高 燕,章明放
(1天津市靜??h醫(yī)院,天津301600;2天津第一中心醫(yī)院)
肺癌是目前發(fā)病率和病死率最高的惡性腫瘤之一,化療是其主要治療手段,但以鉑類為基礎(chǔ)的化療方案在晚期肺癌中緩解率為30%~40%,中位生存期為8~10個月[1]。近年來,隨著分子生物學(xué)技術(shù)的發(fā)展,針對細(xì)胞特定分子的靶向治療藥物陸續(xù)上市,這些藥物具有針對性強、能特異性地殺傷腫瘤細(xì)胞的特點。如表皮生長因子受體(EGFR)阻滯劑吉非替尼,用于治療化療失敗或不適于化療的局部晚期或遠(yuǎn)處轉(zhuǎn)移的非小細(xì)胞肺癌(NSCLC)患者[2]。但幾乎所有對吉非替尼治療有效的患者會產(chǎn)生耐藥性,其機制可能與EGFR的二次突變有關(guān)。故EGFR基因突變對肺癌吉非替尼耐藥性的作用機制成為目前肺癌治療的熱點之一。本文就近年來有關(guān)肺癌吉非替尼耐藥機制的研究進(jìn)展綜述如下。
1.1 EGFR及其基因突變 EGFR屬Ⅰ型生長因子家族,該家族包括4個跨膜受體:EGFR(HER21)、HER22、HER23、HER24。其中 EGFR 是一個含有1 186個氨基酸殘基、分子量為170 kD的跨膜蛋白,由3個區(qū)域組成:胞外配體結(jié)合區(qū)、跨膜區(qū)和胞內(nèi)區(qū)(羧基端含有酪氨酸激酶活化區(qū))[3]。EGFR的酪氨酸激酶活化區(qū)含有3個重要結(jié)構(gòu),氨基端小葉(N-lobe)、αC螺旋和羧基端小葉(C-lobe)。其中羧基端小葉中的活化環(huán)(A-loop)是酪氨酸激酶的活性中心,由20~30個氨基酸組成,其中DFG序列在所有酪氨酸激酶中高度保守,此序列的組成或構(gòu)象的改變可顯著影響酪氨酸激酶活性[4]。
EGFR基因位于7號染色體短臂7p12~14區(qū),由28個外顯子組成,其酪氨酸激酶活化區(qū)由外顯子18~24編碼,其中外顯子18~20編碼N-lobe,外顯子21~24編碼C-lobe。迄今為止發(fā)現(xiàn)的EGFR基因突變>90%位于外顯子19~21。這些突變可分為3種類型:外顯子19堿基缺失,主要是第746~752位密碼子的堿基缺失突變,可導(dǎo)致EGFR蛋白中氨基酸序列丟失,引發(fā)ATP結(jié)合囊的角度改變,顯著增強腫瘤細(xì)胞對吉非替尼的敏感性;外顯子20的突變主要是第790位密碼子出現(xiàn)C→T的轉(zhuǎn)換,引起EGFR蛋白中該位點的氨基酸由蘇氨酸轉(zhuǎn)變?yōu)榧琢虬彼幔鼓[瘤細(xì)胞對吉非替尼產(chǎn)生耐藥性,僅見于藥物治療后復(fù)發(fā)者,;外顯子21的突變主要是第858位密碼子出現(xiàn)T→G轉(zhuǎn)換,引起EGFR蛋白中該位點的氨基酸由亮氨酸轉(zhuǎn)變?yōu)榫彼幔笰-loop的穩(wěn)定性提高,腫瘤細(xì)胞對吉非替尼的敏感性明顯增強[5,6]。
1.2 EGFR與肺癌 EGFR存在于所有正常上皮和部分間葉來源的細(xì)胞,對細(xì)胞的生長、分化具有重要作用,在多種肺癌中存在過度表達(dá)[7,8]。EGFR 的表達(dá)水平高低與腫瘤組織類型、分化程度無關(guān),而與疾病進(jìn)展、預(yù)后有一定相關(guān)性。EGFR表達(dá)水平越高,TNM 分期越高,預(yù)后越差[9]。
1.3 EGFR參與的信號轉(zhuǎn)導(dǎo)通路 EGFR的配體包括各類生長因子(如EGF、TGF-α)及一些細(xì)胞因子。