梁倩倩,李 敏, 劉潤進,郭紹霞,*
(1. 青島農業(yè)大學菌根生物技術研究所, 青島 266109; 2. 青島農業(yè)大學園林與林學院, 青島 266109)
全球變化下菌根真菌的作用及其作用機制
梁倩倩1,2,李 敏1, 劉潤進1,郭紹霞1,2,*
(1. 青島農業(yè)大學菌根生物技術研究所, 青島 266109; 2. 青島農業(yè)大學園林與林學院, 青島 266109)
全球氣候、環(huán)境、經濟與社會的發(fā)展變化,對環(huán)境與資源造成嚴重挑戰(zhàn)和新的發(fā)展機遇。菌根真菌是陸地生態(tài)系統(tǒng)中的重要生物組份,占據(jù)不可替代的重要地位,充當調控生態(tài)系統(tǒng)穩(wěn)定和保持可持續(xù)發(fā)展的多重角色。分析了全球變化對菌根真菌的影響,探討了全球變化下菌根真菌的地位、角色和作用,以及菌根真菌應對全球變化的可能作用機制,旨在為加強全面應對全球變化提供新的思路和途徑。
菌根; 菌根真菌; 叢枝菌根; 外生菌根; 全球變化
隨著經濟全球化,人類活動加劇,導致全球性環(huán)境惡化:溫室效應與臭氧層破壞、旱澇與極端天氣頻發(fā)、持續(xù)高溫與低溫、土地酸化與退化、土壤重金屬污染、森林面積與物種多樣性銳減等等。研究表明,生物地理環(huán)境和氣候對物種的自然分布起著主導作用。全球變化深刻影響物種資源的分布與利用。作為與植物最密切最廣泛的共生成員,菌根真菌也必然受到嚴重影響。所謂菌根真菌是侵染植物根系形成互惠共生體即菌根(mycorrhiza)的真菌,于陸地生態(tài)系統(tǒng)中占據(jù)不可替代的生態(tài)位,其龐大的菌根網(wǎng)絡可通過叢枝菌根(AM)、外生菌根(ECM)、內外菌根(EEM)、歐石南菌根(ERM)和蘭科菌根(orchid mycorrhizas, OM)等將全部植被連結起來,于地下和地上直接或間接與其他生物相互作用,參與全球生態(tài)系統(tǒng)內養(yǎng)分轉化吸收、循環(huán)利用過程[1];在維持大氣成分平衡、調節(jié)生態(tài)系統(tǒng)、增加生物多樣性[2]、穩(wěn)定和保持生態(tài)系統(tǒng)可持續(xù)生產力方面發(fā)揮作用[3]。因此,探究全球變化下菌根真菌的作用及其作用機制,是一個全新的研究領域,開展應對全球變化的生物學機制研究,具有重要的現(xiàn)實價值和深遠的科學意義。本文通過總結全球變化下菌根真菌的地位、角色、作用及其作用機制的研究成果,探討當前研究存在的問題,以期為進一步開展應對全球變化、探索全球變化中菌根真菌的生態(tài)學意義提供依據(jù)。
全球變化主要由臭氧增加、溫室效應增強、N和S沉降增大、降水量分布失衡、生物入侵和人類活動加劇等引致。人們愈來愈關注這些變化對菌根真菌的影響。
1.1 臭氧對菌根真菌的影響
臭氧增加導致近地層O3濃度日益增高,可直接或間接影響菌根真菌的發(fā)育和功能。O3誘導樹葉早衰和脫落,氣孔數(shù)量減少,降低植物光合固碳,減少回流根內的碳素同化物[4]。將接種和不接種AM真菌的高羊茅(Festucaarundinacea)植株經0.1 μL/L O3處理3個月后,根重和菌根量減少,且不接種對照的長勢更差,這可能是O3降低植物光合作用造成的[5]。接種AM真菌的番茄(Lycopesicumesculentum)幼苗,O3處理后侵染率與植株干重比未接種植株顯著降低[6]。O3濃度升高顯著影響AM真菌產孢和菌絲生長。研究表明,高濃度O3處理使孢子數(shù)量比自然濃度增加1倍;低、高濃度O3使菌絲生長量比自然濃度時分別下降48.7%和85.6%[7]。隨著O3濃度增加,囊泡、菌絲圈和根內菌絲著生率增加,叢枝則降低,而總侵染率保持不變。這表明AM真菌通過促進對能量需求較少和養(yǎng)分交換效率較差的器官(菌絲圈)的發(fā)育,以及通過增加儲存養(yǎng)分器官(泡囊)以確保后期生長來應對逆境。而內部菌絲體增加(其中大部分可能不是AM真菌)可能是其他真菌使侵染數(shù)量有所增加[8]。關于這一點以及O3增加對菌根真菌功能的影響值得深入探索。
1.2 溫室效應對菌根真菌的影響
據(jù)聯(lián)合國政府間氣候變化專門委員會(Intergovernmental panel on climate change, IPCC)報導,CO2濃度已由1700年的280 μL/L上升到2005年的379 μL/L,預計本世紀末CO2濃度將加倍[9]。全球氣候變化特別是溫室效應對AM真菌多樣性的影響倍受關注。一定范圍內CO2濃度升高能促進植物光合作用,增加碳水化合物向地下部的供應,提高土壤中AM真菌對碳的周轉率,改變AM真菌群落物種組成[10]。CO2濃度倍增可增加共有類群AM真菌菌種數(shù)量、降低特異類群的菌種數(shù)量[11]。Philip采用時間進程的方法,研究了大氣CO2濃度升高、土壤加溫和干旱及其它們之間的相互作用對AM真菌侵染三葉草(Triofliumrepens)根系長度和根外菌絲密度的影響。結果表明,大氣CO2升高不影響菌根侵染率,但促進根外菌絲生長,即增加地下碳量向根外菌絲的分配;土壤加溫直接增加球囊霉屬種類的根系長度和根外菌絲密度,而不影響細內生菌的根系長度;干旱降低根內生菌的根系長度,對球囊霉屬種類的則沒有影響。升高的大氣CO2濃度、土壤加溫和干旱三者對根系長度無交互作用,對根外菌絲卻存在顯著交互作用[12]。可見,目前對于土壤碳循環(huán)的了解十分有限。未來可關注環(huán)境變化對菌根真菌的變化和呼吸作用,這對于闡明陸地碳循環(huán)具有重要意義。
