茹林 楊潔紅 晉旭東
摘 要:選用(NH4)2SO3溶液為吸收液,在鼓泡反應(yīng)塔內(nèi)對(duì)NO的吸收特性進(jìn)行實(shí)驗(yàn)研究,探討了(NH4)2SO3的溶液濃度、NO濃度、氣體流量、溫度和SO2濃度等對(duì)NO脫除效率和吸收容量的影響。研究表明,NO脫除效率和吸收容量隨著(NH4)2SO3溶液濃度和NO入口濃度的增加而增加,隨著入口氣體流量的增大而減小。而隨著溫度的升高,NO脫除效率和吸收容量先增加,到達(dá)50 ℃時(shí)達(dá)到最大值,溫度繼續(xù)升高,NO脫除效率和吸收容量逐漸下降。SO2的存在對(duì)NO脫除效率和吸收容量有一定的促進(jìn)作用。分析了(NH4)2SO3還原脫除NO機(jī)理,研究結(jié)果為氨法脫硫系統(tǒng)增加脫硝功能提供了實(shí)驗(yàn)基礎(chǔ)。
關(guān)鍵詞:氨法;(NH4)2SO3溶液;NO;脫除效率;吸收容量
中圖分類號(hào):X701.3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2095-6835(2014)04-0105-04
在濕法煙氣脫硫中,石灰石—石膏法和氨法脫硫工藝的脫硫效率均可超過95%,技術(shù)成熟、應(yīng)用廣泛且經(jīng)濟(jì)性強(qiáng),在脫硫行業(yè)中占有主導(dǎo)地位。與石灰石—石膏法相比,氨法煙氣脫硫發(fā)展較晚,但其脫硫效率高達(dá)98%,滿足了當(dāng)前更為嚴(yán)格的排放要求。氨法工藝得到的副產(chǎn)物,比如硫酸銨、亞硫酸銨、亞硫酸氫銨等利用價(jià)值相對(duì)較高,經(jīng)濟(jì)效益明顯,可在一定程度上彌補(bǔ)煙氣脫硫的運(yùn)行費(fèi)用,此工藝尤其適用于高硫煤燃燒后的煙氣凈化。
氨法脫硫脫硝技術(shù)是基于氨法脫硫發(fā)展起來的,氨法脫硫后產(chǎn)生的脫硫液具有還原脫除能力,可以再吸收NOx,從而實(shí)現(xiàn)脫硫脫硝。氨法脫硫后產(chǎn)生的脫硫液中主要成分是(NH4)2SO3,還有少量的NH4HSO3,因此,氨法脫硝主要是通過(NH4)2SO3與NOx的還原反應(yīng)實(shí)現(xiàn)的。燃煤電廠排放的NOx主要是NO,占總排放量的90%~95%,因?yàn)樗陨黼y溶于水,所以加大了吸收脫除的難度。在現(xiàn)有的濕法脫硝研究中,多是將NO氧化成NO2后再進(jìn)行吸收,但氧化劑的成本很高。因此,研究如何利用氨法脫硫漿液在脫硫的同時(shí)低成本脫除NO是很有必要的。
Komiyama和Inoue研究了弱堿性溶液對(duì)NO2的吸收以及對(duì)NO和NO2混合氣體的吸收,并通過假定液相中NO,NO2,N2O3,N2O4各組分以及N2O3和N2O4的水合反應(yīng)保持平衡建立了模型,確定了參數(shù)。Hüpen和Kenig通過研究建立了板式塔和填料塔中NOx吸收的模型。Chien等在噴淋塔中研究同時(shí)脫硫脫硝技術(shù),發(fā)現(xiàn)氣相中SO2的存在可以促進(jìn)對(duì)NO和NO2的吸收。目前,國內(nèi)外利用氨法脫硫吸收液脫硝的研究還不多見,杜振等基于雙膜理論研究了(NH4)2SO3溶液與NOx的氣液吸收反應(yīng)。研究表明,氣液相攪拌速度和溫度增加,NOx的吸收速率也在相應(yīng)增加;O2含量增加,NO2的吸收速率降低,NO吸收速率增加;氣相中SO2的存在對(duì)NOx的吸收有促進(jìn)作用。Gao等在雙攪拌反應(yīng)釜中研究了氣液相組分對(duì)(NH4)2SO3吸收NOx的影響,發(fā)現(xiàn)(NH4)2SO3和NH4HSO3的物質(zhì)的量濃度對(duì)NOx吸收有重要影響;溶液濃度一定時(shí),NOx吸收受NO2/NOx比值的影響;在(NH4)2SO3溶液中,NO2進(jìn)口濃度增大可使NO吸收達(dá)到最大值,而NO和NO2共存在某種程度上會(huì)提高彼此的脫除率。在這些研究中,模擬煙氣成分包括NO,NO2,SO2,O2,因?yàn)镹O2的存在對(duì)NO的脫除有很重要的影響。而在實(shí)際應(yīng)用中,燃煤電廠排放的煙氣中95%的NOx有是NO的,由此可見,原有研究與實(shí)際煙氣之間存在重大差異,而且現(xiàn)有研究多側(cè)重于對(duì)NO吸收速率的研究,對(duì)NO脫除效率的研究還較少,因此,有必要詳細(xì)考察(NH4)2SO3溶液對(duì)NO的脫除效果,為下一步的氨法脫硫中增進(jìn)脫硝奠定基礎(chǔ)。
