nrronline.org/

    Accepted: 2013-11-25

    亚洲一区高清亚洲精品| 成人综合一区亚洲| 熟女人妻精品中文字幕| 69人妻影院| 18禁在线播放成人免费| 长腿黑丝高跟| 菩萨蛮人人尽说江南好唐韦庄 | 国产爱豆传媒在线观看| 国产黄片美女视频| www.av在线官网国产| 国产又色又爽无遮挡免| 欧美变态另类bdsm刘玥| 亚洲丝袜综合中文字幕| 国产大屁股一区二区在线视频| 午夜精品国产一区二区电影 | 亚洲av中文字字幕乱码综合| 99久久成人亚洲精品观看| 国产一级毛片在线| 男人和女人高潮做爰伦理| 日韩亚洲欧美综合| 99久国产av精品国产电影| 男插女下体视频免费在线播放| 久久精品久久精品一区二区三区| 亚洲最大成人av| 亚洲精品色激情综合| 国产高清视频在线观看网站| 国产私拍福利视频在线观看| 99热网站在线观看| av免费在线看不卡| 免费电影在线观看免费观看| 国产精品久久久久久精品电影| 午夜a级毛片| 久久亚洲精品不卡| 久久国产乱子免费精品| 成人三级黄色视频| 国产真实伦视频高清在线观看| 久久久午夜欧美精品| 熟女电影av网| 国产精品一区二区在线观看99 | 中文乱码字字幕精品一区二区三区 | 亚洲国产高清在线一区二区三| 搞女人的毛片| 亚洲性久久影院| 国产伦一二天堂av在线观看| 亚洲在久久综合| 中文乱码字字幕精品一区二区三区 | 国产 一区 欧美 日韩| 欧美成人精品欧美一级黄| 国产黄色视频一区二区在线观看 | 一级黄色大片毛片| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 天天躁日日操中文字幕| www.色视频.com| 国产亚洲午夜精品一区二区久久 | 国产亚洲最大av| 国产成人福利小说| 欧美性感艳星| 日本av手机在线免费观看| 国产高清有码在线观看视频| av卡一久久| 亚洲四区av| 成人av在线播放网站| 美女高潮的动态| 国产v大片淫在线免费观看| 老司机福利观看| 老司机福利观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美另类亚洲清纯唯美| 国产久久久一区二区三区| 精品久久久久久久久久久久久| 黄色欧美视频在线观看| 国产精品不卡视频一区二区| 欧美日韩国产亚洲二区| 人人妻人人澡人人爽人人夜夜 | 国产成人aa在线观看| 禁无遮挡网站| 一本久久精品| 亚洲最大成人手机在线| 在线免费十八禁| 国产精品一区www在线观看| 成人av在线播放网站| 久久人人爽人人片av| 韩国高清视频一区二区三区| 久热久热在线精品观看| 欧美另类亚洲清纯唯美| 久久久久久久久久久丰满| 日本一本二区三区精品| 一级毛片aaaaaa免费看小| 搞女人的毛片| av天堂中文字幕网| 九九在线视频观看精品| 日韩人妻高清精品专区| www日本黄色视频网| 亚洲精品乱久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 看非洲黑人一级黄片| 我的女老师完整版在线观看| 亚洲18禁久久av| 视频中文字幕在线观看| 18禁在线无遮挡免费观看视频| 99久久精品国产国产毛片| 韩国av在线不卡| 99久久人妻综合| 一边亲一边摸免费视频| 色哟哟·www| 少妇裸体淫交视频免费看高清| 欧美激情在线99| 99久国产av精品国产电影| 韩国高清视频一区二区三区| 欧美丝袜亚洲另类| 男人和女人高潮做爰伦理| 少妇熟女欧美另类| 亚洲久久久久久中文字幕| 国产精品野战在线观看| 亚洲,欧美,日韩| 中文亚洲av片在线观看爽| 国产免费一级a男人的天堂| 美女大奶头视频| 最近最新中文字幕免费大全7| 欧美精品国产亚洲| 免费观看人在逋| 免费观看的影片在线观看| 乱系列少妇在线播放| 国产精品一二三区在线看| 99热这里只有精品一区| 乱码一卡2卡4卡精品| 国产精品电影一区二区三区| 久久亚洲国产成人精品v| 久久精品91蜜桃| 国产亚洲5aaaaa淫片| 日韩制服骚丝袜av| 成年女人永久免费观看视频| 在线观看美女被高潮喷水网站| 国产在视频线精品| 久99久视频精品免费| 免费在线观看成人毛片| 在线播放国产精品三级| 成人美女网站在线观看视频| 国产亚洲精品av在线| 久久久久国产网址| 久久欧美精品欧美久久欧美| 精品一区二区三区人妻视频| 我的老师免费观看完整版| 中文字幕av成人在线电影| 久久国产乱子免费精品| 丰满人妻一区二区三区视频av| 国产黄a三级三级三级人| 99国产精品一区二区蜜桃av| 美女内射精品一级片tv| 在线免费观看不下载黄p国产| 中文字幕亚洲精品专区| 国产 一区 欧美 日韩| 高清视频免费观看一区二区 | 搞女人的毛片| 日本-黄色视频高清免费观看| 日本与韩国留学比较| 又粗又硬又长又爽又黄的视频| 欧美性猛交╳xxx乱大交人| 春色校园在线视频观看| 午夜免费激情av| 