大氣CO2濃度升高,必然導致溫室效應,即全球持續(xù)升溫。研究表明,溫度升高能夠提高土壤N和P的有效性,進而減少寄主根圍AM真菌物種多樣性[10],降低侵染率和泡囊數(shù)量[13]。Heinemeyer觀察到溫度對絨毛草(Holcuslanatus)的影響甚微,而車前草(Plantagolanceolata)生長隨溫度升高增加,而且葉面積與根長都有所增加,車前草的菌根侵染率與菌絲長度都與溫度呈正相關關系。升溫能增加植物根長,這可能是由于AM真菌在共生系統(tǒng)中發(fā)揮了重要的調節(jié)作用[14]。因此,這些溫度響應對模擬全球氣候變化下C動態(tài)具有重要啟示。
1.3 酸雨N、S沉降對菌根真菌的影響
研究表明,酸雨導致植物形成菌根能力下降,并能改變菌根形態(tài)結構特征[15]。含S氧化物溶解于土壤,土壤pH值降低,有毒金屬(如Al, Mn和Mg)等被釋放,更容易被植物吸收利用,導致植物根系生長量減少,進而降低菌根真菌生長和侵染。N富集是全球變化的基本要素之一,影響生態(tài)系統(tǒng)的物種豐度、植物群落結構,改變菌根真菌物種多樣性[16]。隨N沉降增加而降低ECM真菌子實體產量和生物量[17]。施加N肥降低了松林ECM真菌群落多樣性[17];隨著土壤N素增加,將木質素轉化為CO2的擔子菌數(shù)量明顯減少[17]。阿拉斯加工業(yè)區(qū)內隨N沉降的增加,菌根真菌數(shù)量由30減少到9;菌根變化還可能通過反饋作用降低本地優(yōu)勢灌木種豐度,使其被大量外來草種替代[18]。
N沉降極大地降低錫達克里克(Cedar Creek)低N∶P土壤中AM真菌的侵染率。正如功能平衡模型所預測的那樣,P水平高的土壤中,N增加通常會降低叢枝、菌絲圈和根外生菌絲數(shù)量。濕地中這種響應與AM真菌群落內巨孢囊霉的相對多度變化有關。N沉降影響草原生態(tài)系統(tǒng)中AM真菌的分布。這些變化表明菌根真菌功能的改變反過來會影響植物群落組成和生態(tài)系統(tǒng)的功能[19]。N增加顯著改變了AM真菌的群落結構。一些球囊霉的操作分類單元(OTUs)對施加N呈負響應,而其他的一些球囊霉的OTUs和一個無梗囊霉OTU則呈正響應。結果表明與糖槭(Acersaccharum)共生的AM真菌對升高的N的響應不同[20]。
AM真菌是重要的地下C吸收者,并能增加N的有效性。N沉降也能顯著影響微生物群落結構,導致真菌/細菌生物量比率下降10%,AM真菌和全部微生物生物量的下降,以及微生物群落結構的變化會進一步影響北方闊葉林生態(tài)系統(tǒng)內的營養(yǎng)和C循環(huán)[21]。施N肥使微生物量降低15%,但是真菌和細菌并沒有顯著變化。另外,微生物和真菌多度的下降在長期高N定位研究中更為明顯。此外,微生物量對N肥的響應與土壤CO2排放量顯著相關。這一結果表明N富集會降低生態(tài)系統(tǒng)中微生物的生物量和與之相應的CO2排放量[22]。
值得注意的是N沉降對生態(tài)系統(tǒng)的影響往往與CO2濃度升高和O3濃度變化存在互作[23],事實上,菌根真菌主要是受自然界多因子的互作效應影響的,今后應加強這方面的研究工作。
1.4 干旱脅迫對菌根真菌的影響
由于厄爾尼諾和拉尼拉效應導致全球氣候異常,極端氣溫、干旱與水澇頻繁發(fā)生,使得植物生產力和生物量降低,而減少向菌根真菌提供有機養(yǎng)分,抑制菌根發(fā)育[24],并改變菌根真菌的群落結構,降低群落中真菌的多樣性[25]。嚴重干旱顯著影響高海拔地區(qū)的熱帶人工林總細根生物量和ECM根生物量[26]。純培養(yǎng)條件下,干旱處理的彩色豆馬勃(Pisolithustinctorius)和圓頭傘(Descoleaantartica)菌絲生物量分別下降了22%和19%[27]。干旱下絨粘蓋牛肝菌(Suillustomentosus)、灰環(huán)粘蓋牛肝菌(Suilluslaricinus)和灰鵝膏菌(Aminitavaginata)生物量也下降[28]。也有研究證明,植物形成菌根共生體后,可以增強對一些不利環(huán)境特別是干旱環(huán)境的耐受力[29]。干旱脅迫下接種AM減輕了對烤煙(Nicotiana)細胞膜的傷害作用,并能保持較強的光合作用和養(yǎng)分吸收能力[30]。AM真菌增強寄主植物根部及自身的水孔蛋白基因的表達,可改善植物水分狀況,提高葉片水勢[31]??梢?,干旱對不同植物不同菌種的作用是不同的。菌根真菌對干旱脅迫的反應涉及干旱程度、寄主植物等多方面的因素,是一個多因素控制的復雜反映過程。
1.5 外來生物入侵對菌根真菌的影響
外來植物入侵可直接或/和間接改變土著菌根真菌多樣性、種群數(shù)量、群落結構和功能。伴隨桉樹(Eucalyptuscamaldulensis和E.globulus)入侵伊比利亞半島,與其共生的ECM進入當?shù)厣鷳B(tài)系統(tǒng),這些原產澳大利亞的真菌不僅有利于桉樹入侵,而且在與當?shù)卣婢母偁幹刑幱趦?yōu)勢地位,能與當?shù)刂参锝⒐采P系,改變土壤養(yǎng)分循環(huán);即使桉樹消滅后,這些ECM將繼續(xù)存在,并保持高侵染勢侵染當?shù)刂参颷32]。入侵我國的加拿大一枝黃花(Solidagocanadensis)和紫莖澤蘭(Ageratinaadenophora)能夠提高有益其自身生長的AM真菌相對多度,改變土著AM真菌群落結構,且這種改變可對其進一步擴張起到正反饋作用,減少本地優(yōu)勢植物[33- 34]。蒙大納州斑點矢車菊(Centaureamaculosa)的入侵改變了當?shù)谹M真菌群落組成,降低其群落多樣性[35]。蒜芥(Alliariapetiolata)的水提液能阻礙AM真菌孢子萌發(fā),抑制其與番茄形成共生體;蒜芥種植密度與AM真菌侵染勢呈顯著負相關,表明蒜芥通過干擾本地植物形成菌根而增強自身的競爭力[36]。入侵印度的臭春黃菊(Anthemiscotula)和加拿大蓬(Conyzacanadensis)可改變AM真菌多樣性[37],美國西部和非洲大草原入侵雜草上也發(fā)生類似變化[38]。
1.6 人類活動對菌根真菌的影響
