• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Remote Sensing Image Classification Based on Decision Tree in the Karst Rocky Desertification Areas:A Case Study of Kaizuo Township

    2014-04-10 11:40:55ShuyongMAXingleiZHUYulunAN
    Asian Agricultural Research 2014年7期
    關(guān)鍵詞:申報(bào)表邏輯性完整性

    Shuyong MA,Xinglei ZHU,Yulun AN

    1.Qinghai Geological Bureau of Nuclear Industry,Xining810016,China.2.School of Geographic and Environmental Sciences,Guizhou Normal University,Guiyang 550001,China

    Karst rocky desertification is a process of land degradation involving serious soil erosion,extensive exposure of basement rocks,drastic decrease in soil productivity,and the appearance of a desert-like landscape[1].The main methods for the remote sensing image classification in the rocky desertification areas are supervised classification and unsupervised classification.

    However,the supervised classification and unsupervised classification simply use the brightness features of the pixel for image segmentation,with low classification accuracy;they often can not meet the needs of practical applications[2],and they are unable to automatically extract the rocky desertification information.

    In recent years,with people's deeper understanding of remote sensing,some new classification methods continue to be put forward,such as texture analysis,band combination,neural networks,fuzzy classification,vegetation index and decision tree classification[2].A decision tree is a flowchart-like structure in which internal node represents test on an attribute,each branch represents outcome of test and each leafnode represents class label(decision taken after computing all attributes).A path from root to leaf represents classification rules.

    In decision analysis a decision tree and the closely related influence diagram is used as a visual and analytical decision support tool,where the expected values(or expected utility)of competing alternatives are calculated.It is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences,including chance event outcomes,resource costs,and utility.It isoneway to display an algorithm.The leaf node of decision tree corresponds to a category attribute value and different leaf nod es may correspond to the same category attribute value[3].

    The decision tree method for remote sensing image classification,can easily integrate various kinds of knowledge outside the image,without need of any priori statistical assumption,so it has been widely used for remote sensing information extraction and image classification[2,4-8].

    In this study,with Kaizuo Township in Chang shun County,Qiannan Prefecture of Guizhou Province as the objectof study,we use the decision tree classification method to classify the remote sensing images in the study area,in order to evaluate the overall classification accuracy and the automated extraction accuracy of rocky desertification information.

    1 Overview of the study area

    The geological and stratum structure is complex,and there outcropping rocks are carbonate rocks and non-carbonaceous rocks.It features a humid subtropical monsoon climate,and the rainfall is abund ant.There are various types of land resources,but the distribution is not even.The county is in the yellow soil zone.

    Due to the differences in the rock,soil parent material,topography,hydrology conditions and the major soil forming process,some soil types are generated,such as yellow soil,lime-stone soil,purple soil and paddy soil.The major vegetation is subtropical evergreen broad-leaved forest,and because of the complex natural environment and diverse land types,there are many types of vegetation[9].

    Kaizuo Township is in the northern partof the county,with a total area of69 km2(Fig.1).The terrain within the region can be roughly divided into three types:mountains in the eastern,western and middle parts and a small proportion of hills and plains are concentrated between the hills.The main land use types in the study area are wood l and,farmland,shrub,etc.The rocky desertification is mainly distributed in the southeast of the study area.

    Fig.1 Location of the study area

    2 Information and data preprocessing

    The data used in this study include the ASTER image data in March 2005(Fig.2),1:50000 to pographicmap data in 1973,the vector file of Guizhou administrative division,and vector data and DEM data of Guizhou geological lithology.The software used includes ArcGIS9.2,ERDAS9.1 and ENVI4.3.

    Fig.2 Pseudo-color image data of ASTER

    Before remote sensing image classification,we usually perform feature selection and feature extraction.The classification is mainly based on spectral information of the image.

    In terms of the band selection,the statistical characteristics analysis,principal component analysis and correlation analysis are used in principle,but in practice,people's visual effects are more important,which can help people to easily read and learn a variety of analytical results[10].

    The resolution of green,red and near-infrared bands of ASTER data is15 m,and the three-band combination can better interpret vegetation,and classify vegetation.