當(dāng)配體與EGFR結(jié)合形成二聚體復(fù)合物時,表皮生長因子受體—酪氨酸激酶(EGFR-TK)自身磷酸化而活化?;罨腅GFR-TK主要與以下3條信號傳導(dǎo)途徑偶聯(lián):ras-raf-MEK-ERK/MAPK途徑,幾乎所有的ErbB受體成員可以通過Shc蛋白和(或)Grb2蛋白來激活MAPK激酶通路,信號通過c-jun和cfos等轉(zhuǎn)錄因子傳遞到核內(nèi),激活A(yù)P-1,該信號通路在生命的進(jìn)化過程中是高度保守的,在細(xì)胞增殖、分化、遷移中起到非常重要的作用,依賴Ras-GTP激活MAPK系統(tǒng),MAPK進(jìn)入胞核誘導(dǎo)特異性轉(zhuǎn)錄因子(如C-myc、ELK)磷酸化,活化的轉(zhuǎn)錄因子與DNA序列結(jié)合,啟動DNA復(fù)制,導(dǎo)致細(xì)胞增殖和分化,MAPK還可以介導(dǎo)CLE調(diào)節(jié)細(xì)胞周期;磷酯酰肌醇-3-磷酸激酶(PI3K)-抗凋亡激酶(AKT)途徑,該路徑可產(chǎn)生磷脂酰肌醇-3-磷酸(PI3P)第二信使,通過PI3K激活下游的AKT和多個轉(zhuǎn)錄調(diào)節(jié)因子,抑制細(xì)胞凋亡;活化下游的VEGF,促進(jìn)微血管網(wǎng)的生成[10~13]。
吉非替尼商品名為易瑞沙,為口服的可逆性小分子酪氨酸激酶抑制劑,是晚期NSCLC治療中的第1個靶向藥物,競爭性結(jié)合于EGFR-TK催化區(qū)域上Mg-ATP結(jié)合位點,抑制EGFR自身磷酸化,阻斷其信號傳導(dǎo),起到抗腫瘤作用。體內(nèi)外實驗均證實,吉非替尼對肺癌、乳腺癌和頭頸部腫瘤等多種實體瘤有效。與傳統(tǒng)化療藥物比較,吉非替尼具有特異性強、毒副反應(yīng)少的優(yōu)點,目前已被20多個國家和地區(qū)批準(zhǔn)上市,作為化療失敗的晚期NSCLC的二三線治療藥物[14]。
3.1 EGFR基因突變與吉非替尼臨床療效的關(guān)系臨床研究顯示,吉非替尼對不同類型肺癌的療效不同,但其共同的臨床特點是對女性、非吸煙者、腺癌(尤其是細(xì)支氣管肺泡癌)更為有效,與EGFR及其下游因子的表達(dá)水平均無關(guān),并且EGFR基因突變可以預(yù)測吉非替尼的療效[15,16]。臨床研究顯示,EGFR基因的突變在東方人群、女性、腺癌和非吸煙人群中高表達(dá),而且在臨床研究中已經(jīng)證實吉非替尼在上述人群中有效率最高,但是部分初始有效的患者經(jīng)一段緩解期后出現(xiàn)對吉非替尼的獲得性耐藥[17,18]。
3.2 EGFR基因突變誘導(dǎo)肺癌吉非替尼耐藥的機制
3.2.1 原發(fā)性發(fā)耐藥 很多患者給予吉非替尼治療時從未有過任何的治療效果,這種耐藥稱之為原發(fā)性耐藥,可能與KRAS基因的突變有關(guān)。EGFR外顯子20的插入性突變可使其對EGFR-TKI的敏感性降低100倍,臨床上也發(fā)現(xiàn)具有此突變的患者對EGFR-TKI治療反應(yīng)不明顯。甲硫氨酸突變較少見,但可導(dǎo)致獲得性耐藥,并與原發(fā)耐藥相關(guān)[19]。
3.2.2 獲得性耐藥 盡管在EGFR突變的肺癌中,吉非替尼可以達(dá)到是較好的效果,但耐藥性的產(chǎn)生限制了患者生存時間。大多數(shù)應(yīng)用吉非替尼的肺癌患者病情得到緩解,但經(jīng)過6~12個月后產(chǎn)生了耐藥現(xiàn)象,肺癌病情繼續(xù)惡化,繼續(xù)應(yīng)用吉非替尼治療沒有明顯效果。為區(qū)別于開始用藥時即對吉非替尼不敏感的原發(fā)性耐藥,這種耐藥被稱為吉非替尼的獲得性耐藥。由于吉非替尼獲得性耐藥的發(fā)生率較高,產(chǎn)生耐藥后無有效方法阻止肺癌進(jìn)展,因此闡明獲得性耐藥的發(fā)生機制,有效克服獲得性耐藥的產(chǎn)生,成為EGFR阻斷劑的研究方向和熱點問題。目前,對吉非替尼獲得性耐藥機制的研究有以下幾個方面:①EGFR靶基因的突變:特異性EGFR外顯子20的二次突變,導(dǎo)致790位上密碼子發(fā)生錯義改變,催化區(qū)域中蘇氨酸被體積較大的甲硫氨酸取代,阻止吉非替尼與ATP位點的結(jié)合;另外,還新發(fā)現(xiàn)791位上密碼子錯義改變D761[20];②EGFR旁路效應(yīng):如胰島素樣生長因子-1受體、血小板源性生長因子受體(PDGFR)等受體直接活化其下游的信號通路[21];③EGFR信號轉(zhuǎn)導(dǎo)路徑的變化,如Ras活化引起Raf-MEK/MAPK的上調(diào),與EGFR失去偶聯(lián),ERk、met高表達(dá)以及PTEN失活引起AKT通路的過度活化等[22~26]。