高強度人類活動干擾是導致生態(tài)系統(tǒng)退化的主要驅動力,是引起全球變化的首要起因。人類干擾會顯著降低生態(tài)系統(tǒng)中AM真菌物種多樣性及其侵染率[39]。城市生態(tài)系統(tǒng)中AM真菌侵染率明顯低于人類干擾較少的農林生態(tài)系統(tǒng)[40]。利用454焦磷酸測序技術測定華北地區(qū)長期(>20a)施肥農田中AM真菌多樣性及群落結構,發(fā)現(xiàn)長期施肥處理(尤其是施用P肥和N肥)顯著降低了農田生境中AM真菌多樣性[41]。人為的農藝管理(如修整、耕作、灌溉和施肥)也會影響AM真菌群落結構。草坪切割后,AM真菌孢子量重建變慢,切割2.5a后,孢子量為60—95個/g干土,僅相當于天然山金車(Arnicamontana)草地孢子數(shù)量的55%—70%[42]。對土壤進行機械翻耕強烈影響AM真菌群落結構,并顯著降低其物種多樣性[43]。這些影響應該是與人為干擾的方式和強度密切相關的[44]。
通過直接或間接途徑,菌根真菌首先對植物個體、種群、群落、其他生物和土壤產生作用。特別是當今全球變化下,菌根真菌生理生態(tài)效應有助于減輕全球變化造成的生態(tài)系統(tǒng)惡化、極端氣候變化、外來物種入侵和污染等不良影響[45]。主要體現(xiàn)在以下幾個方面:
2.1 修復和穩(wěn)定被破壞的及脆弱的生態(tài)系統(tǒng)
土壤中的菌根真菌有助于植物群落的形成,促進環(huán)境修復。菌根真菌通過其龐大的菌絲網(wǎng)絡將植物聯(lián)結起來,于菌根真菌與菌根真菌之間、菌根真菌與植物之間、植物與植物之間進行養(yǎng)分運轉,形成完整的生物群落[46]。近年來,以AM真菌主導的菌根共生系統(tǒng)已成為一種新型生物修復主體,可以提高受損和退化生態(tài)系統(tǒng)修復重建的成功率,縮短修復周期,并保證修復效果的穩(wěn)定性[47]。接種AM真菌顯著提高球囊霉素相關土壤蛋白含量和土壤水穩(wěn)性大團聚體數(shù)量;接種處理提高了土壤的平均重量直徑和幾何平均直徑,降低了土壤分形維數(shù)[48],有助于中國亞熱帶侵蝕紅壤植被重建[49]。AM真菌能提高重金屬污染土壤地區(qū)寄主植物對重金屬的忍耐性和營養(yǎng)吸收能力[50]。對礦區(qū)脆弱地帶的新疆楊(Populusbolleana)和白蠟(Fraxinuschinensis)幼苗混合接種摩西球囊霉(Glomusmosseae)和幼套球囊霉(G.etunicatum)后,其侵染率高達80%以上,接種后根圍孢子數(shù)量較多,對礦區(qū)環(huán)境修復和生態(tài)恢復起到了重要作用[51]。Wu等首次報道了金屬污染土壤中存活的優(yōu)勢植物狗牙根(Cynodondactylon)根圍AM真菌的物種多樣性,其中幼套球囊霉是常見種,并認為金屬污染地的植物修復可以采用適當?shù)闹参镙o助于耐金屬毒性的AM真菌[52]。
2.2 降低大氣CO2濃度,提高碳匯能力
AM真菌可豐富植物群落,為植物輸送養(yǎng)分,增加C同化。同時菌根真菌依賴植物提供的C源,ECM真菌可獲得14%—15%的植物凈光合產物[53]。AM真菌增加植物葉片氣孔導度、胞間CO2濃度和蒸騰速率,促進CO2吸收和固定[54],降低了大氣CO2濃度。喜樹(Camptothecaacuminate)接種蜜色無梗囊霉(Acaulospramellea)顯著提高葉片凈光合速率、氣孔導度和蒸騰速率[55]。菌根也有利于植物對C的分配[56]。菌根對冷杉(Abiesamabillis)林凈初級生產力(net primary productivity, NPP)的貢獻分別占45%(林齡23a)和75%(林齡180a)[57]。進一步研究則表明菌根類型不同,生態(tài)系統(tǒng)呼吸通量對降水和溫度變化的響應也不同[58]。AM對地下部NPP的貢獻高于ECM,而ECM對地上部、主干和枝條NPP的貢獻較大;AM則對葉片和細根NPP的貢獻較大[59]。
2.3 促進生態(tài)系統(tǒng)物質轉化、利用與循環(huán)
土壤生物在物質轉化、利用與循環(huán)中擔任重要角色。菌根真菌和固N微生物每年為植物提供5%—20% (草原和熱帶草原)至80%(溫帶和寒帶森林)的N和高達75%的P[60]。龐大的菌根網(wǎng)絡可以為土壤提供約相當于凋落物40%的C,這些有機質成為土壤微生物的主要C源,直接影響土壤微生物的組成和數(shù)量。ECM的菌絲圍酯酶、磷酸酶、幾丁質酶和海藻糖酶等土壤酶水平顯著升高,促進動植物殘體中復雜有機C、N和P的分解[61],菌根共生體可極大地促進植物對水分、礦質元素的吸收和利用。接種AM真菌促進了土壤中難溶性P向有效態(tài)P轉化,顯著降低總無機P含量、提高玉米(Zeamays)的生物量和P吸收量[62]。AM通過擴大寄主植物根的吸收面積,改善了根圍環(huán)境,菌絲還通過提高植物對P的運輸速率等機制來促進P吸收。根內球囊霉(G.intraradices)顯著增加煙草(Nicotianatabacum)葉片P和葉綠素含量、根超氧化物歧化酶、幾丁質酶和硝酸還原酶的活性和植物生物量[63]。研究人員也發(fā)現(xiàn)根瘤菌與菌根真菌產生的信號至少是部分的通過同樣途徑發(fā)揮作用,植物根系受菌根真菌侵染而幫助植物獲得土壤中的磷酸鹽,從而提高磷酸鹽吸收量[64]。
2.4 拮抗植物病蟲,緩解生物逆境
氣候變化是植物病蟲害的主要驅動者。AM真菌作為環(huán)境功能生物,具有生物藥肥雙重作用[65]。AM真菌侵染植物根系形成菌根過程中,可通過水楊酸與茉莉酸之間的信號通路來調節(jié)植物防御系統(tǒng)。該調控方式能更有效地激發(fā)植物組織防御機制來抵抗?jié)撛诘墓粽遊66]。AM真菌能顯著抑制植物病原真菌和病原線蟲[67]。接種AM真菌能對煙草的青枯病達到很好的防治效果[68]。AM真菌叢枝發(fā)育能有效抑制大豆胞囊線蟲,降低病害程度,提高大豆抗病性[69]。利用AM真菌與根圍促生細菌(PGPR)的最佳組合可抑制番茄根結線蟲的繁殖,提高番茄抗病性[70]。植物防御系統(tǒng)的改變對食草昆蟲影響顯著。菌根對咀嚼式昆蟲的負面影響最常見[71],利用對食草昆蟲產生消極影響的AM真菌來研發(fā)生物防治技術是可行的。不同菌根真菌與不同種類昆蟲之間的相互作用關系可能是不同的,即使是同一種互作關系在不同條件下也可能發(fā)生轉變;另一方面菌根真菌與昆蟲互作的機制也是復雜多樣的。探明這些問題,可為農業(yè)害蟲的防控提供新途徑。