    In this study,the combination of these three bands is used,and the normalized difference vegetation index(NDVI)and ratio vegetation index(RVI)of image are estimated.1:50000 topographic map is scanned for geographic calibration.Based on this,the vector file of Guizhou administrative division is used to obtain the range of the study area,and then extract the remote sensing data within the study area.

    (2)加強(qiáng)數(shù)據(jù)規(guī)范管理。開展財(cái)產(chǎn)行為稅統(tǒng)一納稅申報(bào)表使用情況檢查工作,對(duì)申報(bào)數(shù)據(jù)進(jìn)行完整性、準(zhǔn)確性、邏輯性審核,進(jìn)一步提高申報(bào)數(shù)據(jù)質(zhì)量,更好地滿足財(cái)產(chǎn)行為稅管理需求。

    DEM data are from the free data of international scientific data mirror site of Computer Network Information Center.The resolution is 30 m,and the projection is UTM projection[11].The lithologic vector data are rasterized and the projection is defined and converted to UTM projection.

    3 Building rules for the remote sensing image classification based on decision tree

    According to the visual interpretation of remote sensing images and field surveys,the remote sensing images of the study area are divided into the following categories:woodland,shrub,rocky desertification land(including mild,medium,severe,extremely severe rocky desertification[12-13],as shown in Table 1),arable land(including paddy and upland without rocky desertification),construction land(including roads,settlements),and water body.

    3.1 Distinguishing the vegetation coverage area and nonvegetation coverage areaSince the remote sensing images in the early spring,the vegetation coverage of the arable land area is relatively low,and NDVI is less than 0.NDVI of water body and construction land is less than 0.The shrub plant biomass is not high,and the NDVI is greater than 0.The woodland plant biomass is higher than the shrub plant biomass,and the NDVI is greater than 0.1.

    The rocky desertification land is the shrubs,grassland or arable land mixed with bare rocks,and the NDVI is greater than 0 but less than 0.1.We classify the remote sensing image with NDVI less than 0 as the non-vegetation coverage area,and the remote sensing image with NDVI greater than 0 as the vegetation coverage area.

    3.2 Classification of the non-vegetation coverage areaThe NDVI value of water body is less than-0.1,while the NDVI value of construction land and arable land is greater than-0.1.It is further divided with NDVI equal to 0.1 as the dividing point.If NDVI is less than-0.1,it is classified as water body,and if NDVI is greater than-0.1,it is classified as construction land and arable land.However,it can be seen from the result of the division that the dividing range of the water body is too large,and part of the cultivated land is divided into the water body.

    The reason is that the excessive moisture of arable land leads to small differences bet ween the NDVI of cultivated land and water body.After comparing the gray values in B3 band(near-infrared band),the gray value of 30 in B3 band is taken as the dividing point for classification(<30,water body;>30,arable land).The construction land and arable land are divided based on the B1 band(green band)value of greater than 60,the B2 band(red band)gray value of less than 65,and the B3 band(near infrared band)gray value of less than 70.

    Table 1 The grade of karst rocky desertification and patch characteristics

    But in the division results,the arable land contains some shrub information,which is due to the fact that its spectral feature is similar to that of arable land,and it is thus divided into arable land.According to the field survey,there is almost no arable land at the elevation of higher than 1450 m.Therefore,it is divided based on DEM of 1450 m combined with B3 band gray value of less than 30,to distinguish the shrub from the arable land.

    In the dividing range of construction land,the spectral reflectance value of partof arable land is relatively high,slightly different from that of construction land,so it is divided into the construction land.With B3 band gray value of 50 as the dividing point,we can distinguish the arable land included in the construction land(<50,arable land;>50,construction land).

    3.3 Classification of the vegetation coverage areaWith NDVI of greater than 0.1 as the dividing point,the woodland is marked off.The rocky desertification occurs mainly in the carbonate rock area.The lithology data are made into the raster format files,to get involved in the rocky desertification information extraction.

    The value of the carbonate rock area is set to1,and based on the B3 band gray value of 45,the shrub and rocky desertification land are distinguished.