該研究選用(NH4)2SO3溶液為吸收液,探討了在鼓泡反應(yīng)塔內(nèi)各種因素對(duì)NO脫除效率和吸收容量的影響。
1 反應(yīng)機(jī)理
NOx在氣液相中的反應(yīng)如圖1所示。
3.4 溫度
在物質(zhì)的量的濃度為0.1 mol/L的(NH4)2SO3溶液中,進(jìn)口氣體流量為0.1 mol/L,NO入口的質(zhì)量濃度為450 mg/m3左右,研究1~6 min內(nèi)溫度分別為20 ℃、30 ℃、40 ℃、50 ℃、60 ℃對(duì)NO脫除效率的影響,如圖9所示。從圖9中可以看出,隨著反應(yīng)溫度的升高,NO的整體脫除效率呈現(xiàn)先升高后降低的趨勢。當(dāng)溫度小于50 ℃時(shí),NO的脫除效率隨溫度的升高而升高。由于溫度升高,分子的能量增大,活化分子數(shù)增多,分子運(yùn)動(dòng)加快,化學(xué)反應(yīng)速率增大,脫除效率升高。由圖9曲線可知,隨著溫度的升高其脫除效率升高得并不明顯,這是因?yàn)樵跍囟壬叩耐瑫r(shí),NO的溶解度降低,傳質(zhì)阻力增大,NO的脫除效率受到一定的抑制,但總體表現(xiàn)出來的促進(jìn)作用要大于抑制作用。當(dāng)溫度繼續(xù)升高,(NH4)2SO3 受熱分解程度增大,(NH4)2SO3溶液濃度降低,NO在水中的平衡濃度逐漸降低,NO的脫除效率開始下降,此時(shí)抑制作用大于促進(jìn)作用。
由圖10可知,溫度從20 ℃升高到50 ℃時(shí),NO的吸收容量從1.675 7×10-2 mg增加到4.074 1×10-2 mg;溫度繼續(xù)升高,到達(dá)60 ℃時(shí),NO的吸收容量降到了2.999 9×10-2 mg。
綜合考慮,反應(yīng)溫度為50 ℃時(shí),從鼓泡反應(yīng)塔中出來的煙氣水汽較重,對(duì)干燥劑的損耗較大,因此,實(shí)驗(yàn)中在研究其他因素對(duì)NO的脫除效率和吸收容量的影響時(shí),應(yīng)選用40 ℃為反應(yīng)溫度。
4 結(jié)論
NO的脫除效率和吸收容量隨著(NH4)2SO3溶液物質(zhì)的量濃度的增大而增大。當(dāng)(NH4)2SO3溶液的物質(zhì)量的濃度超過0.05 mol/L時(shí),隨著濃度的升高,NO的脫除效率繼續(xù)增大,但增加的幅度逐漸減小。NO的脫除效率和吸收容量隨著NO入口濃度的增大而逐漸增大,隨著入口氣體流量的增大而減小。
隨著溫度的升高,NO的脫除效率和吸收容量逐漸增大,當(dāng)溫度到達(dá)50 ℃時(shí),NO的脫除效率和吸收容量達(dá)到最大值,溫度繼續(xù)升高,NO的脫除效率和吸收容量開始減小。
SO2的存在對(duì)NO脫除效率和吸收容量有著一定的促進(jìn)作用,超過一定的質(zhì)量濃度,隨著SO2入口質(zhì)量濃度的增大,NO的脫除效率和吸收容量開始降低。在實(shí)驗(yàn)條件下,通入低質(zhì)量濃度的SO2,SO2的脫除效率基本達(dá)到100%,繼續(xù)增加SO2的入口質(zhì)量濃度,SO2的脫除效率會(huì)降低。