有研究表明,吉非替尼耐藥細(xì)胞存在酪氨酸激酶受體異常表達(dá)的現(xiàn)象,包括生長受體家族ERBB4,血小板衍生的生長因子受體家族PDGFRL,纖維細(xì)胞生長因子受體家族FGFR1、FGFR2,肝細(xì)胞生長因子受體MET等。酪氨酸激酶受體家族配體相關(guān)生長因子也存在異?;罨默F(xiàn)象,如FGF18、FGF2、FGF7、INSL3、NRG1、PDGFC、PDGFD 等,均有不同程度異?;罨?7,28]。因此,酪氨酸激酶受體家族及相關(guān)配體的異常表達(dá)可能與肺癌吉非替尼的獲得性耐藥有關(guān)。
綜上所述,EGFR是細(xì)胞生長、分化的重要組成部分,但其基因突變也可引發(fā)肺癌等腫瘤對吉非替尼的耐藥,使腫瘤治療無效。隨著對EGFR突變誘導(dǎo)肺癌吉非替尼耐藥機制的深入研究,以及人們對腫瘤發(fā)展過程更加清晰的認(rèn)識,EGFR可作為一個潛在的藥物靶點以及檢測指標(biāo)廣泛應(yīng)用于藥物研發(fā)和疾病防治。
[1]Schiller JH,Harrington D,Belani CP,et al.Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer[J].N Engl J Med,2002,346(2):92-98.
[2]Sibilia M,Kroismayr R,Lichtenberger BM,et al.The epidermal growth factor receptor:from development to tumorigenesis[J].Differentiation,2007,75(9):770-787.
[3]Berge EM,Doebele RC.Targeted therapies in non-small cell lung cancer:emerging oncogene targets following the success of epidermal growth factor receptor[J].Semin Oncol,2014,41(1):110-125.
[4]Mok TS,Lee K,Leung L.Targeting epidermal growth factor receptor in the management of lung cancer[J].Semin Oncol,2014,41(1):101-109.
[5]Liang W,Wu X,F(xiàn)ang W,et al.Network meta-analysis of erlotinib,gefitinib,afatinib and icotinib in patients with advanced nonsmall-cell lung cancer harboring EGFR mutations[J].PLoS One,2014,9(2):e85245.
[6]Song T,Yu W,Wu SX.Subsequent treatment choices for patients with acquired resistance to EGFR-TKIs in non-small cell lung cancer:restore after a drug holiday or switch to another EGFR-TKI[J].Asian Pac J Cancer Prev,2014,15(1):205-213.
[7]Kuykendall A,Chiappori A.Advanced EGFR mutation-positive non-small-cell lung cancer:case report,literature review,and treatment recommendations[J].Cancer Control,2014,21(1):67-73.