2.5 在外來植物入侵演替中的作用
AM真菌具有偏好性,其形成的菌根網(wǎng)絡通過不同植物養(yǎng)分吸收與轉化的差異,能量物質與養(yǎng)分轉移的變化等影響植物種間競爭關系[72]。AM真菌對外來入侵植物個體生長具有促進作用[73]。缺P條件下,AM真菌可以顯著促進互花米草(Spartinaalterniflora)的養(yǎng)分吸收[74];增加豚草(Ambrosiaartemisiifolia)對土壤中硝態(tài)N和銨態(tài)N的吸收,改善豚草N營養(yǎng)和生長[75]。AM真菌首先影響植物個體生長,進而調節(jié)植物群落結構[76]。另一方面菌根共生可通過促進本地植物生長,提高其與外來物種的競爭力[77],間接抑制外來入侵植物。而菌根共生對入侵物種適應性的最大化具負反饋[78]。菌根對植物生長的負反饋可能歸因于AM真菌種的不同和植物之間的利益不對稱傳遞[79]。菌根真菌在外來植物入侵演替中的作用復雜多樣:當外來入侵植物是菌根依賴性的,則菌根真菌處于主導地位,充當驅動者,菌根形成與否,直接決定了該外來植物能否成功入侵;如入侵植物對菌根的依賴是兼性的,則菌根真菌所發(fā)揮的作用是變化的,值得深入探索。
3.1 擴大菌絲網(wǎng)絡,分泌及誘導有益化學物質
菌絲向根外土壤分枝擴散,形成龐大的根外菌絲體,驅動土壤營養(yǎng)循環(huán),決定植物群落的生產力[1]。菌絲分泌的球囊霉素(GRSP)和菌絲粘液能絡螯合大量金屬,使金屬從游離態(tài)轉化為結合態(tài)[80]。真菌組織中聚磷酸、有機酸可與重金屬結合,以多聚磷酸鹽的形式沉積在真菌中,或以果膠酸類物質的形式沉積在寄主植物根系的界面上,從而減少重金屬向地上部的運輸量,減輕對植物的脅迫[81]。
接種AMF能夠誘導根內防御性酶系苯丙氨酸解氨酶、幾丁質酶和過氧化物酶的積累,增加酶的含量,提高酶的活性,還能誘導根內抗性物質酚類物質、可溶性糖和脯氨酸的含量的增加,降低根內丙二醛的含量,緩解細胞的損傷。AMF顯著改變棉花(Gossypiumhirsutum)根細胞超微結構,引起細胞壁明顯加寬,導管處產生膠狀物質,出現(xiàn)細胞壁物質的沉積,有助于增強細胞壁的結構抗性,增強對病原物的抗性[82]。菌根化植物對農藥也有很強的耐受性,能把一些有機成分轉化為菌根真菌和植株的養(yǎng)分源,降低農藥對土壤的污染程度[83]。
3.2 增強自身及其寄主植物的生理生態(tài)特性
在形成外生菌根共生體后,植物的根系上會形成菌套(mantle)、菌索(rhizomorph)、外延菌絲(extraradical)和哈蒂氏網(wǎng)(Hartig net)等結構。土壤干旱條件下菌套對營養(yǎng)根內水分的外滲起到阻隔作用[84]。外延菌絲、菌索等器官在土壤中的延伸、擴展使水分移動受到的阻力比根和土接觸時所受的阻力小。液流通過菌絲和哈蒂氏網(wǎng)進入根的無阻空間。降低了土壤與根系間的液流阻力[85]。干旱脅迫下AM真菌通過協(xié)調增加保護酶活性和滲透物質含量顯著降低了丙二醛含量,表明膜質過氧化對細胞傷害顯著減少,顯著促進植株對N、P和水分的吸收,提高了植株N、P和黃酮含量,改善了植株營養(yǎng)狀況,同時增加了甘草(Glycyrrizauralensis)品質,對根系效果更加顯著。因此,干旱脅迫下接種AM 真菌顯著促進了甘草生長,提高了甘草耐旱性[86]。干旱脅迫下外生菌根提高了葉水勢、保水力、降低葉水分的飽和虧缺值[87]。
3.3 與其他生物協(xié)同發(fā)揮作用
菌根真菌與PGPR在植物根圍共同發(fā)生發(fā)展,它們之間相互促進、協(xié)同發(fā)揮作用,在活化土壤養(yǎng)分、促進植物養(yǎng)分吸收與利用、增加植物和土壤健康狀況、提高植物生長量、穩(wěn)定生態(tài)系統(tǒng)等方面具有重要意義,尤其全球變化下作用更加突出。PGPR對菌根真菌的侵染、生長發(fā)育及其功能都有一定的促進作用。例如蒙氏假單胞菌(Pseudomonasmonteilii)能明顯促進植物外生菌根和內生菌根的侵染[88];增強AM真菌抑制線蟲、提高抗病性的效應[61]。蘇云金芽孢桿菌(Bcillusthuringiensis)增加AM真菌的根外和根內定殖,最低施P肥水平下亦能發(fā)揮相同作用,并增強AM真菌的生理代謝[89]。
當前,菌根學研究已進入菌根網(wǎng)絡時代。面對全球變化的諸多挑戰(zhàn),通過較大的時間和空間尺度來探討全球氣候變化對菌根真菌群落結構與功能的影響,將是今后菌根真菌物種群落結構與功能研究領域值得關注的研究方向之一;其次,長期定位研究特殊或極端環(huán)境中菌根及其菌根真菌群落結構與功能,將有助于闡明全球變化下菌根真菌的作用;第三,于控制條件下,采用現(xiàn)代分子生物學技術等系統(tǒng)深入研究全球氣候變化下菌根真菌生理生態(tài)的功能與作用機制,為進一步篩選評價高效菌根真菌菌種及其應用提供技術依據(jù)。全球變化既是嚴重挑戰(zhàn)又是新的機遇。作為陸地生態(tài)系統(tǒng)中的重要成員之一,菌根真菌占據(jù)和調控多種生態(tài)位,充當多重角色,并發(fā)揮多種生理生態(tài)作用??梢灶A見,隨著該領域研究的不斷深入,在全面應對全球變化過程中,菌根真菌將發(fā)揮極其重要的作用。
[1] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754- 13759.