確定了(NH4)2SO3溶液脫除NO的最佳實(shí)驗(yàn)條件,即(NH4)2SO3溶液的物質(zhì)的量濃度為0.1 mol/L,反應(yīng)溫度為40 ℃,選用的煙氣流量為0.08 m3/h,SO2入口的質(zhì)量濃度為500 mg/m3左右,NO入口的質(zhì)量濃度為700 mg/m3左右。在最佳實(shí)驗(yàn)條件下,6 min脫除效率穩(wěn)定時(shí),SO2的脫除效率可達(dá)100%,NO的脫除效率可達(dá)19.12%,SO2的吸收容量可達(dá)2 .580 48×10-2 mg,NO的吸收容量可達(dá)6.809 8×10-2 mg。
參考文獻(xiàn)
[1]杜振.濕式氨法煙氣脫硫脫硝過程中NOx吸收的試驗(yàn)研究[D].杭州:浙江大學(xué),2011.
[2]JIN H F,SANTIAGO D E O,PARK J,et al.Enhancement of nitric oxide solubility using Fe(Ⅱ)EDTA and its removal by green algae Scenedesmus sp[J].Biotechnol Bioprocess Eng,2008,13(1):48-52.
[3]LONG X L,XIN Z L,CHEN M B,et al.Kinetics for the simultaneous removal of NO and SO2 with cobalt ethylenediamine solution[J].Sep Purif Technol,2008,58(3):328-334.
[4]KOMIYAMA H,INOUE H. Absorption of nitrogen oxides into water [J].Chem Eng Sci,1980,35(1-2):154-161.
[5]H?PEN B,KENIG E Y. Rigorous modelling of NOx absorption in tray and packed columns [J].Chem Eng Sci, 2005,60(22):6462-6471.
[6]CHIEN T W,CHU H,HSUEH H T. Kinetic study on absorption of SO2 and NOx with acidic NaClO2 solutions using the spraying column[J].J Environ Eng,2003,129(11):967-974.
[7]杜振,高翔,丁紅蕾,等. 氨法煙氣脫硫過程中(NH4)2SO3溶液與NOx的氣液吸收反應(yīng)[J].中國電機(jī)工程學(xué)報(bào),2011,3(17):44-50.
[8]GAO X,DU Z,DING H L,et al.Effect of gas-liquid phase compositions on NO2 and NO absorption into ammonium -sulfite and bisulfite solutions[J].Fuel Process Technol,2011,92(8):1506-1512.
[9]SUCHAK N J,JETHANI K R,JOSHI J B.Absorption of nitrogen-oxides in alkaline solutions[J].Ind Eng Chem Res,1990,29(7):1492-1502.
[10]SUCHAK N J,JETHANI K R,JOSHI J B.Modelling and simulation of NOx absorption in pilot scale packed columns[J].AIChE. J,1991,37(3):323-339.
[11]NEWMAN B L,CARTA G.Mass-transfer in the absorption of nitrogen-oxides in alkaline solutions[J].AIChE. J,1988,34(7):1190-1199.
[12]THOMAS D,VANDERSCHUREN J. Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solution[J].Sep Purif Technol,2000,18(1):37-45.
