王瑞云,楊陽(yáng),李潤(rùn)植,郭紅媛
(1.山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西 太谷030801;2.農(nóng)業(yè)部黃土高原作物基因資源與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室,山西 太原030031)
由于人口驟增及氣候變暖引起的水資源短缺是當(dāng)前世界范圍內(nèi)農(nóng)業(yè)面臨的極大挑戰(zhàn)。到本世紀(jì)末,高濃度溫室氣體引發(fā)的全球性干旱將成為農(nóng)作物生存面臨的巨大威脅[1]。全球性水資源缺乏影響種植業(yè)的可持續(xù)性,農(nóng)業(yè)用水約占人類(lèi)消費(fèi)水資源的75%,在許多發(fā)展中國(guó)家,灌溉用水則占到90%以上[2]。水稻是世界上最重要的糧食作物之一,養(yǎng)活著超過(guò)全球一半的人口,局域性干旱甚至可使水稻減產(chǎn)超過(guò)80%[3]。因其物種自身對(duì)水分缺失的敏感性,水稻的種植模式將會(huì)隨地下水資源的枯竭發(fā)生改變[4]。與水稻相比,玉米則比較耐旱,但在傳粉和胚胎發(fā)育期對(duì)干旱同樣敏感[5]。
與動(dòng)物可以通過(guò)運(yùn)動(dòng)尋找易居處所不同,植物由根系固著在土壤中,不能自主更換位置,但是經(jīng)過(guò)億萬(wàn)年的進(jìn)化,其可以通過(guò)改變形態(tài)及生理代謝來(lái)適應(yīng)環(huán)境。首先,植物抗旱力的高低主要決定于地下根系的吸水力、地上枝系的保水力、氣孔對(duì)水分的蒸騰力以及植株整體對(duì)季節(jié)性缺水的適應(yīng)力等方面[6]。第二,在分子水平上,植物利用信號(hào)分子(如脫落酸ABA)啟動(dòng)多種脅迫響應(yīng)基因以合成蛋白,這些蛋白可以通過(guò)減緩營(yíng)養(yǎng)及生殖發(fā)育、積累滲透保護(hù)劑及降低蒸騰等過(guò)程來(lái)增加植物耐旱性[7]。
已經(jīng)發(fā)現(xiàn)了眾多干旱響應(yīng)基因及信號(hào)通道[8~10],如 ABA、水通道蛋白等特定分子[11]、順式作用因子[12]、長(zhǎng)距離信號(hào)[13]、信號(hào)通道[14]。上述基因中有些已運(yùn)用到玉米、水稻、油菜、大豆等作物中,并初見(jiàn)成效[15~17]。下面就從脅迫應(yīng)答轉(zhuǎn)錄調(diào)控因子、轉(zhuǎn)錄后RNA/蛋白修飾因子等抗旱相關(guān)基因的發(fā)掘和應(yīng)用方面作一綜述。
干旱、高鹽等非生物脅迫通常會(huì)誘導(dǎo)編碼轉(zhuǎn)錄因子的基因表達(dá),基因調(diào)控通道集中于轉(zhuǎn)錄水平,調(diào)控基因間的互作以及調(diào)控基因和靶基因間的互作引起基因的時(shí)空表達(dá)。目前在擬南芥轉(zhuǎn)錄因子數(shù)據(jù)庫(kù)中共有1690個(gè)TF,屬于50余個(gè)轉(zhuǎn)錄因子家族[18];At Reg Net數(shù)據(jù)庫(kù)的66個(gè)TF中有些由干旱脅迫誘導(dǎo)。bZIP轉(zhuǎn)錄因子、AP2/EREBP、NA M (無(wú) 頂 端 分 生 組 織 )、ATAF1-2、CUC2(NAC)、CCAAT綁定和鋅指等家族研究較多[18,19],其在干旱脅迫響應(yīng)中起重要作用,其表達(dá)可以提高作物抗旱性。
WRKY轉(zhuǎn)錄因子是植物中最大的轉(zhuǎn)錄調(diào)控家族之一,含有WRKY結(jié)構(gòu)域(由高度保守的60個(gè)氨基酸組成),單個(gè)WRKY轉(zhuǎn)錄因子可以調(diào)控多個(gè)不同的生理代謝過(guò)程和響應(yīng)環(huán)境脅迫[20]。WRKY c DNA最先從紅薯(SPF)、野燕麥(ABF)、大麥(Pc WRKY)和擬南芥 (ZAP1)中克隆,隨后在擬南芥中發(fā)現(xiàn)至少有70個(gè)WRKY轉(zhuǎn)錄因子參與了植物生長(zhǎng)發(fā)育及對(duì)生物脅迫的調(diào)控[21]。Os WRKY11被高溫誘導(dǎo)的熱激蛋白(HSP)101啟動(dòng)子調(diào)控時(shí),轉(zhuǎn)基因水稻抗旱性提高、葉片萎蔫度降低,熱脅迫7 d后對(duì)照只有13.4%存活,而轉(zhuǎn)基因株系35S∶DREB2A CA-a的存活率高達(dá)88%[22]。大豆Gm-WRKY54基因在擬南芥中過(guò)量表達(dá)可以誘導(dǎo)DREB2A的表達(dá),增強(qiáng)植株抗旱性[23]。