[2] van der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139- 1150.
[3] Kohler J, Hernández J A, Caravac F, Roldán A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 2008, 35(2): 141- 151.
[4] Wilkinson S, Mills G, Illidge R, Davies W J. How is ozone pollution reducing our food supply? Journal of Experimental Botany, 2012, 63(2): 527- 536.
[5] Ho I, Trappe J M. Effects of ozone exposure on mycorrhiza formation and growth ofFestucaarundinacea. Environmental and Experimental Botany, 1984, 24(1): 71- 74.
[6] McCool P M, Menge J A. Influence of ozone on carbon partitioning in tomato: potential role of carbon flow in regulation of the mycorrhizal symbiosis under conditions of stress. New Phytologist, 1983, 94(2): 241- 247.
[7] Wang S G, Feng Z Z, Wang X K, Feng Z W. Effect of elevated atmospheric O3on arbuscular mycorrhizal (AM) and its function. Environmental Science, 2006, 27(9): 1872- 1877.
[8] Duckmanton L, Widden P. Effect of ozone on the development of vesicular-arbuscular mycorrhizae in sugar maple saplings. Mycologia, 1994, 86(2): 181- 186.
[9] Liverman D. From uncertain to unequivocal: the IPCC Working Group I Report: climate change 2007--the physical science basis. Environment, 2007, 49(8): 28- 32.
[10] Gamper H, Hartwig U A, Leuchtmann A. Mycorrhizas improve nitrogen nutrition ofTrifoliumrepensafter 8 yr of selection under elevated atmospheric CO2partial pressure. New Phytologist, 2005, 167(2): 531- 542.
[11] Yang R Y, Tang J J, Chen X, Chen J, Jiang Q Q. The effects of elevated atmospheric CO2on AMF community colonized in roots of various plant species. Acta Ecologica Sinica, 2006, 26(1): 54- 60.
[12] Staddon P L, Gregersen R, Jakobsen I. The response of twoGlomusmycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 2004, 10(11): 1909- 1921.
[13] Hawkes C V, Hartley I P, Ineson P, Fitter A H. Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 2008, 14(5): 1181- 1190.
[14] Heinemeyer A, Fitter A H. Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner. Journal of Experimental Botany, 2004, 55(396): 525- 534.
[15] Lü C Q, Tian H Q, Huang Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology, 2007, 31(2): 205- 218.
[16] Frey S D, Knorr M, Parrent J L, Simpson R T. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196(1): 159- 171.
[17] Einsenlord S D, Zak D R. Simulated atmospheric nitrogen deposition alters actinobacterial community composition in forest soils. Soil Science Society of America Journal, 2010, 74(4): 1157- 1166.
[18] Lilleskov E A, Fahey T J, Horton T R, Lovett G M. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology, 2002, 83(1): 104- 115.
[19] Johnson N C, Rowland D L, Corkidi L, Egerton-Warburton L M, Allen E B. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid Grasslands. Ecology, 2003, 84(7): 1895- 1908.
[20] van Diepen L T A, Lilleskov E A, Pregitzer K S. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Molecular Ecology, 2011, 20(4): 799- 811.
[21] van Diepen L T A, Lilleskov E A, Pregitzer K S, Miller R M. Simulated nitrogen deposition causes a decline of intra- and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern Hardwood forests. Ecosystems, 2010, 13(5): 683- 695.
[22] Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 2008, 11(10): 1111- 1120.
[23] Chung C, Zak R, Reich P B, Ellsworth D S. Plant species richness, elevated CO2and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5): 980- 989.
[24] Wang J G, Zheng R, Bai S L, Liu S, Yan W. Responses of ectomycorrhiza to drought stress: a review. Chinese Journal of Ecology, 2012, 31(6): 1571- 1576.
[25] Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse M A. Ectomycorrhizal communities in a mediterranean forest ecosystem dominated byQuercusilex: seasonal dynamics and response to drought in the surface organic horizon. Annals of Forest Science, 2011, 68(1): 57- 68.
[26] Valdés M, Asbjornsen H, Gómez-Cárdenas M, Juárez M, Voght K A. Drought effects on fine-root and ectomycorrhizal-root biomass in managedPinusoaxacanaMirov stands in Oaxaca, Mexico. Mycorrhiza, 2006, 16(2): 117- 124.
[27] Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism ofNothofagusdombeyiroots. Tree Physiology, 2009, 29(8): 1047- 1057.
[28] Zhang H H, Tang M, Yang Y. The response of ectomycorrhizal (ECM) fungi under water stress induced by polyethylene glycol (PEG) 6000. African Journal of Microbiology Research, 2011, 5(4): 365- 373.
[29] Smith S E, Read D J. Mycorrhizal Symbiosis. San Diego: Academic Press, 2008: 185- 187.
[30] Zhou X, Liang Y J, Zhang C H, Chen X M, Huang J G. Effects of arbuscular mycorrhizal fungi on growth, nutrition and drought resistance of flue-cured tobacco seedlings. Acta Agriculturae Boreali-Sinica, 2012, 27(3): 181- 185.
[31] Li T, Chen B D. Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulation of aquaporin gene expressions in roots and the fungi themselves. Chinese Journal of Plant Ecology, 2012, 36(9): 973- 981.
[32] Díez J. Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biological Invasions, 2005, 7(1): 3- 15.
[33] Zhang Q, Yang R Y, Tang J J, Yang H S, Hu S J, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE, 2010, 5(8): e12380.
[34] Yu W Q, Liu W X, Gui F R, Liu W Z, Wan F H, Zhang L L. Invasion of exoticAgeratinaadenophoraSprengel. alters soil physical and chemical characteristics and arbuscular mycorrhizal fungus community. Acta Ecologica Sinica, 2012, 32(22): 7027- 7035.