    However,the dividing range of rocky desertification land contains the arable land information,and the rocky desertification mainly occurs in the regions with slope of greater than 18 degrees[12-13].According to field survey,the rocky desertification in this study area mainly occurs at the elevation of over1435m,and thus the rocky desertification land is marked off.

    In order to get accurate rocky desertification information,we use ratio vegetation index RVI(B3/B2)of greater than 0.9 but less than 1.3,B2 band gray value of greater than 42 and DEM information to further divide and extract the rocky desertification information.The DN value statistics of typical object points are shown in Table 2.

    Table 2 The DN value statistics of typical object points

    4 Decision tree building

    According to the building rules for remote sensing image classification based on decision tree,the decision tree is built,as shown in Fig.3.

    5 Image classification

    The decision tree is built in the ENVI software,and by running the decision tree,we derive the final classification image data,as shown in Fig.4.

    Fig.3 Decision tree

    Fig.4 Classification results

    6 Accuracy assessment

    For the accuracy assessment,the confusion matrix is first built[12].According to the actual situation of the study area,the number of samples is determined according to the proportion of various types in the study area.The classification results obtained using the above decision tree method,are overlaid with the original image.Using visual interpretation and field verification,the confusion matrix is built(Table 3),and the relevant indicators are calculated for assessment.

    By comparing the classification data of sample data and original image data,we calculate the error matrix,and derive the kappa coefficient which reflects the accuracy of classification.On thewhole,the overall classification accuracy is 89.3%,the kappa coefficient is 0.87,and the classification effect is good.The extraction accuracy of rocky desertification data is 74.1%,and the classification effect is good.

    Table 3 Error matrix and accuracy assessment of decision tree classification

    7 Conclusions

    As can be seen from the classification accuracy and kappa coefficient,using decision tree method for the classification of remote sensing images in the karst rocky desertification areas can help us to get better classification results.Compared with the previous supervised classification and unsupervised classification,the knowledge of slope,lithology and DEM is included,more conducive to improving the classification accuracy.

    The classification accuracy of rocky desertification land is 74.1%,and the classification effect is good.The rocky desertification information is automatically extracted,which is of great significance to promoting the rocky desertification studies.

    However,there are few ASTER data bands in use,and the spectral information of remote sensing images can not be fully utilized.If it is multi-spectral data,the overall classification accuracy and rocky desertification information accuracy will be improved.In the process of data clipping,the neighbormean interpolation method used may cause half raster error between the gray value of clipped data and original data,which will affect the performance of the object gray value in the image.

    In addition,due to the low resolution of DEM,it can not well match the remote sensing image data,so that the DEM data participate in the image classification many times,resulting in"excessive branches and leaves"of the decision tree.If there are DEM data of higher resolution,it will make the decision tree concise and improve the image classification accuracy.

    [1]WANG SJ.Concept deduction and its connotation of Karst rocky desertification[J].Carsologica Sinica,2002,21(2):101-105.(in Chinese).

    [2]WANGDP,WANGZL,CUICC,et al.Land use/cover classification based on decision tree in Longkou[J].Research of Soil and Water Conservation,2008,15(1):114-116,121.(in Chinese).

    [3]SHENWM,WANGWJ,LUO HJ,et al.Classification methods of remote sensing image based on decision tree technologies[J].Remote Sensing Technology and Application,2007,22(3):333-338.(in Chinese).

    [4]CHEN HL,CHEN ZH,DING GP.The application of the knowledge-based decision tree classification method to the extraction of land types in mining areas:A case study of Daye area,Hubei Province[J].Remote Sensing for Land&Resources,2004,9(3):49-53.(in Chinese).

    [5]John D,CAIJF,CAIZX.Decision tree technique and its current research[J].Control Engineering of China,2005,12(1):15-18,21.(in Chinese).

    [6]LIS,ZHANG EX.The decision tree classification and its application in land cover[J].Areal Research and Development,2003,22(1):17-21.(in Chinese).

    [7]Fried MA,Brodeley CE.Decision tree classification land cover from remotely sensed data[J].Remote Sensing&Environ.,1997,61:399-409.

    [8]SUN JB,SHU N,GUAN ZQ.Principles,methods and applications of remote sensing[M].Beijing:Surveying and Mapping Press,1997.(in Chinese).