在擬南芥基因中約有134個(gè)C2 H2型ZFP,它們通過(guò)調(diào)節(jié)DNA-RNA及蛋白間互作而起作用[24]。研究發(fā)現(xiàn),水稻中的ZFP(如 Os ZFP252、DST和ZAT1)為抗旱相關(guān)轉(zhuǎn)錄因子,過(guò)表達(dá)的轉(zhuǎn)Os ZFP252基因水稻抗旱性增強(qiáng)[25~27]。干旱脅迫14 d后,轉(zhuǎn)基因植株與野生型相比存活率高出74%~79%[26]。其抗旱性與誘導(dǎo)Os DREB1 A 的過(guò)表達(dá)相關(guān),OsZFP252可能是Os DREB1 A上游的一個(gè)調(diào)節(jié)子,可以累積較高濃度的游離脯氨酸和可溶性糖。另一方面,鋅指蛋白DST通過(guò)負(fù)調(diào)控保衛(wèi)細(xì)胞H2O2來(lái)調(diào)控氣孔關(guān)閉,DST敲除的水稻突變體(dst)抗旱性提高[27]。此外,EAR(ERF-相關(guān)的抑制)C2 H2 ZFP、ZAT10及胞質(zhì)ZFP(非轉(zhuǎn)錄因子)Osi SAP8均發(fā)現(xiàn)與水稻抗旱性有關(guān)[28]。ZAT10由DREB1 A/CBF3誘導(dǎo),在水稻中過(guò)表達(dá)可增強(qiáng)抗旱性[29]。Osi SAP8由干旱等脅迫誘導(dǎo),轉(zhuǎn)基因植物可以在缺水條件下存活23 d,而野生型則不能存活[28]。因?yàn)镃2 H2型ZFP與DREB1通道和H2O2介導(dǎo)的氣孔開(kāi)度均有關(guān),所以C2 H2有望用于作物的抗旱性改良。
NF-Y是植物中普遍存在的轉(zhuǎn)錄因子,可以與CCAAT盒結(jié)合,由3個(gè)亞基組成,擬南芥中分別對(duì)應(yīng)10、13、13個(gè)基因[30]。Li等[31]利用功能基因組學(xué)方法,在搜索提高植物抗旱性的轉(zhuǎn)錄因子及參與逆境響應(yīng)的小分子RNA時(shí)分離出擬南芥NF-Y的B亞基(At NF-YB1)和 A 亞基(At NF-YA5)。At NF-YB1和At NF-YA5均可提高擬南芥的抗旱性。At NF-YB1調(diào)節(jié)基因是否與 ABA響應(yīng)及DREB/CBF有關(guān)尚屬未知,但ABA和干旱均可誘導(dǎo)At NF-YA5在導(dǎo)管和保衛(wèi)細(xì)胞中的活性,以減小氣孔開(kāi)度并調(diào)控某些脅迫應(yīng)答基因。有趣的是,At NF-YA5是由 micro RNA169(mi R169)轉(zhuǎn)錄后加工進(jìn)行調(diào)控的,At NF-YA5功能的執(zhí)行可能存在復(fù)雜機(jī)制[31]。
在干旱條件下,玉米轉(zhuǎn)Zm NF-YB2(玉米中At NF-YB1的同源基因)基因植株抗旱性增強(qiáng),表現(xiàn)為葉片卷曲度低、光合效率高、葉片溫度低和氣孔導(dǎo)度高。雖然在正常水分條件下,轉(zhuǎn)基因植物開(kāi)花提早、節(jié)間縮短,但是干旱條件下,可增產(chǎn)50%,該基因有望用于作物的抗旱性改良[32]。
1.4.1 ABA誘導(dǎo)的 TF
ABA綁定蛋白響應(yīng)元件/ABA響應(yīng)因子(AREB/ABF)屬于植物bZIP轉(zhuǎn)錄因子家族,在植物脫水及種子成熟的ABA信號(hào)轉(zhuǎn)導(dǎo)中起作用。在擬南芥中已發(fā)現(xiàn)75個(gè) AREB/ABF[33]。在對(duì)ABA的響應(yīng)中,活化的AREB/ABF結(jié)合到保守的調(diào)控順式元件序列(ACGTGT/GC)上誘導(dǎo)基因ABRE表達(dá),ABA響應(yīng)元件(ABRE)存在于ABA誘導(dǎo)的基因啟動(dòng)子內(nèi)。
擬南芥中AREB1/ABF2、ABF3及AREB2/ABF4過(guò)量表達(dá)可增強(qiáng)植物對(duì)ABA的響應(yīng)、降低蒸騰,是抗旱相關(guān)因子[34]。擬南芥ABF3在水稻中過(guò)量表達(dá)可降低葉片卷曲及萎蔫度[35]。
NAC(NA M、ATAF1-2和CUC2)是植物中特有的轉(zhuǎn)錄因子家族,約有100個(gè)成員,具有高度保守且與DNA結(jié)合的NAC結(jié)構(gòu)域。擬南芥的三個(gè)NAC基因(ANAC019、ANAC055 和ANAC072)可由干旱及ABA誘導(dǎo)表達(dá)。序列分析發(fā)現(xiàn)水稻中有140個(gè)候選的NAC/類(lèi)NAC基因,其中有40個(gè)可能與干旱脅迫有關(guān)[36]。水稻中4個(gè)基因(SNAC1、SNAC2、Os NAC6 和ONAC045)、大豆中的GmNACS、油菜中的Bn NAC5基因均為抗旱相關(guān)基因[37~39]。