[35] Mummey D L, Rillig M C, Holben W E. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil, 2005, 271(1/2): 83- 90.
[36] Robert K J, Anderson R C. Effect of garlic mustard [Alliariapetiolata(Beib. Cavara & Grande)]extracts on plants and arbuscular mycorrhizal (AM) fungi. The American Midland Naturalist, 2001, 146(1): 146- 152.
[37] Shah M A, Reshi Z A, Rasool N. Plant invasions induce a shift in Glomalean spore diversity. Tropical Ecology, 2010, 51(S2): 317- 323.
[38] Hawkes C V, Belnap J, D′Antonio C, Firestone M K. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil, 2006, 281(1/2): 369- 380.
[39] Entry J A, Rygiewicz P T, Watrud L S, Donnelly P K. Influence of adverse soil conditions on the formation and function ofArbuscularmycorrhizas. Advances in Environmental Research, 2002, 7(1): 123- 138.
[40] Valencia A V O. Arbuscular Mycorrhizal and Dark Septate Endophytic Fungi in Urban Preserves and Surrounding Sonoran Desert [D]. Tempe: Arizona State University, 2009.
[41] Lin X G, Feng Y Z, Zhang H Y, Chen R R, Wang J H, Zhang J B, Chu H Y. Long- term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environmental Science & Technology, 2012, 46(11): 5764- 5771.
[42] Vergeer P, van den Berga L J L, Baarb J, Ouborg N J, Roelofs J G M. The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: Implications for heathland restoration. Biological Conservation, 2006, 129(2): 226- 235.
[43] Schnoor T K, Lekberg Y, Rosendahl S, Olsson P A. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza, 2011, 21(3): 211- 220.
[44] ?pik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytologist, 2008, 179(3): 867- 876.
[45] Pankhow W, Boller T, Wiemken A. The significance of mycorrhizas for protective ecosystems. Experientia, 1991, 47(4): 391- 394.
[46] Pennisi E. The secret life of fungi. Science, 2004, 304(5677): 1620- 1622.
[47] van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626- 2635.
[48] Peng S L, Shen H, Guo T. Influence of mycorrhizal inoculation on water stable aggregates traits. Plant Nutrition and Fertilizer Science, 2010, 16(3): 695- 700.
[49] Wu T H, Hao W Y, Lin X G, Shi Y Q. Screening of arbuscular mycorrhizal fungi for the revegetation of eroded red soils in subtropical China. Plant and Soil, 2002, 239(2): 225- 235.
[50] Audet P, Charest C. Effects of AM colonization on “wild tobacco” plants grown in zinc- contaminated soil. Mycorrhiza, 2006, 16(4): 277- 283.
[51] Du S Z, Bi Y L, Wu W Y, Liu H H, Yang Y F. Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4): 113- 116.
[52] Wu F Y, Bi Y L, Leung H M, Ye Z H, Lin X G, Wong M H. Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations ofCynodondactylongrown on metal-contaminated soils. Applied Soil Ecology, 2010, 44(3): 213- 218.
[53] Hobbie E A. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology, 2006, 87(3): 563- 569.
[54] Fang Y L, Zhang J H, Song S R, Qu Y P, Zhang Z W, Meng J F, Liu J C, Sun Y. Promotion effects of native AM fungi on Cabernet Sauvignon grapevines in vineyards of Weibei Tableland. Nutrition and Fertilizer Science, 2010, 16(3): 701- 707.
[55] Zhao X, Song R Q, Yan X F. Effects of arbuscular mycorrhizal fungal inoculation on growth and photosynthesis ofCamptothecaacuminataseedlings. Chinese Journal of Plant Ecology, 2009, 33(4): 783- 790.
[56] Rillig M C, Wright S F, Kimball B A, Pinter P J, Wall G W, Ottman M J, Leavitt S W. Elevated carbon dioxide and irrigation effects on water stable aggregates in asorghumfield: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7(3): 333- 337.
[57] Vogt K A, Grier C C, Meier C E, Edmonds R. Mycorrhizal role in net primary production and nutrient cycling inAbiesamabilisecosystems in Western Washington. Ecology, 1982, 63(2): 370- 380.
[58] Vargas R, Baldocchi D D, Querejeta J I, Curtis P S, Hasselquist N J, Janssens I A, Allen M F, Montagnani L. Ecosystem CO2fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 2010, 185(1): 226- 236.
[59] Shi Z Y, Liu D H, Wang F Y, Ding X D. Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem. Ecology and Environmental Sciences, 2012, 21(3): 404- 408.
[60] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296- 310.
[61] Vázquez M M, César S, Azcón R, José M B. Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum,Pseudomonas,Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 2000, 15(3): 261- 272.
[62] Zhang Y T, Zhu M, Xian Y X W, Shen H, Zhao J, Guo T. Influence of mycorrhizal inoculation on competition between plant species and inorganic phosphate forms. Acta Ecologica Sinica, 2012, 32(22): 7091- 7101.
[63] Jiang L, Li Z M, Huang J G, Yuan L, Wu H T, Liang Y J. Influences of arbuscular mycorrhizal fungi on growth and selected physiological indices of tobacco seedlings. Plant Nutrition and Fertilizer Science, 2008, 14(1): 156- 161.
[64] Marx J. The roots of plant-microbe collaborations. Science, 2004, 304(5668): 234- 236.
[65] Ahmed S H, Abdelgani M E, Yassin A M. Effects of interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and root-knot nematodes on dolichos bean (LablabnigerMedik.) plants. American-Eurasian Journal of Sustainable Agriculture, 2009, 3(4): 678- 683.
[66] Pozo M J, Azcón-Aguilar C. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 2007, 10(4): 393- 398.
[67] Veresoglou S D, Rillig M C. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biology Letters, 2012, 8(2): 214- 217.
[68] Zeng W A, Long S P, Li H G, Peng F Y, Huang Y N. Effects of inoculating different arbuscular mycorrhizal fungus at seedling stage on wilt disease resistance in tobacco. Guangxi Agricultural Sciences, 2011, 42(6): 612- 615.
[69] Li J X, Li H, Wang W H, Zhu X C, Liu R J. Effects of arbuscular mycorrhizal fungal arbuscule development on soybean cyst nematode diseases. Journal of Qingdao Agricultural University: Natural Science, 2010, 27(2): 95- 99.
[70] Liu R J, Dai M, Wu X, Li M, Liu X Z. Suppression of the root-knot nematode [Meloidogyneincognita) (Kofoid & White) chitwood] on tomato by dual inoculation with AM fungi and plant growth-promoting rhizobacteria. Mycorrhiza, 2012, 22(4): 289- 296.