    [9]Compile Group of Synthetic Agriculture Regionalization of Changshun County.Synthetic agriculture region alization of Changshun County[M].Guiyang:Guizhou People’s Publishing House,1988.(in Chinese).

    [10]CHEG B,JIANGQG,ZHOU YX,et al.Decision tree based on ASTER image classification and its application[J].Journal of Jilin Unviersity:Earth Science Edition,2007,37(1):179-184.(in Chinese).

    [11]International Scientific&Technical Data Mirror Site,Computer Network Information Center,CAS[DB/OL].http://datamirror.csdb.cn.(in Chinese).

    [12]YU Q.Research on the spectrum automatic extracting based on decision treemodel of karst rocky desertification[B].Guizhou Normal University,2009.(in Chinese).

    [13]XIONG KN,LIP,ZHOU ZF,et al.The typical research on remote sensing-GISof the rocky desertification in Karsts areas[M].Beijing:Geological Publishing House,2002:87-89.(in Chinese).

    猜你喜歡
    申報(bào)表邏輯性完整性
    稠油熱采水泥環(huán)完整性研究
    云南化工(2021年9期)2021-12-21 07:44:00
    國(guó)家稅務(wù)總局關(guān)于修訂城鎮(zhèn)土地使用稅和房產(chǎn)稅申報(bào)表單的公告
    科技書稿的邏輯性審查方法歸納
    科技傳播(2019年24期)2019-06-15 09:29:44
    國(guó)家稅務(wù)總局關(guān)于修訂城鎮(zhèn)土地使用稅和房產(chǎn)稅申報(bào)表單的公告
    稅收征納(2019年11期)2019-02-19 13:05:15
    邏輯性
    莫斷音動(dòng)聽 且惜意傳情——論音樂作品“完整性欣賞”的意義
    淺談數(shù)學(xué)課堂教學(xué)中的小學(xué)生個(gè)性化學(xué)習(xí)
    未來英才(2016年13期)2017-01-13 18:17:51
    精子DNA完整性損傷的發(fā)生機(jī)制及診斷治療
    例說物理教學(xué)語言的科學(xué)性和邏輯性
    樁身完整性檢測(cè)中缺陷的綜合判別
    河南科技(2014年18期)2014-02-27 14:14:46
    国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 丰满饥渴人妻一区二区三| 欧美成狂野欧美在线观看| 亚洲精品美女久久久久99蜜臀 | 多毛熟女@视频| 黑人猛操日本美女一级片| 又粗又硬又长又爽又黄的视频| 日韩大片免费观看网站| 日本wwww免费看| 亚洲伊人久久精品综合| bbb黄色大片| 男女之事视频高清在线观看 | 啦啦啦在线观看免费高清www| 香蕉国产在线看| 亚洲人成电影免费在线| 免费人妻精品一区二区三区视频| 中文精品一卡2卡3卡4更新| 两个人看的免费小视频| 国产精品国产三级国产专区5o| 丁香六月天网| 欧美激情 高清一区二区三区| 狠狠婷婷综合久久久久久88av| 久久久精品国产亚洲av高清涩受| 国产成人免费无遮挡视频| 色播在线永久视频| 99久久人妻综合| 国产在线免费精品| 久久这里只有精品19| 啦啦啦视频在线资源免费观看| 性色av一级| 蜜桃在线观看..