在干旱條件下,SNAC1基因產(chǎn)生于水稻保衛(wèi)細(xì)胞中,其過(guò)量表達(dá)可改變氣孔開(kāi)度。在干旱條件下,轉(zhuǎn)SNAC1基因水稻的小穗結(jié)實(shí)率和坐果率分別比非轉(zhuǎn)基因水稻高出17%~22%和22%~34%,抗旱性增強(qiáng)可能是由于保衛(wèi)細(xì)胞對(duì)ABA的敏感性增強(qiáng)而導(dǎo)致氣孔開(kāi)度減小產(chǎn)生[32]。
1.4.2 不依賴(lài)于ABA的TF
與AREB/ABF和SNAC對(duì)ABA產(chǎn)生響應(yīng)不同,不依賴(lài)于ABA的脫水響應(yīng)轉(zhuǎn)錄因子(DREB/CBF)可與干旱響應(yīng)元件(DRE)結(jié)合。DREB/CBF是植物特有的AP2/ERF轉(zhuǎn)錄因子家族,該家族有147個(gè)成員[40]。DRE最先在擬南芥RD29 A基因中發(fā)現(xiàn),同時(shí)DRE(DREB)或CRT(CBF)結(jié)合因子在誘導(dǎo)抗旱基因表達(dá)中起重要作用[41]。
DREB1和DREB2均為DRE結(jié)合元件(DREB),其中DREB2基因的表達(dá)與干旱有關(guān)。將水稻的Os DREB1 A基因或者玉米的Zm-DREB1 A基因整合至擬南芥中并過(guò)量表達(dá)時(shí),擬南芥抗旱性增強(qiáng)[42,43]。
在被子植物中DREB1/CBF通道及DREB1蛋白的功能是保守的。利用DREB1調(diào)節(jié)子可提高水稻的抗旱性,用35S、ZmUbi、Os Actin1及干旱誘導(dǎo)的Os HVA22p啟動(dòng)子過(guò)表達(dá)分析轉(zhuǎn)入到水稻的 Os DREB1 A、Os DREB1B、At DREB1 A、At-DREB1和At DREB1C基因,發(fā)現(xiàn)含有過(guò)表達(dá)兩種蛋白的株系在干旱脅迫9 d后仍然存活,而對(duì)照則全部死亡[25,35]。在干旱條件下,At DREB1A/CBF3在Os HVA22p啟動(dòng)子調(diào)控下可以使水稻單產(chǎn)提高11%。與非轉(zhuǎn)基因番茄相比,轉(zhuǎn)35S∶At-DREB1B基因番茄在水分脅迫21 d后,葉片卷曲度及植株萎蔫度均較對(duì)照輕,抗旱性增強(qiáng)[44]。與Os DREB1 A和Os DREB1B 不同,Os DREB1F 過(guò)量表達(dá)的轉(zhuǎn)基因水稻和擬南芥生長(zhǎng)正常,但抗旱性增高。通過(guò)激活依賴(lài)與不依賴(lài)ABA的下游基因表達(dá),生長(zhǎng)在液體培養(yǎng)基中的轉(zhuǎn)Os DREB1F基因水稻幼苗在干旱脅迫5 h后葉片卷曲和萎蔫程度降低。Os DREB1F也可以由ABA誘導(dǎo),但不能直接結(jié)合 ABRE元件,因此,Os DREB1F 可能是ABA依賴(lài)DREB及ABA不依賴(lài)AREB通道間的一個(gè)分子橋梁。
利用DREB1/CBF提高作物抗旱性的不足之處在于其組成性表達(dá)引起的生長(zhǎng)缺陷。為了消除該影響,將At DREB1A 基因與滲透誘導(dǎo)的RD29 A啟動(dòng)子相連后轉(zhuǎn)入到小麥中,結(jié)果發(fā)現(xiàn)轉(zhuǎn)基因植株生長(zhǎng)正常且抗旱性提高,且在脫水情況下,轉(zhuǎn)基因小麥比正常幼苗推遲5 d萎蔫[45]。
擬南芥DREB2A是DREB/CBF家族第四組的成員,可由DREB2 A-CA經(jīng)過(guò)缺失特定殘基獲得組成性活性,通過(guò)泛素化修飾DREB2 A組成性激活或者阻斷DREB2的降解。在擬南芥中,DREB2 A-CA的過(guò)表達(dá)可以使抗旱性顯著提高[46]。另一方面,轉(zhuǎn)脅迫誘導(dǎo)型或組成性異位表達(dá)ZmDREB2 A玉米和轉(zhuǎn)GmDREB2大豆的抗旱性均顯著提高[47,48]。
AREB1等轉(zhuǎn)錄因子需要由蛋白激酶磷酸化才具有活性,擬南芥604受體蛋白激酶等需要通過(guò)轉(zhuǎn)錄來(lái)參與植物的環(huán)境脅迫應(yīng)答[49,50]。因?yàn)?Hogl信號(hào)傳遞途徑的關(guān)鍵元件MAPK激酶在高滲信號(hào)下的級(jí)聯(lián)反應(yīng),促分裂素原活化蛋白激酶(MAPKs)成為研究不同環(huán)境對(duì)植物刺激的熱點(diǎn)話題。與滲透適應(yīng)相關(guān)的蛋白激酶還包括鈣依賴(lài)蛋白激酶(CDPKs)和CBL相互作用蛋白激酶等。