[8]Lai Y,Zhang Z,Li J,et al.EGFR mutations in surgically resected fresh specimens from 697 consecutive Chinese patients with non-small cell lung cancer and their relationships with clinical features[J].Int J Mol Sci,2013,14(12):24549-24559.
[9]Ying Geng Z,Chang Jiao S,Cui Liu S,et al.Third-line therapy in advanced non-small cell lung cancer[J].J BUON,2013,18(4):899-907.
[10]Maus MK,Grimminger PP,Mack PC,et al.KRAS mutations in non-small-cell lung cancer and colorectal cancer:implications for EGFR-targeted therapies[J].Lung Cancer,2014,83(2):163-167.
[11]Bae GY,Choi SJ,Lee JS,et al.Loss of E-cadherin activates EGFR-MEK/ERK signaling,which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer[J].Oncotarget,2013,4(12):2512-2522.
[12]Corrales-Rodriguez L,Soulières D,Weng X,et al.Mutations in NSCLC and their link with lung cancer-associated thrombosis:a case-control study[J].Thromb Res,2014,33(1):48-51.
[13]Zhang H,Su Y,Xu F,et al.Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female nonsmokers[J].PLoS One,2013,8(11):e81408.
[14]Niu M,Hu J,Wu S,et al.Structural bioinformatics-based identification of EGFR inhibitor gefitinib as a putative lead compound for BACE[J].Chem Biol Drug Des,2014,83(1):81-88.
[15]Azuma K,Komatsu N,Hattori S,et al.Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib[J].PLoS One,2014,9(1):e86667.
[16]Ji W,Choi CM,Rho JK,et al.Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer[J].BMC Cancer,2013,13:606.
[17]Kim HR,Lee JC,Kim YC,et al.Clinical characteristics of nonsmall cell lung cancer patients who experienced acquired resistance during gefitinib treatment[J].Lung Cancer,2014,83(2):252-258.
[18]Liang YC,Wu HG,Xue HJ,et al.Effects of PI3K inhibitor NVPBKM120 on acquired resistance to gefitinib of human lung adenocarcinoma H1975 cells[J].J Huazhong Univ Sci Technolog Med Sci,2013,33(6):845-851.
[19]Nishimura Y,Takiguchi S,Ito S,et al.Evidence that depletion of the sorting nexin 1 by siRNA promotes HGF-induced MET endocytosis and MET phosphorylation in a gefitinib-resistant human lung cancer cell line[J].Int J Oncol,2014,44(2):412-426.
[20]Wu K,Chang Q,Lu Y,et al.Gefitinib resistance resulted from STAT3-mediated Akt activation in lung cancer cells[J].Oncotarget,2013,4(12):2430-2438.
[21]Kitamura K,Seike M,Okano T,et al.MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells[J].Mol Cancer Ther,2014,13(2):444-453.
[22]Koyama N,Uchida Y.Clinical significance of erlotinib monotherapy for gefitinib-resistant non-small cell lung cancer with EGFR mutations[J].Anticancer Res,2013,33(11):5083-5089.
[23]Yamada T,Azuma K,Muta E,et al.EGFR T790M mutation as a possible target for immunotherapy;identification of HLA-A*0201-restricted T cell epitopes derived from the EGFR T790M mutation[J].PLoS One,2013,8(11):e78389.
[24]Mariano C,Bosdet I,Karsan A,et al.A population-based review of the feasibility of platinum-based combination chemotherapy after tyrosine kinase inhibition in EGFR mutation positive non-small cell lung cancer patients with advanced disease[J].Lung Cancer,2014,83(1):73-77.
[25]Rho JK,Choi YJ,Kim SY,et al.MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation[J].Cancer Res,2014,74(1):253-262.
[26]Bhosle J,Kiakos K,Porter AC,et al.Treatment with gefitinib or lapatinib induces drug resistance through downregulation of topoisomerase Ⅱα expression[J].Mol Cancer Ther,2013,12(12):2897-2908.
[27]Engelman JA,Zejnullahu K,Mitsudomi T,et al.MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J].Science,2007,316(5827):1039-1043.
[28]Yang X,Yang K,Kuang K.The efficacy and safety of EGFR inhibitor monotherapy in non-small cell lung cancer:a systematic review[J].Curr Oncol Rep,2014,16(6):390.