| 母亲3免费完整高清在线观看| 午夜激情久久久久久久| 丝袜脚勾引网站| 国产精品久久久av美女十八| 国产精品av久久久久免费| 精品一区二区三区四区五区乱码 | 欧美黑人精品巨大| 新久久久久国产一级毛片| 妹子高潮喷水视频| 亚洲精品自拍成人| 女人久久www免费人成看片| 人人妻人人爽人人添夜夜欢视频| 亚洲视频免费观看视频| 亚洲第一青青草原| 亚洲成av片中文字幕在线观看| 国产三级黄色录像| 国产成人影院久久av| 一级毛片 在线播放| 精品少妇久久久久久888优播| 老司机亚洲免费影院| 成年av动漫网址| 热99久久久久精品小说推荐| 老司机影院毛片| 欧美激情极品国产一区二区三区| 国产精品久久久久成人av| 黄片播放在线免费| 只有这里有精品99| 肉色欧美久久久久久久蜜桃| 丁香六月欧美| 黑人猛操日本美女一级片| 后天国语完整版免费观看| 脱女人内裤的视频| svipshipincom国产片| 亚洲精品乱久久久久久| 日本一区二区免费在线视频| 又大又黄又爽视频免费| av片东京热男人的天堂| 亚洲精品乱久久久久久| 亚洲国产中文字幕在线视频| 91麻豆av在线| 精品欧美一区二区三区在线| 熟女少妇亚洲综合色aaa.| 青春草亚洲视频在线观看| 国产av国产精品国产| 高清欧美精品videossex| 美国免费a级毛片| 精品国产超薄肉色丝袜足j| 欧美日韩黄片免| 亚洲少妇的诱惑av| 999久久久国产精品视频| 少妇精品久久久久久久| 一区福利在线观看| 日本黄色日本黄色录像| 久久人妻熟女aⅴ| 免费高清在线观看视频在线观看| 黄片小视频在线播放| 国产熟女欧美一区二区| 香蕉国产在线看| 如日韩欧美国产精品一区二区三区| 日韩制服骚丝袜av| 一本色道久久久久久精品综合| 亚洲熟女精品中文字幕| 亚洲av男天堂| 欧美精品一区二区免费开放| 免费人妻精品一区二区三区视频| 日韩制服骚丝袜av| 丰满迷人的少妇在线观看| 9热在线视频观看99| 少妇精品久久久久久久| 美女高潮到喷水免费观看| 嫁个100分男人电影在线观看 | 亚洲欧美日韩另类电影网站| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 伦理电影免费视频| 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 日韩熟女老妇一区二区性免费视频| 视频在线观看一区二区三区| 免费av中文字幕在线| 久久国产精品影院| 亚洲国产看品久久| 亚洲九九香蕉| 久久久久久亚洲精品国产蜜桃av| 久久国产亚洲av麻豆专区| 建设人人有责人人尽责人人享有的| 美女中出高潮动态图| 国产男女超爽视频在线观看| 日本av免费视频播放| 男女高潮啪啪啪动态图| 中文字幕精品免费在线观看视频| 欧美日韩黄片免| 考比视频在线观看| 黄频高清免费视频| 操出白浆在线播放| www.熟女人妻精品国产| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 亚洲,一卡二卡三卡| 久久精品国产综合久久久| 欧美日韩黄片免| 老司机在亚洲福利影院| 2021少妇久久久久久久久久久| a 毛片基地| 欧美亚洲日本最大视频资源| 免费少妇av软件| 丝袜喷水一区| 国产伦理片在线播放av一区| 在线天堂中文资源库| 亚洲视频免费观看视频| 黄频高清免费视频| 大陆偷拍与自拍| av网站免费在线观看视频| 欧美成狂野欧美在线观看| 精品熟女少妇八av免费久了| 人成视频在线观看免费观看| 欧美日韩福利视频一区二区| 在线观看国产h片| 婷婷色综合www| 亚洲图色成人| 精品一区二区三卡| 一区二区日韩欧美中文字幕| 国产女主播在线喷水免费视频网站| 亚洲伊人久久精品综合| 熟女少妇亚洲综合色aaa.| 亚洲欧美一区二区三区久久| 亚洲欧美日韩另类电影网站| 婷婷成人精品国产| 久热这里只有精品99| 五月开心婷婷网| 国产精品成人在线| 欧美日韩一级在线毛片| 国产三级黄色录像| 在线天堂中文资源库| 波野结衣二区三区在线| 久久人妻福利社区极品人妻图片 | 精品一区在线观看国产| 中文字幕高清在线视频| 高潮久久久久久久久久久不卡| 亚洲精品久久久久久婷婷小说| 日韩人妻精品一区2区三区| 免费人妻精品一区二区三区视频| 嫁个100分男人电影在线观看 | 夜夜骑夜夜射夜夜干| 久久人人爽人人片av| 亚洲国产欧美日韩在线播放| 美女中出高潮动态图| 人妻 亚洲 视频| 亚洲av日韩精品久久久久久密 | 精品第一国产精品| 国产片特级美女逼逼视频| 欧美精品高潮呻吟av久久| 日本a在线网址| 最新在线观看一区二区三区 | 国产精品一国产av| 