MAPK級(jí)聯(lián)途徑,由三個(gè)相互關(guān)聯(lián)的蛋白激酶組成(MAPKKK、MAPKK和 MAPK),在干旱條件下可被激活,在許多信號(hào)轉(zhuǎn)導(dǎo)途徑中執(zhí)行功能[14]。擬南芥 MAPK級(jí)聯(lián)途徑中約有90個(gè)基因,其在玉米和水稻中有多個(gè)同系物[51]。在玉米中NPK1的激酶結(jié)構(gòu)域持續(xù)活化可使過(guò)表達(dá)株系抗旱性增強(qiáng)[52]。干旱脅迫下的轉(zhuǎn)基因植株的產(chǎn)量與水分充足條件下的產(chǎn)量相同。其耐旱機(jī)制可能是活化的NPK1在干旱脅迫起始時(shí)調(diào)控了氧化的脅迫應(yīng)答信號(hào)級(jí)聯(lián),保護(hù)光合器官免遭氧化。水稻中有4個(gè)NPK1類(lèi)似基因(Os NPKLs)由干旱脅迫誘導(dǎo),與染色體1上的抗旱性QTL處于同一個(gè)位置[51]。在干旱條件下,干旱誘導(dǎo)的Os HVA22 P啟動(dòng)子和Os Actin1啟動(dòng)子操控的轉(zhuǎn)NPK1基因水稻分別增產(chǎn)28%和11%[25]。
CDPK是植物對(duì)環(huán)境誘導(dǎo)Ca2+通道的重要感應(yīng)器,調(diào)控大多數(shù)Ca2+應(yīng)激蛋白的磷酸化。水稻的OsCDPK7基因在正常條件下保持非活性狀態(tài),受到脅迫時(shí)被Ca2+迅速激活,在轉(zhuǎn)基因水稻中持續(xù)過(guò)表達(dá)時(shí),幼苗的抗旱性增強(qiáng),干旱脅迫3 d后,轉(zhuǎn)基因苗的萎蔫率比非轉(zhuǎn)基因苗減少一半[53]。CIPK是脅迫信號(hào)的Ca2+傳感蛋白激酶,在ABA脅迫應(yīng)答中被Ca2+與Ca2+結(jié)合蛋白CBL的互作激活[54]?;罨腃IPK通過(guò)磷酸化下游蛋白組分來(lái)完成對(duì)Ca2+信號(hào)的轉(zhuǎn)導(dǎo)[55]。擬南芥中至少有10個(gè)CBL和25個(gè)CIPK,豐富了CBL-CIPK互作的多樣性。在水稻和玉米中也發(fā)現(xiàn)了CIPK介導(dǎo)的信號(hào)途徑[56,57]。OsCIPK12 在水稻幼苗中過(guò)表達(dá)時(shí),水稻抗旱性增強(qiáng)[58]。干旱脅迫后脯氨酸和可溶性糖含量的增加是由OsCI PK12表達(dá)而使抗旱性增強(qiáng)的生理表現(xiàn)。其結(jié)果是,轉(zhuǎn)基因植株葉卷曲較弱、干旱一周復(fù)水后恢復(fù)率高于對(duì)照33%~57%。CIPK的活性還取決于其與CBL的互作,單獨(dú)操控CIPK并不一定能提高抗旱性。然而,通過(guò)催化激酶結(jié)構(gòu)域的突變或者去除激酶中的自動(dòng)抑制FISL功能使CIPK保持活化可以改良作物的抗旱性。
Sn RK2/SRK2屬于植物特有的激酶家族成員,其活化需要通過(guò)ABA或滲透脅迫誘導(dǎo)。Sn RK2.6/SRK2E/OST最先在擬南芥中被注釋為由ABA活化的參與氣孔開(kāi)閉調(diào)節(jié)的蛋白激酶。ABA通過(guò)激活特定陰離子通道(如緩慢型陰離子通道:SLAC1)誘導(dǎo)氣孔關(guān)閉。Sn RK2.6 與SLAC1間物理層面上的互作及磷酸化可將SLAC1活化;相反,SLAC1的活性可能由蛋白磷酸酶2C家族(PP2C)中的特定成員負(fù)調(diào)控,如ABA不敏感的ABI1的磷酸化作用[59,60]。因此,保衛(wèi)細(xì)胞的運(yùn)動(dòng)可能是由一對(duì)特定的激酶-磷酸酶的活化/非活化來(lái)控制的。
Sn RK2可以磷酸化bZIP轉(zhuǎn)錄因子(AREB1、AREB2及 ABI5)的基序,使它們轉(zhuǎn)錄活躍。SRK2E(Sn RK2.6)調(diào)節(jié)擬南芥氣孔的關(guān)閉[60],而根尖含量豐富的SRK2C(Sn RK2.8)則介導(dǎo)根中的干旱脅迫信號(hào)。擬南芥中SRK2C(Sn RK2.8)的過(guò)表達(dá)通過(guò)上調(diào)DREB1等干旱脅迫應(yīng)答基因以提高抗旱性[61]?;谥参镏袘?yīng)激激活Sn RK信號(hào)轉(zhuǎn)導(dǎo)途徑的高度保守特性,操縱Sn RK在擬南芥中的表達(dá)有望對(duì)糧食作物進(jìn)行抗旱遺傳改良。
ABA感應(yīng)過(guò)程的關(guān)鍵包括兩類(lèi)蛋白:PYR1/PYL 和 蛋 白 磷 酸 酶 (如 ABI1 and ABI2)[62]。ABI1是對(duì)ABA響應(yīng)的負(fù)調(diào)節(jié)物,當(dāng)ABA結(jié)合在ABI1和PYR1上時(shí)被抑制。擬南芥多種ABI1功能同系物失活可以提高對(duì)ABA的敏感度及水分利用率[63]。當(dāng)然,ABA受體蛋白是提高作物耐旱性的最直接方式。然而,由于不同作物中這些受體的高度冗余,以及它們?cè)贏BA信號(hào)通道下游互作的復(fù)雜性,利用這些互作來(lái)達(dá)到穩(wěn)產(chǎn)并提高作物的抗旱性程度還需要用精確的網(wǎng)絡(luò)化工程方法來(lái)解決。