[71] Koricheva J, Gange A, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology, 2009, 90(8): 2088- 2097.
[72] Shah M A, Reshi Z A, Khasa D. Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza, 2009, 20(1): 67- 72.
[73] Pringle A, Bever J D, Gardes M, Parrent J L, Rillig M C, Klironomos J N. Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution and Systematics, 2009, 40(1): 699- 715.
[74] McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses,SpartinaalternifloraLois, andSpartinacynosuroides(L.) Roth, in nursery systems. Restoration Ecology, 2004, 12(4): 533- 545.
[75] Huang D, Sang W G, Zhu L, Song Y Y, Wang J P. Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plantAmbrosiaartemisiifolia. Chinese Journal of Applied Ecology, 2010, 21(12): 3056- 3062.
[76] Carvalho L M, Ca?ador I, Martins-Lou??o M A. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of theTagusestuary(Portugal). Mycorrhiza, 2001, 11(6): 303- 309.
[77] Gillespie I G, Allen E B. Effects of soil and mycorrhizae from native and invaded vegetation on a rare California forb. Applied Soil Ecology, 2006, 32(1): 6- 12.
[78] Goodwin J. The role of mycorrhizal fungi in competitive interactions among native bunch grasses and alien weeds: a review and synthesis. Northwest Science, 1992, 66(4): 251- 260.
[79] Bever J D. Negative feedback within a mutualism: Host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 2002, 269(1509): 2595- 2601.
[80] Chern E C, Tsai D W, Ogunseitan O A. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environmental Science and Technology, 2007, 41(10): 3566- 3572.
[81] Wang L, Wang F Y. Remediation of cadmium-polluted soils with Arbuscular Mycorrhiza. Guangdong Agricultural Sciences, 2012, 39(2): 51- 53.
[82] Bu J. Biocontrol Effects of Arbuscular Mycorrhizal Fungi Against Cotton Verticillium Wilt and Its Related Mechanisms [D]. Urumqi: Xinjiang Agricultural University, 2009.
[83] Xu X Q, Xu L J, Yin Y Y, Huang Y, Liu R J. Analysis of arbuscular fungi on remedying pesticide polluted soil. Mycosystema, 2009, 28(4): 616- 621.
[84] Reid C P P. Mycorrhizae and water stress // Riedacker A, ed. Root Physoiology and Symbiosis. New York: Nancy, 1978: 392- 408.
[85] Han X L, Jia G X, Niu Y. Research of the mechanism of ectomycorrhizae to drought resistance. Research of Soil and Water Conservation, 2006, 13(5): 42- 44.
[86] Liu S L. Effects of AM Fungi on Growth and Biochemical Characters of Glycyrrhiza Under Water and Salinity Stress [D]. Baoding: Hebei University, 2010.
[87] Lü Q, Lei Z P. A study on effect of ectomycorrhizae on promoting castanea mollissima resistance to drought and its mechanism. Forest Research, 2001, 13(3): 249- 256.
[88] Duponnois R, Plenchette C A. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of AustralianAcaciaspecies. Mycorrhiza, 2003, 13(2): 85- 91.
[89] Vivas A, Marulanda A, Gómez M, Barea J M, Azcón R. Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected byBacillusthuringiensisinoculation under two phosphorus levels. Soil Biology and Biochemistry, 2003, 35(7): 987- 996.
參考文獻:
[7] 王曙光, 馮兆忠, 王效科, 馮宗煒. 大氣臭氧濃度升高對叢枝菌根(AM)及其功能的影響. 環(huán)境科學, 2006, 27(9): 1872- 1877.
[11] 楊如意, 唐建軍, 陳欣, 陳靜, 蔣琦清. 大氣 CO2倍增對植物根內 AMF 群落的影響. 生態(tài)學報, 2006, 26(1): 54- 60.
[15] 呂超群, 田漢勤, 黃耀. 陸地生態(tài)系統(tǒng)氮沉降增加的生態(tài)效應. 植物生態(tài)學報, 2007, 31(2): 205- 218.
[24] 王琚鋼, 崢嶸, 白淑蘭, 劉聲, 閆偉. 外生菌根對干旱脅迫的響應. 生態(tài)學雜志, 2012, 31(6): 1571- 1576.
[30] 周霞, 梁永江, 張長華, 陳小明, 黃建國. 接種AM真菌對烤煙生長、 營養(yǎng)及抗旱性的影響. 華北農學報, 2012, 27(3): 181- 185.
[31] 李濤, 陳保冬. 叢枝菌根真菌通過上調根系及自身水孔蛋白基因表達提高玉米抗旱性. 植物生態(tài)學報, 2012, 36(9): 973- 981.
從已有文獻來看,學者們多從結構學派出發(fā)對紛繁復雜的內創(chuàng)類型及主體按照一定的原則進行合理歸并,并且視角大多落在組織層面的內創(chuàng)業(yè)。Burgelman(1983)從內創(chuàng)業(yè)產生來源的角度,把內創(chuàng)業(yè)活動分為引致性內創(chuàng)業(yè)和自發(fā)性內創(chuàng)業(yè)。Covin & Miles(1999)強調公司內創(chuàng)業(yè)在創(chuàng)新或者再造方面實際結果不同,并把內創(chuàng)業(yè)分為持續(xù)創(chuàng)新、組織再造、戰(zhàn)略更新和領域重構四種類型。Antoncic & Hisrich (2003)把內創(chuàng)業(yè)的具體類型細分為以下幾種:(1)建立自主或半自主的新企業(yè);(2)在現(xiàn)有市場和產品的基礎上開拓新業(yè)務;(3)產品和服務的創(chuàng)新;(4)生產工藝方面的創(chuàng)新。
[34] 于文清, 劉萬學, 桂富榮, 劉文志, 萬方浩, 張利莉. 外來植物紫莖澤蘭入侵對土壤理化性質及叢枝菌根真菌(AMF)群落的影響. 生態(tài)學報, 2012, 32(22): 7027- 7035.
[48] 彭思利, 申鴻, 郭濤. 接種叢枝菌根真菌對土壤水穩(wěn)性團聚體特征的影響. 植物營養(yǎng)與肥料學報, 2010, 16(3): 695- 700.
[51] 杜善周, 畢銀麗, 吳王燕, 劉慧輝, 楊永峰. 叢枝菌根對礦區(qū)環(huán)境修復的生態(tài)效應. 農業(yè)工程學報, 2008, 24(4): 113- 116.
[54] 房玉林, 張稼涵, 宋士任, 屈雁朋, 張振文, 孟江飛, 劉金串, 孫艷. 渭北旱塬葡萄園土著AM真菌對赤霞珠葡萄促生效應研究. 植物營養(yǎng)與肥料學報, 2010, 16(3): 701- 707.