少妇的丰满在线观看| 不卡av一区二区三区| videos熟女内射| 一级毛片黄色毛片免费观看视频| 久久这里只有精品19| 天堂8中文在线网| 黄色 视频免费看| 国产一区二区三区综合在线观看| 国产成人精品无人区| 日本wwww免费看| av国产久精品久网站免费入址| 精品人妻1区二区| 国产成人精品久久久久久| 中文字幕最新亚洲高清| 日韩一区二区三区影片| 国产一卡二卡三卡精品| 成人黄色视频免费在线看| 高潮久久久久久久久久久不卡| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 成人国语在线视频| 亚洲欧洲精品一区二区精品久久久| 国产老妇伦熟女老妇高清| www.自偷自拍.com| 91麻豆精品激情在线观看国产 | 午夜免费观看性视频| 香蕉丝袜av| 两人在一起打扑克的视频| 黄色毛片三级朝国网站| 免费日韩欧美在线观看| 亚洲精品国产区一区二| 国产精品久久久av美女十八| 国产亚洲欧美在线一区二区| 免费看十八禁软件| 午夜激情久久久久久久| 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 在线观看免费视频网站a站| 黄频高清免费视频| 女警被强在线播放| 精品第一国产精品| 韩国高清视频一区二区三区| 精品视频人人做人人爽| 天天躁夜夜躁狠狠久久av| 午夜久久久在线观看| 侵犯人妻中文字幕一二三四区| 赤兔流量卡办理| 黄频高清免费视频| 日韩伦理黄色片| 国产精品免费大片| 男男h啪啪无遮挡| 性色av一级| 国产主播在线观看一区二区 | a级毛片黄视频| 国产三级黄色录像| 国产成人av激情在线播放| 欧美av亚洲av综合av国产av| 观看av在线不卡| 精品福利观看| 久久精品国产亚洲av高清一级| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产区一区二| 嫩草影视91久久| 一区二区三区激情视频| 1024香蕉在线观看| 欧美xxⅹ黑人| 一个人免费看片子| 亚洲成色77777| 久久天躁狠狠躁夜夜2o2o | 一边摸一边做爽爽视频免费| 国产亚洲欧美在线一区二区| 亚洲国产欧美在线一区| 热re99久久精品国产66热6| 成人免费观看视频高清| 国产精品偷伦视频观看了| 麻豆国产av国片精品| 日韩免费高清中文字幕av| 秋霞在线观看毛片| 熟女av电影| 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 乱人伦中国视频| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 日韩 亚洲 欧美在线| 国产主播在线观看一区二区 | 啦啦啦视频在线资源免费观看| 中文字幕制服av| 搡老岳熟女国产| 在线看a的网站| www.熟女人妻精品国产| 亚洲精品国产av成人精品| 久久人人爽人人片av| 亚洲第一av免费看| 纵有疾风起免费观看全集完整版| 国产日韩一区二区三区精品不卡| 欧美变态另类bdsm刘玥| 啦啦啦在线观看免费高清www| 黑人巨大精品欧美一区二区蜜桃| 女警被强在线播放| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| a 毛片基地| 国产伦人伦偷精品视频| 国产成人免费无遮挡视频| 午夜影院在线不卡| 国产亚洲欧美在线一区二区| 成年动漫av网址| 成人午夜精彩视频在线观看| 岛国毛片在线播放| 国产精品国产三级专区第一集| 青青草视频在线视频观看| 男人舔女人的私密视频| 久久av网站| 欧美精品一区二区大全| 久久久国产一区二区| 日韩 亚洲 欧美在线| 国产精品麻豆人妻色哟哟久久| 午夜福利在线免费观看网站| 两人在一起打扑克的视频| 国产高清视频在线播放一区 | 午夜av观看不卡| 国产精品免费视频内射| a级毛片在线看网站| 夜夜骑夜夜射夜夜干| 国产免费现黄频在线看| 丝袜美足系列| 大陆偷拍与自拍| 高潮久久久久久久久久久不卡| 新久久久久国产一级毛片| 男女边摸边吃奶| 成人国语在线视频| 2021少妇久久久久久久久久久| 国产午夜精品一二区理论片| 黄频高清免费视频| 桃花免费在线播放| 国产av国产精品国产| 秋霞在线观看毛片| 黄色视频不卡| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 麻豆av在线久日| 99九九在线精品视频| 国产欧美日韩精品亚洲av| 