許多非生物脅迫可使細(xì)胞中積累活性氧、激活Pol y(ADP-ribose)聚合酶(PARP)和降低 PARP活性,限制 NAD+的消耗,提高植物抗性。用PARP發(fā)夾(hp PARP)結(jié)構(gòu)改造過(guò)的PARP活性降低,含有該結(jié)構(gòu)的擬南芥和油菜耐旱性提高,這種抗逆性由NAD+消耗減少導(dǎo)致[64]。缺乏PARP的植物ABA水平高且過(guò)表達(dá)ABA應(yīng)答基因,如參與淀粉代謝和類(lèi)黃酮生物合成的基因ABF3和RD29A。在干旱條件下,油菜和玉米的轉(zhuǎn)hp-PARP基因植株具有增產(chǎn)效應(yīng)[65]。由于PARP可能修飾轉(zhuǎn)錄調(diào)控中的某些染色質(zhì)相關(guān)蛋白和功能,因此有必要對(duì)由PARP活性參與的ABA相關(guān)基因表達(dá)的染色體控制進(jìn)行深入剖析。
脂質(zhì)附著到蛋白上可以促進(jìn)信號(hào)分子和膜脂/蛋白間的疏水性互作,最常見(jiàn)的膜脂修飾包括脂肪酸、類(lèi)異戊二烯 (如法尼醇far nesol)和糖基磷脂酰肌醇錨。其中,法尼基化最受關(guān)注,因?yàn)榻湍鸽s交蛋白(如異源三聚體G-蛋白的γ-亞基蛋白R(shí)AS超家族成員)需要法尼基化后才能發(fā)生作用。法尼基化是在ABA介導(dǎo)下對(duì)靶蛋白增加法尼基的蛋白翻譯后修飾,法尼基化的蛋白可調(diào)節(jié)特定的生理和發(fā)育過(guò)程[66]。法尼基轉(zhuǎn)移酶(FTase)由a和β兩個(gè)亞基(FTA和FTB)組成。擬南芥FTB功能缺失突變體(era1)可提高對(duì) ABA的響應(yīng)[67]。ERA1參與調(diào)控氣孔開(kāi)度,是ABA響應(yīng)的負(fù)調(diào)控產(chǎn)物,說(shuō)明干旱響應(yīng)中蛋白法尼基化的潛在作用[68]。利用反義技術(shù)和RNAi技術(shù)分別下調(diào)FTB和沉默F(xiàn)TA可以降低轉(zhuǎn)基因油菜的蒸騰作用并且提高產(chǎn)量(由對(duì)照的2440 kg·h m-2顯著提高到3086 kg·hm-2)[69]。因?yàn)閑ra1 突變體表現(xiàn)出異常的多效性發(fā)育,通過(guò)使用干旱誘導(dǎo)的RD29A啟動(dòng)子來(lái)抑制內(nèi)源FTA和FTB使其依賴(lài)水分脅迫表達(dá)。
抗旱性是復(fù)雜的植物耐受性性狀,本文側(cè)重闡述了抗旱相關(guān)基因的兩種類(lèi)型及其在作物耐旱性改良中的應(yīng)用。水稻、玉米和油菜等作物抗旱性遺傳改良的成功實(shí)施,加之應(yīng)激代謝物譜[70]、功能基因組學(xué)和蛋白質(zhì)組學(xué)等分子遺傳工具的使用,可望發(fā)掘更多的干旱脅迫響應(yīng)調(diào)控因子,并使其在抗旱性遺傳改良中發(fā)揮重要作用。
基于各種應(yīng)激反應(yīng)通道間存在串?dāng)_效應(yīng),干旱最終應(yīng)該與其他逆境(高溫、鹽和寒冷)進(jìn)行關(guān)聯(lián)評(píng)估,才能獲得可靠而有意義的結(jié)論。然而,隨著全球環(huán)境日趨炎熱少雨,篩選和培育耐旱作物是適應(yīng)全球生態(tài)環(huán)境的需求[71]。已經(jīng)發(fā)現(xiàn)耐旱作物的非編碼調(diào)控RNA(包括si RNA和mi RNA)、干旱響應(yīng)的代謝物和滲透保護(hù)劑(磷脂信號(hào)、熱/冷激蛋白的分子伴侶、胚胎發(fā)育晚期富含蛋白、甘氨酸甜菜堿、多胺等)在非生物脅迫響應(yīng)和耐受性中起重要作用,蛋白調(diào)控與RNA調(diào)控互作可在應(yīng)激響應(yīng)中精細(xì)調(diào)控基因的時(shí)空表達(dá)[3,72],抗旱性信號(hào)網(wǎng)絡(luò)有待深入了解,信號(hào)通道中的信號(hào)元件尚需逐個(gè)摸清,通路間的各種串?dāng)_亟待剖析,以上種種均是當(dāng)前乃至今后相當(dāng)長(zhǎng)時(shí)間面臨的巨大挑戰(zhàn)。
[1]IPCC.Forth Assessment Report:Synthesis,published online 17 November,http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.ht ml.2007.