亚洲一区高清亚洲精品| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久成人| 三级国产精品欧美在线观看| 91aial.com中文字幕在线观看| 精品午夜福利在线看| 久久6这里有精品| 亚洲av免费高清在线观看| 国产v大片淫在线免费观看| 一级毛片aaaaaa免费看小| 白带黄色成豆腐渣| 国产精品一区二区性色av| 亚洲欧洲国产日韩| 欧美性感艳星| 亚洲国产精品成人久久小说| 国产久久久一区二区三区| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看 | 麻豆av噜噜一区二区三区| 国产色婷婷99| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 日韩欧美三级三区| 国产精品久久久久久av不卡| 久久99热6这里只有精品| 精品国内亚洲2022精品成人| 99久久九九国产精品国产免费| 国产免费一级a男人的天堂| 国产精品av视频在线免费观看| av在线天堂中文字幕| 午夜精品在线福利| 中文字幕制服av| 伊人久久精品亚洲午夜| 亚洲精品日韩在线中文字幕| 99热网站在线观看| av在线播放精品| 麻豆av噜噜一区二区三区| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 亚洲在久久综合| 亚洲精品aⅴ在线观看| www.色视频.com| 综合色丁香网| 国产黄色视频一区二区在线观看 | 99久久中文字幕三级久久日本| 我要搜黄色片| 51国产日韩欧美| 午夜精品一区二区三区免费看| 人人妻人人澡人人爽人人夜夜 | 国产精品久久久久久久电影| 日韩中字成人| 精品久久久久久久久av| 亚洲五月天丁香| 亚洲av电影不卡..在线观看| 国产又色又爽无遮挡免| 国产极品精品免费视频能看的| 在线观看一区二区三区| 偷拍熟女少妇极品色| 久久精品夜色国产| 国产午夜精品一二区理论片| 亚洲电影在线观看av| 精品一区二区免费观看| 少妇猛男粗大的猛烈进出视频 | 亚洲综合色惰| 卡戴珊不雅视频在线播放| 精品99又大又爽又粗少妇毛片| 亚洲,欧美,日韩| 欧美又色又爽又黄视频| 中文字幕熟女人妻在线| 成人av在线播放网站| 中文字幕久久专区| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 免费观看性生交大片5| 婷婷色av中文字幕| 成人高潮视频无遮挡免费网站| 黄片无遮挡物在线观看| 综合色av麻豆| 精品人妻熟女av久视频| 亚洲丝袜综合中文字幕| 91久久精品电影网| 亚洲国产欧美人成| 麻豆成人午夜福利视频| 青春草视频在线免费观看| 一级黄色大片毛片| 亚洲国产精品专区欧美| 一区二区三区免费毛片| 成年av动漫网址| 国产毛片a区久久久久| 亚州av有码| 2021天堂中文幕一二区在线观| 亚洲一级一片aⅴ在线观看| 亚洲精品影视一区二区三区av| 国产精品永久免费网站| 黄色日韩在线| 亚洲av.av天堂| 国模一区二区三区四区视频| 亚洲国产精品久久男人天堂| 不卡视频在线观看欧美| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件| 三级国产精品片| 久久久久久久久久成人| 精品人妻视频免费看| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 国产探花在线观看一区二区| 91午夜精品亚洲一区二区三区| 亚洲最大成人av| 久久99热6这里只有精品| 亚洲,欧美,日韩| 久久国产乱子免费精品| 欧美zozozo另类| 精品久久久久久成人av| 老司机影院毛片| 搡女人真爽免费视频火全软件| 欧美zozozo另类| 直男gayav资源| 网址你懂的国产日韩在线| 日日撸夜夜添| 亚洲欧美日韩高清专用| 国产精品人妻久久久久久| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 成人综合一区亚洲| 日韩欧美 国产精品| 综合色av麻豆| 麻豆av噜噜一区二区三区| 日本熟妇午夜| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类| 国产精品1区2区在线观看.| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 青春草视频在线免费观看| 在现免费观看毛片| 欧美一区二区国产精品久久精品| 在线a可以看的网站| 最近2019中文字幕mv第一页| 免费在线观看成人毛片| 久久韩国三级中文字幕| 欧美极品一区二区三区四区| 少妇高潮的动态图| 精品久久久久久电影网 | 久久久精品大字幕| 午夜日本视频在线| 免费观看性生交大片5| 久久精品国产鲁丝片午夜精品| 成年女人看的毛片在线观看| 欧美一区二区国产精品久久精品| 韩国高清视频一区二区三区| 国产黄片美女视频| 日日撸夜夜添| 成人性生交大片免费视频hd| 亚洲国产日韩欧美精品在线观看| 免费观看a级毛片全部| 精品久久久久久久末码| 国产高清三级在线| 亚洲av中文av极速乱| 我要搜黄色片| 欧美高清性xxxxhd video| 国产精品久久久久久久电影| 国产精品久久久久久精品电影| 一区二区三区乱码不卡18| 国产午夜精品一二区理论片| 日韩中字成人| 国语对白做爰xxxⅹ性视频网站| 久久人妻av系列| 日本免费一区二区三区高清不卡| 超碰av人人做人人爽久久| 尤物成人国产欧美一区二区三区| 午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 99热这里只有是精品在线观看| 女人久久www免费人成看片 | 国产精品永久免费网站| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 久久精品国产99精品国产亚洲性色| 亚洲成色77777| 国产精品一区二区三区四区久久| 久99久视频精品免费| 国产伦在线观看视频一区| 久久婷婷人人爽人人干人人爱| 男人和女人高潮做爰伦理| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 精品久久久久久久末码| 欧美97在线视频| 亚洲精品,欧美精品| 性插视频无遮挡在线免费观看| 国产色婷婷99| 人人妻人人澡欧美一区二区| 亚洲av熟女| 欧美一级a爱片免费观看看| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 国产精品麻豆人妻色哟哟久久 | 91午夜精品亚洲一区二区三区| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 亚洲av一区综合| 国产 一区 欧美 日韩| 日产精品乱码卡一卡2卡三| 能在线免费看毛片的网站| 国产午夜精品一二区理论片| 免费看a级黄色片| 丰满少妇做爰视频| 久久久久久久久中文| 国产伦精品一区二区三区视频9| 亚洲国产精品成人久久小说| 国产精品99久久久久久久久| 久久久久久伊人网av| 非洲黑人性xxxx精品又粗又长| 久久鲁丝午夜福利片| 久久精品影院6| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜 | 久久欧美精品欧美久久欧美| 国产精品久久久久久av不卡| 亚洲在线观看片| 中文欧美无线码| 大香蕉97超碰在线| 亚洲在久久综合| 国产高清视频在线观看网站| 国产乱来视频区| 成年女人看的毛片在线观看| 免费看美女性在线毛片视频| 国产在线一区二区三区精 | 亚洲av福利一区| 国产单亲对白刺激| 色5月婷婷丁香| 国产午夜精品论理片| 亚州av有码| 久热久热在线精品观看| 国产午夜福利久久久久久| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 亚洲内射少妇av| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人综合色| 天堂网av新在线| 美女大奶头视频| 国产片特级美女逼逼视频| 精品酒店卫生间| 美女xxoo啪啪120秒动态图| 国产高清三级在线| 成人三级黄色视频| 在现免费观看毛片| 国内精品一区二区在线观看| 九色成人免费人妻av| 亚洲不卡免费看| 黄片无遮挡物在线观看| 久久久色成人| 网址你懂的国产日韩在线| 国产精品精品国产色婷婷| 99热这里只有是精品50| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 国产黄片美女视频| 我要看日韩黄色一级片| 久久人妻av系列| 日韩中字成人| 三级毛片av免费| 一级黄色大片毛片| 午夜亚洲福利在线播放| 欧美一区二区国产精品久久精品| 国产v大片淫在线免费观看| ponron亚洲| 99久久精品国产国产毛片| 欧美性感艳星| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| 国产伦理片在线播放av一区| 亚州av有码| 午夜福利成人在线免费观看| 国产三级中文精品| 欧美成人一区二区免费高清观看| 国产亚洲精品av在线| 亚洲18禁久久av| 国产在线一区二区三区精 | 国产精品三级大全| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜 | 色噜噜av男人的天堂激情| 99热这里只有是精品在线观看| 一区二区三区高清视频在线| 午夜免费激情av| 天天一区二区日本电影三级| 国产精品三级大全| 丝袜喷水一区| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| 边亲边吃奶的免费视频| 日韩高清综合在线| 国内精品一区二区在线观看| 欧美性猛交╳xxx乱大交人| 成人美女网站在线观看视频| 少妇丰满av| 色视频www国产| 波多野结衣高清无吗| 成人av在线播放网站| 亚洲欧美精品自产自拍| 亚洲欧美日韩卡通动漫| 18+在线观看网站| 亚洲内射少妇av| 午夜精品一区二区三区免费看| 精品久久久久久电影网 | 亚洲精品乱码久久久久久按摩| 一本一本综合久久| .