亚洲国产精品一区三区| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久 | 国产午夜精品一二区理论片| 久久ye,这里只有精品| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| 成年动漫av网址| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| 嫩草影视91久久| 男人添女人高潮全过程视频| 99久久精品国产亚洲精品| 99久久人妻综合| 国产成人av教育| 少妇粗大呻吟视频| 视频区图区小说| 国产欧美日韩一区二区三区在线| 少妇人妻 视频| 国产爽快片一区二区三区| 69精品国产乱码久久久| 纯流量卡能插随身wifi吗| 婷婷色综合大香蕉| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 天天躁夜夜躁狠狠躁躁| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| 亚洲欧美成人综合另类久久久| 亚洲国产欧美日韩在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品国产一区二区电影| 老司机午夜十八禁免费视频| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 久久毛片免费看一区二区三区| 黑人猛操日本美女一级片| 两个人免费观看高清视频| svipshipincom国产片| 欧美变态另类bdsm刘玥| 黑人欧美特级aaaaaa片| 国产成人一区二区在线| 中文字幕av电影在线播放| 久久鲁丝午夜福利片| 免费一级毛片在线播放高清视频 | 久久av网站| 婷婷丁香在线五月| 亚洲欧美一区二区三区国产| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 欧美亚洲 丝袜 人妻 在线| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 男女下面插进去视频免费观看| 欧美大码av| 国产精品久久久久久精品古装| 国产一区二区激情短视频 | 色婷婷av一区二区三区视频| 91成人精品电影| 成年女人毛片免费观看观看9 | 一级毛片 在线播放| 亚洲成人免费av在线播放| 精品国产一区二区久久| 91成人精品电影| e午夜精品久久久久久久| tube8黄色片| 久久久国产一区二区| 人妻 亚洲 视频| 国产精品一区二区在线不卡| 亚洲国产日韩一区二区| 美女福利国产在线| 性色av乱码一区二区三区2| 国产精品熟女久久久久浪| 亚洲黑人精品在线| 97精品久久久久久久久久精品| 欧美亚洲 丝袜 人妻 在线| 亚洲av综合色区一区| 在线观看免费午夜福利视频| 极品少妇高潮喷水抽搐| 欧美黄色淫秽网站| 欧美97在线视频| 国产男人的电影天堂91| 日本91视频免费播放| 国产国语露脸激情在线看| 国产深夜福利视频在线观看| 少妇人妻 视频| 免费看av在线观看网站| 青草久久国产| 99久久人妻综合| 日韩中文字幕视频在线看片| 考比视频在线观看| 黑人猛操日本美女一级片| 欧美黄色片欧美黄色片| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 久久人人爽人人片av| 中文字幕精品免费在线观看视频| 超碰成人久久| 每晚都被弄得嗷嗷叫到高潮| 老司机影院成人| 99国产精品99久久久久| 熟女少妇亚洲综合色aaa.| www.精华液| 97人妻天天添夜夜摸| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人| 国语对白做爰xxxⅹ性视频网站| 性高湖久久久久久久久免费观看| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 精品久久蜜臀av无| 两个人免费观看高清视频| 黑人猛操日本美女一级片| 亚洲av美国av| 精品高清国产在线一区| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 免费观看a级毛片全部| 好男人电影高清在线观看| 老司机午夜十八禁免费视频| 免费少妇av软件| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 欧美久久黑人一区二区| 亚洲中文av在线| 咕卡用的链子| 大话2 