[2]UNEP.Water:in the transition to a green economy:a UNEP brief available online at www.unep.ch/etb/ebulletin/pdf/GE%20and%20 Water%20Brief.pdf.2009.
[3]Yang S J,Vanderbeld B,Wan J X,etal.Narrowing down the targets:towards successf ul genetic engineering of drought-tolerant crops[J].Molecular plant,2010,3(3):469-490.
[4]Bernier J,Atlin G N,Serraj R,etal.Breeding upland rice for drought resistance[J].Journal of the Science of Food and Agriculture,2008,88:927-939.
[5]Boyer J S,Westgate M E.Grain yields with li mited water[J].Journal of Experi mental Botany,2004,55:2385-2394.
[6]Neu mann P M.Coping mechanis ms for cr op plants in drought-pr one environ ments[J].Annals of Botany,2008,101:901-907.
[7]Valliyodan B,Nguyen H T.Understanding regulatory net works and engineering for enhanced drought tolerance in plants[J].Current O-pinion in Plant Biology,2006,9:189-195.
[8]Yamaguchi-Shinozaki K,Shinozaki K.Transcriptional regulatory net works in cell ular responses and tolerance to dehydration and cold stresses[J].Annual Review of Plant Biology,2006,57:781-803.
[9]Tran L S,Nakashi ma K,Shinozaki K,etal.Plant gene net wor ks in os motic stress response:fr o m genes t o regulator y net wor ks[J].Met hods in Enzy mology,2007,428:109-128.
[10]Bressan R,Bohnert H,Zhu J K.Abiotic stress tolerance:from gene discover y in model or ganis ms to cr op i mprovement[J].Molecular Plant,2009,2:1-2.
[11]Wasilewska A,Vlad F,Sirichandra C,etal.An update on abscisic acid signaling in plants and more...[J].Molecular Plant,2008,1:198-217.
[12]Yamaguchi-Shinozaki K,Shinozaki K.Organization of cis-acting regulatory ele ments in os motic-and cold-stress-responsive pr o moters[J].Trends in Plant Science,2005,10:88-94.
[13]Schacht man D P,Goodger J Q.Chemical r oot to shoot signaling under drought[J].Trends in Plant Science,2008,13:281-287.
[14]Jeong W,Ki m J,Bazer FW,etal.Proliferation-sti mulating effect of colony sti mulating factor 2 on porcine trophectoder m cells is mediated by activation of phosphatidylinosit ol 3-kinase and extracell ular signal-regulated kinase 1/2 mitogen-activated protein kinase[J].PLoS One,2014,9(2):e88731.
[15]Leung H.Stressed geno mics-bringing relief to rice fields[J].Current Opinion in Plant Biology,2008,11:201-208.
[16]Manavalan L P,Guttikonda S K,Tran L S,etal.Physiological and molecular approaches to i mpr ove dr ought resistance in soybean[J].Plant and Cell Physiology,2009,50:1260-1276.
[17]Wan J,Griffit hs R,Ying J,etal.Develop ment of dr ought-tolerant canola(Brassica napus L.)t hrough genetic modulation of ABA-mediated st o matal responses[J].Cr op Science,2009,49:1539-1554.
[18]Xiong Y,Liu T,Tian C,etal.Transcription factors in rice:a geno me-wide comparative analysis bet ween monocots and eudicots[J].Plant Molecular Biology,2005,59:191-203.
[19]Kang X,Li W,Zhou Y,etal.A WRKY Transcription fact or recr uits the SYG1-Like pr otein SHB1 to activate gene expression and seed cavity enlargement[J].Pl OS Genetics,2013,9(3):1-16.
[20]Rushton P J,Somssich I E,Ringler P,etal.WRKY transcription factors[J].Trends Plant Sci.,2010,15(5):247-258.
[21]Ulker B,So mssich I E.WRKY transcription fact ors:fr o m DNA binding to war ds biological f unction[J].Current Opinion in Plant Biology,2004,7:491-498.
[22]Wu X,Shiroto Y,Kishitani S,etal.Enhanced heat and drought tolerance in transgenic rice seedlings over-expressing Os WRKY11 under the control of HSP101 pr o moter[J].Plant Cell Reports,2009,28:21-30.