[55] 趙昕, 宋瑞清, 閻秀峰. 接種AM真菌對喜樹幼苗生長及光合特性的影響. 植物生態(tài)學報, 2009, 33(4): 783- 790.
[59] 石兆勇, 劉德鴻, 王發(fā)園, 丁效東. 菌根類型對森林樹木凈初級生產力的影響. 生態(tài)環(huán)境學報, 2012, 21(3): 404- 408.
[63] 江龍, 李竹玫, 黃建國, 袁玲, 吳洪田, 梁永江. AM真菌對煙苗生長及某些生理指標的影響. 植物營養(yǎng)與肥料學報, 2008, 14(1): 156- 161.
[68] 曾維愛, 龍世平, 李宏光, 彭福元, 黃艷寧. 苗期接種不同叢枝菌根真菌對煙草青枯病防治效果的影響. 南方農業(yè)學報, 2011, 42(6): 612- 615.
[69] 李俊喜, 李輝, 王維華, 朱新產, 劉潤進. 叢枝菌根真菌叢枝發(fā)育對大豆胞囊線蟲病的影響. 青島農業(yè)大學學報: 自然科學版, 2010, 27(2): 95- 99.
[75] 黃棟, 桑衛(wèi)國, 朱麗, 宋迎迎, 王晉萍. 氮碳添加和叢枝菌根對外來入侵植物豚草的影響. 應用生態(tài)學報, 2010, 21(12): 3056- 3062.
[81] 王玲, 王發(fā)園. 叢枝菌根對鎘污染土壤的修復研究進展. 廣東農業(yè)科學, 2012, 39(2): 51- 53.
[82] 補娟. 叢枝菌根真菌(AMF)對棉花黃萎病的防病效應及其機理研究 [D]. 烏魯木齊: 新疆農業(yè)大學, 2009.
[83] 許秀強, 徐麗娟, 殷元元, 黃藝, 劉潤進. 叢枝菌根真菌修復農藥污染土壤的潛力分析. 菌物學報, 2009, 28(4): 616- 621.
[85] 韓秀麗, 賈桂霞, 牛穎. 外生菌根提高樹木抗旱性機理的研究進展. 水土保持研究, 2006, 13(5): 42- 44.
[86] 劉盛林. 水分和鹽脅迫下AM真菌對甘草生長和生理生態(tài)特性的影響 [D]. 保定: 河北大學, 2010.
[87] 呂全, 雷增普. 外生菌根提高板栗苗木抗旱性能及其機理的研究. 林業(yè)科學研究, 2001, 13(3): 249- 256.
Function and functioning mechanisms of mycorrhizal fungi under global changes
LIANG Qianqian1, 2, LI Min1, LIU Runjin1, GUO Shaoxia1,2,*
1InstituteofMycorrhizalBiotechnology,QingdaoAgriculturalUniversity,Qingdao266109,China2CollegeofLandscapeArchitectureandForestry,QingdaoAgriculturalUniversity,Qingdao266109,China
Global changes with regards to climate, environment, economy and society may cause serious problems and in the meantime also challenges for terrestrial ecosystems. Example global changes include greenhouse effects, ozone depletion, acid deposition, drought and waterlogging frequency, higher and lower temperature duration, soil acidity and degradation, soil polluted with heavy metals, sharp decline of forest area and species diversity etc. It is well documented that biogeography environments and climates play key roles in species distribution, while global changes affect the distribution and utilization of species resources. As the most intimate partner to plants, mycorrhizal fungi are also seriously influenced. Mycorrhizal fungi which colonize plant roots and form symbiosis with host plants, occupy irreplaceable niche. Mycorrhizal associations specifically arbuscular mycorrhiza (AM), ectomycorrhiza (ECM), ectoendomycorrhiza (EEM), ericoid mycorrhizas (ERM), and/or orchid mycorrhizas (OM), interact with other organisms living both in soil and on the ground, incorporate nutrient transforming, absorption, circulation and utilization. They play vital roles in maintaining atmospheric compositions, adjusting terrestrial ecosystems, increasing biodiversities, stabilizing sustainable productivities as well as sustainable development of human society. Thus, exploration of the function and functioning mechanisms of mycorrhizal fungi under global changes is a complete new subject, especially, the study on biological mechanisms to global changes is of realistic value and profound scientific significance. This paper introduces the impact of global changes on mycorrhizal fungi, particularly the influence of greenhouse effects, CO2level increasing, ozone depletion, acid with nitrogen and sulfur deposition, drought and waterlogging, exotic plant invasion, and human activities on mycorrhizal fungus development and functions. We summarized the possible functions of mycorrhizal fungi under global changes through direct and indirect pathways, such as rehabilitating and stabilizing the damaged, degraded and fragile ecosystems, deceasing CO2concentration in the atmosphere, increasing carbon sink, enhancing substance conversion, circulation and utilization, resisting to plant pathogens and pest insects, conferring biological stresses, and playing some roles in exotic plant invasion and succession. The authors also reviewed the functioning mechanisms of mycorrhizal fungi under global changes. It was suggested that mycorrhizal fungi may synergistically function with the other organisms, strengthening their own and host plant physiological and ecological characteristics, enlarging hyphae net, and secreting and inducing beneficial substances. Therefore the position, role, function and mechanisms of mycorrhizal fungi under global changes, especially the evolution characters of mycorrhizal fungi and mycorrhizas, the role and functions of mycorrhizal fungi under global changes and possible mechanisms of responses of mycorrhizal fungi to the global changes, should be paid more attention to. This knowledge may be helpful for better understanding of the comprehensive responses of terrestrial ecosystems to global changes, and for providing basis for further investigation on this topics and possible pathways to control agricultural pests.
mycorrhiza; mycorrhizal fungi; arbuscular mycorrhiza; ectomycorrhiza; global changes
國家自然科學基金(31240085); 青島市科技計劃基礎研究項目(12- 1- 4- 5- (4)- jch)
2013- 01- 30; 網(wǎng)絡出版日期:2014- 03- 13
10.5846/stxb201301300191
*通訊作者Corresponding author.E-mail: gsx2309@126.com
梁倩倩,李敏, 劉潤進,郭紹霞.全球變化下菌根真菌的作用及其作用機制.生態(tài)學報,2014,34(21):6039- 6048.
Liang Q Q, Li M, Liu R J, Guo S X.Function and functioning mechanisms of mycorrhizal fungi under global changes.Acta Ecologica Sinica,2014,34(21):6039- 6048.