男鬼变身卡| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| 久久久久久久国产电影| 在线av久久热| 一区福利在线观看| 人人澡人人妻人| 高清视频免费观看一区二区| 国产免费视频播放在线视频| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 91国产中文字幕| 老司机靠b影院| 精品国产一区二区久久| 少妇精品久久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产成人一区二区在线| 亚洲成人手机| 男女免费视频国产| 一级黄片播放器| 欧美成狂野欧美在线观看| 国产高清视频在线播放一区 | 亚洲 欧美一区二区三区| videosex国产| 亚洲一区中文字幕在线| 成人黄色视频免费在线看| 亚洲图色成人| 熟女少妇亚洲综合色aaa.| 欧美黑人欧美精品刺激| 在线观看免费高清a一片| 免费观看人在逋| 午夜激情av网站| 亚洲美女黄色视频免费看| 老熟女久久久| 国产精品免费大片| 欧美人与善性xxx| 亚洲欧美日韩高清在线视频 | 日本91视频免费播放| 久久久久精品国产欧美久久久 | 亚洲人成77777在线视频| 超碰成人久久| 只有这里有精品99| 亚洲国产成人一精品久久久| 精品国产一区二区久久| 青春草视频在线免费观看| 国产精品免费大片| 国产一区二区三区综合在线观看| 一本久久精品| 视频在线观看一区二区三区| 午夜视频精品福利| 中文字幕色久视频| 久久毛片免费看一区二区三区| 一区二区三区四区激情视频| 91麻豆精品激情在线观看国产 | 久久久久国产精品人妻一区二区| 视频在线观看一区二区三区| 自线自在国产av| 青草久久国产| 日日夜夜操网爽| 久久久久久久久免费视频了| 久久精品亚洲熟妇少妇任你| 亚洲成人国产一区在线观看 | 中文字幕av电影在线播放| 日韩电影二区| 日韩大码丰满熟妇| 久久精品国产综合久久久| 国产欧美日韩一区二区三 | 亚洲少妇的诱惑av| 日本色播在线视频| netflix在线观看网站| 18禁国产床啪视频网站| 国产97色在线日韩免费| 黑人巨大精品欧美一区二区蜜桃| 成人手机av| 国产片特级美女逼逼视频| 中文字幕另类日韩欧美亚洲嫩草| av国产精品久久久久影院| 人妻 亚洲 视频| 大码成人一级视频| 国产亚洲av片在线观看秒播厂| 黄色片一级片一级黄色片| 婷婷成人精品国产| 国产黄色免费在线视频| 手机成人av网站| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 亚洲国产日韩一区二区| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人97超碰香蕉20202| 男人操女人黄网站| 亚洲伊人色综图| 亚洲精品国产色婷婷电影| 黄色一级大片看看| 久久久久国产精品人妻一区二区| 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 高清欧美精品videossex| 嫁个100分男人电影在线观看 | 国产片内射在线| 成在线人永久免费视频| 国产视频一区二区在线看| 亚洲av男天堂| 人人妻人人爽人人添夜夜欢视频| 热99国产精品久久久久久7| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 9色porny在线观看| 大型av网站在线播放| 久久久久久久国产电影| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 免费看av在线观看网站| 亚洲综合色网址| 亚洲久久久国产精品| 99久久人妻综合| 成人影院久久| 丝袜美腿诱惑在线| 婷婷色av中文字幕| 国产精品三级大全| 亚洲人成77777在线视频| 热re99久久精品国产66热6| xxx大片免费视频| 黄色视频不卡| 亚洲欧美中文字幕日韩二区| 少妇人妻 视频| 人人妻人人爽人人添夜夜欢视频| 一边摸一边抽搐一进一出视频| 国产国语露脸激情在线看| 午夜免费男女啪啪视频观看| 美国免费a级毛片| 欧美人与性动交α欧美精品济南到| 国产淫语在线视频| 精品少妇内射三级| 18在线观看网站| 国产成人系列免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲一区二区三区欧美精品| 精品亚洲成国产av| 丁香六月欧美| 国产黄色免费在线视频| 国产免费又黄又爽又色| 精品卡一卡二卡四卡免费|