[23]Saku ma Y,Maruyama K,Qin F,etal.Dual f unction of an Arabidopsis transcription factor DREB2 Ain water-stress-responsive and heatstress-responsive gene expression[J].PNAS,2006,103:18822-18827.
[24]Ciftci-Yil maz S,Mittler R.The zinc finger net wor k of plants[J].Cell ular and Molecular Life Sciences,2008,65:1150-1160.
[25]Xiao B Z,Chen X,Xiang C B,etal.Evaluation of seven f unction-known candidate genes for their effects on i mpr oving dr ought resistance of transgenic rice under field conditions[J].Molecular Plant,2009,2:73-83.
[26]Xu D Q,Huang J,Guo S Q,etal.Over-expression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice(Oryza sativa L.)[J].FEBS Letters,2008,582:1037-1043.
[27]Huang X Y,Chao D Y,Gao J P,etal.A previously unknown zinc finger protein,DST,regulates drought and salt tolerance in rice via sto matal aperture contr ol[J].Genes & Develop ment,2009,23:1805-1817.
[28]Kanneganti V,Gupta AK.Overexpression of OsiSAP8,a member of stress associated protein(SAP)gene family of rice confers tolerance to salt,dr ought and cold stress in transgenic tobacco and rice[J].Plant Molecular Biology,2008,66:445-462.
[29]Mar uya ma K,Saku ma Y,Kasuga M,etal.Identification of cold-inducible do wn-strea m genes of the Arabidopsis DREB1 A/CBF3 transcriptional factor using t wo microarray systems[J].The Plant Journal,2004,38:982-993.
[30]Gus mar oli G,Tonelli C,Mantovani R.Regulation of novel me mbers of the Arabidopsis t haliana CCAAT-binding nuclear factor Y subunits[J].Gene,2002,283:41-48.
[31]Li W X,Oono Y,Zhu J,etal.The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to pr omote drought resistance[J].Plant Cell,2008,20:2238-2251.
[32]Nelson D E,Repetti P P,Adams T R,etal.Plant nuclear factor Y(NF-Y)B subunits confer drought tolerance and lead to i mproved cor n yields on water-li mited acres[J].PNAS,2007,104(42):16450-16455.
[33]Jakoby M,Weisshaar B,Dr?ge-Laser W,etal.b ZIP transcription factors in Arabidopsis[J].Trends in Plant Science,2002,7:106-111.
[34]Fujita Y,F(xiàn)ujita M,Satoh R,etal.AREB1 is a transcription activator of novel ABRE-dependent ABA signaling t hat enhances drought stress tolerance in Arabidopsis[J].Plant Cell,2005,17:3470-3488.
[35]Oh S J,Song S I,Ki m Y S,etal.Arabidopsis CBF3/DREB1 A and ABF3 in transgenic rice increased t olerance to abiotic stress wit h-out stunting gro wt h[J].Plant Physiology,2005,138:341-351.
[36]Kikuchi K,Ueguchi-Tanaka M,Yoshida K T,etal.Molecular analysis of the NAC gene family in rice[J].Molecular Genetics and Genomics,2000,262:1047-1051.
[37]Nakashi ma K,Tran L S,Van Nguyen D,etal.Functional analysis of a NAC-type transcription factor Os NAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J].The Plant Jour nal,2007,51:617-630.
[38]Zheng X,Chen B,Lu G,etal.Over-expression of a NAC transcription factor enhances rice drought and salt tolerance[J].Biochemical and Biophysical Research communications,2009,379:985-989.
[39]Tran L S,Quach T N,Guttikonda S K,etal.Molecular characterization of stress-inducible GmNAC genes in soybean[J].Molecular Genetics and Geno mics,2009,281:647-664.
[40]Nakano T,Suzuki K,F(xiàn)uji mura T,etal.Geno me-wide analysis of the ERF gene family in Arabidopsis and rice[J].Plant Physiology,2006,140:411-432.
[41]Gong W,He K,Covington M,etal.The develop ment of pr otein microarrays and their applications in DNA-protein and pr otein-pr otein interaction analyses of Arabidopsis transcription factors[J].Molecular Plant,2008,1:27-41.
[42]Dubouzet J G,Saku ma Y,Ito Y,etal.Os DREB genes in rice,Or yza sativa L.,encode transcription activators t hat f unction in dr ought-,high-salt-and cold-responsive gene expression[J].The Plant Journal,2003,33:751-763.
[43]Qin F,Saku ma Y,Li J,etal.Cloning and f unctional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.[J].Plant and Cell Physiology,2004,45:1042-1052.
[44]Hsieh T H,Lee J T,Yang P T,etal.Heterology expression of the Arabidopsis C-repeat/dehydration response ele ment binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic to mato[J].Plant Physiology,2002,129:1086-1094.
[45]Pellegrineschi A,Reynolds M,Pachecom,etal.Stress-induced expression in wheat of the Arabidopsis thaliana DREB1 A gene delays water stress sy mpto ms under greenhouse[J].Geno me,2004 47(3):493-500.
[46]Saku ma Y,Mar uya ma K,Osakabe Y,etal.Functional analysis of an Arabidopsis transcription fact or,DREB2 A,involved in drought-responsive gene expression[J].Plant Cell,2006,18:1292-1309.