国产精品久久| 欧美zozozo另类| 高清视频免费观看一区二区 | 国产国拍精品亚洲av在线观看| 久久久久久久久久久丰满| 欧美bdsm另类| 免费看日本二区| 自拍偷自拍亚洲精品老妇| 热99re8久久精品国产| 1000部很黄的大片| 亚洲最大成人手机在线| 夫妻性生交免费视频一级片| 两个人视频免费观看高清| 色5月婷婷丁香| 久久久久久久午夜电影| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 最近最新中文字幕大全电影3| 日日撸夜夜添| 国产v大片淫在线免费观看| 国产极品天堂在线| 国产精品一区www在线观看| 在线天堂最新版资源| 能在线免费看毛片的网站| www.av在线官网国产| 一个人免费在线观看电影| 日日摸夜夜添夜夜添av毛片| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 天堂√8在线中文| 中文在线观看免费www的网站| 美女国产视频在线观看| 亚洲美女搞黄在线观看| 午夜a级毛片| 国产精品久久电影中文字幕| 亚洲欧美精品专区久久| 国产乱来视频区| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 精品一区二区三区人妻视频| 免费观看的影片在线观看| 九九在线视频观看精品| 一本久久精品| 熟女电影av网| 午夜免费激情av| 精品国产一区二区三区久久久樱花 | 午夜精品国产一区二区电影 | 国内精品宾馆在线| 精品不卡国产一区二区三区| 嫩草影院精品99| 国产久久久一区二区三区| 久久精品久久久久久噜噜老黄 | 国产熟女欧美一区二区| 免费观看性生交大片5| 成人高潮视频无遮挡免费网站| 一级二级三级毛片免费看| 可以在线观看毛片的网站| АⅤ资源中文在线天堂| 国产日韩欧美在线精品| 黑人高潮一二区| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 又黄又爽又刺激的免费视频.| 我的女老师完整版在线观看| 中文在线观看免费www的网站| 久久这里只有精品中国| 在线播放国产精品三级| 国产精品一及| 亚洲人成网站高清观看| 中文精品一卡2卡3卡4更新| 大又大粗又爽又黄少妇毛片口| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 色哟哟·www| 久久久久久久久中文| 激情 狠狠 欧美| 熟妇人妻久久中文字幕3abv| 91在线精品国自产拍蜜月| 精品酒店卫生间| 一区二区三区免费毛片| 精品不卡国产一区二区三区| 久久久久九九精品影院| 亚洲av日韩在线播放| 亚洲国产精品成人久久小说| 久久精品人妻少妇| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 99久国产av精品| 日韩国内少妇激情av| 亚洲熟妇中文字幕五十中出| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 成人欧美大片| 国国产精品蜜臀av免费| 久久久欧美国产精品| 午夜亚洲福利在线播放| 国产精品国产高清国产av| 一区二区三区乱码不卡18| 国产成人精品久久久久久| 乱系列少妇在线播放| 国产三级在线视频| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看 | 春色校园在线视频观看| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 色播亚洲综合网| 大话2 男鬼变身卡| 狂野欧美白嫩少妇大欣赏| 国产精品福利在线免费观看| 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 久久久欧美国产精品| av在线播放精品| 美女脱内裤让男人舔精品视频| 熟女人妻精品中文字幕| 免费观看a级毛片全部| 在线播放国产精品三级| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放 | 日韩,欧美,国产一区二区三区 | 小说图片视频综合网站| 亚洲四区av| 亚洲精品自拍成人| 欧美极品一区二区三区四区| 亚州av有码| 欧美日韩国产亚洲二区| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 久久精品国产亚洲网站| 日韩三级伦理在线观看| 亚洲色图av天堂|