[47]Qin F,Kaki moto M,Saku ma Y,etal.Regulation and f unctional analysis of ZmDREB2 A in response t o dr ought and heat stresses in Zea mays L.[J].The Plant Jour nal,2007,50:54-69.
[48]Chen M,Wang Q Y,Cheng X G,etal.GmDREB2,a soybean DRE-binding transcription factor,conferred dr ought and high-salt tolerance in transgenic plants[J].Biochemical and Biophysical Research communications,2007,353:299-305.
[49]Boudsocq M,Laurière C.Osmotic signaling in plants:multiple pat h ways mediated by emer ging kinase families[J].Plant Physiology,2005,138:1185-1194.
[50]Chae L,Sudat S,Dudoit S,etal.Diverse transcriptional progra ms associated wit h envir on mental stress and hor mones in the Arabidopsis receptor-like kinase gene fa mily[J].Molecular Plant,2009,2(1):84-107.
[51]Ning J,Liu S,Hu H,etal.Systematic analysis of NPK1-like genes in rice reveals a stress-inducible gene cl uster co-localized wit h a quantitative trait locus of drought resistance[J].Molecular Genetics and Geno mics,2008,280:535-546.
[52]Shou H,Bor dallo P,Wang K.Expression of the Nicotiana protein kinase(NPK1)enhanced dr ought t olerance in transgenic maize[J].Jour nal of Experi mental Botany,2004,55:1013-1019.
[53]Saijo Y,Hata S,Kyozuka J,etal.Over-expression of a single Ca2+-dependent protein kinase confers bot h cold and salt/drought tolerance on rice plants[J].The Plant Jour nal,2000,23:319-327.
[54]Hiraya ma T,Shinozaki K.Perception and transduction of abscisic acid signals:keys t o the f unction of the versatile plant hor mone ABA[J].Trends in Plant Science,2007,12:343-351.
[55]Quintero F J,Ohta M,Shi H,etal.Reconstitution in yeast of the Arabidopsis SOS signalling pat h way for Na+ ho meostasis[J].PNAS,2002,99:9061-9066.
[56]Ki m K N,Lee J S,Han H,etal.Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold,light,cytokinins,sugars and salts[J].Plant Molecular Biology,2003,52:1191-1202.
[57]Zhao J,Sun Z,Zheng J,etal.Cloning and characterization of a novel CBL-interacting protein kinase fr o m maize[J].Plant Molecular Biology,2009,69:661-674.
[58]Xiang Y,Huang Y,Xiong L.Characterization of stress-responsive CIPK genes in rice for stress tolerance i mprovement[J].Plant Physiology,2007,144(3):1416-1428.
[59]Li J,Ass mann S M.An abscisic acid-activated and calciu m-independent pr otein kinase from guar d cells of fava bean[J].Plant Cell,1996,8(12):2359-2368.
[60]Mustilli A C,Merlot S,Vavasseur A,etal.Arabidopsis OST1 protein kinase mediates the regulation of sto matal apert ure by abscisic acid and acts upstream of reactive oxygen species pr oduction[J].Plant Cell.2002,14:3089-3099.
[61]Umezawa T,Yoshida R,Mar uyama K,etal.SRK2C,a SNF1-related pr otein kinase 2,i mpr oves dr ought tolerance by contr olling stressresponsive gene expression in Arabidopsis t haliana[J].PNAS,2004,101:17306-17311.
[62]Par k S Y,F(xiàn)ung P,Nishi mura N,etal.Abscisic acid inhibits type 2C pr otein phosphatases via the PYR/PYL family of START pr oteins[J].Science,2009,324(5930):1068-1071.
[63]Saez A,Robert N,Maktabi M H,etal.Enhance ment of abscisic acid sensitivity and reduction of water consu mption in Arabidopsis by combined inactivation of the pr otein phosphatases type 2C ABI1 and HAB1[J].Plant Physiology,2006,141:1389-1399.
[64]de Block M,Ver duyn C,De Brou wer D,etal.Poly(ADP-ribose)poly merase in plants affects ener gy ho meostasis,cell deat h and stress tolerance[J].The Plant Jour nal,2005,41:95-106.
[65]Vanderau wera S,De Block M,Van de Steene N,etal.Silencing of poly (ADP-ribose)poly merase in plants alters abiotic stress signal transduction[J].PNAS,2007,104:15150-15155.
[66]Galichet A,Gruissem W.Protein farnesylation in plants-conserved mechanisms but different targets[J].Current Opinion in Plant Biology,2003,6:530-535.
[67]Cutler S,Ghassemian M,Bonetta D,etal.A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis[J].Science,1996,273:1239-1241.
[68]Pei Z M,Ghassemian M,Kwak C M,etal.Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss[J].Science,1998,282:287-290.
[69]Xiao B,Huang Y,Tang N,etal.Over-expression of a LEA gene in rice i mproves drought resistance under the field conditions[J].Theoretical and Applied Genetics,2007,115:35-46.
[70]Urano K,Maruyama K,Ogata Y,etal.Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics[J].The Plant Journal,2009,57(6):1065-1078.
[71]Battisti D S,Naylor R L.Historical warnings of f uture f ood insecurity with unprecedented seasonal heat[J].Science,2009,323:240-244.
[72]Borsani O,Zhu J H,Verslues P E,etal.Endogenous si RNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J].Cell,2005,123:1279-1291.
山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)2014年4期