[13]馬雙忱,趙毅,陳穎敏.液相催化氧化脫除煙氣中SO2和NOx的機(jī)理討論[J].華北電力大學(xué)學(xué)報(bào),2001,28(4): 75-79.
[14]DE PAIVA J L,KACHAN G C.Absorption of nitrogen oxides in aqueous solution in a structured packing pilot column[J].Chem Eng Process,2004,43(7):941-948.
[15]ZHANG X W,TONG H L,ZHANG H,et al.Nitrogen oxides absorption on calcium hydroxide at low temperature [J].Ind Eng Chem Res,2008,47(11):3827-3833.
[16]OBLATH S B,MARKOWITZ S S,NOVAKOV T,et al.Kinetics of the foromation of Hydroxylamine disulfonate by reaction of nitrite with sulfites[J].J Phys Chem,1981,85(8):1017-1021.
[17]CLIFTON C L,ALTSTEIN N,HUIE R E.Rate-constant for the reaction of NO2 with sulfur(Ⅳ)over the pH range 5.3~13[J].Environ Sci Technol,1988,22(5):586-589.
[18]LITTLEJOHN D,WANG Y Z,CHANG S G.Oxidation of aqueous sulfite ion by nitrogen dioxide[J].Environ Sci Technol,1993,27(10):2162-2167.
[19]SHEN C H,ROCHELLE G T.Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite[J].Environ Sci Technol,1998,32(13):1994-2003.
[20]SIDDIQI M A,PETERSEN J,LUCAS K.A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes[J].Ind Eng Chem Res,2001,40(9):2116-2127.
〔編輯:白潔〕
Abstract: The selection of(NH4)2SO3 solution as absorption liquid, at NO bubbling reaction tower on experimental study on the characteristics of absorption, discusses the solution of(NH4)2SO3 concentration, NO concentration, gas flow rate, temperature and SO2 concentration on the NO removal efficiency and the influence of absorptive capacity. Research shows that the NO removal efficiency and with(NH4)2SO3 absorption capacity increased with increasing solution concentration and NO entrance concentration, and decreases as the inlet gas flow. And with the increase of temperature, the NO removal efficiency and absorption capacity increased first and reach maximum arrived at 50 ℃, the temperature continues to rise, the NO removal efficiency and decrease its absorption capacity. The presence of SO2 on the NO removal efficiency and absorption capacity has a certain role in promoting. Analyzed the(NH4)2 so3 reductive removal NO mechanism, the results of the study for ammonia desulphurization system increases the denitration function provides the experimental basis.
Key words: ammonia method;(NH4)2SO3 solution; NO; removal efficiency; absorption capacity
[16]OBLATH S B,MARKOWITZ S S,NOVAKOV T,et al.Kinetics of the foromation of Hydroxylamine disulfonate by reaction of nitrite with sulfites[J].J Phys Chem,1981,85(8):1017-1021.
[17]CLIFTON C L,ALTSTEIN N,HUIE R E.Rate-constant for the reaction of NO2 with sulfur(Ⅳ)over the pH range 5.3~13[J].Environ Sci Technol,1988,22(5):586-589.
[18]LITTLEJOHN D,WANG Y Z,CHANG S G.Oxidation of aqueous sulfite ion by nitrogen dioxide[J].Environ Sci Technol,1993,27(10):2162-2167.
[19]SHEN C H,ROCHELLE G T.Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite[J].Environ Sci Technol,1998,32(13):1994-2003.
[20]SIDDIQI M A,PETERSEN J,LUCAS K.A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes[J].Ind Eng Chem Res,2001,40(9):2116-2127.
〔編輯:白潔〕
Abstract: The selection of(NH4)2SO3 solution as absorption liquid, at NO bubbling reaction tower on experimental study on the characteristics of absorption, discusses the solution of(NH4)2SO3 concentration, NO concentration, gas flow rate, temperature and SO2 concentration on the NO removal efficiency and the influence of absorptive capacity. Research shows that the NO removal efficiency and with(NH4)2SO3 absorption capacity increased with increasing solution concentration and NO entrance concentration, and decreases as the inlet gas flow. And with the increase of temperature, the NO removal efficiency and absorption capacity increased first and reach maximum arrived at 50 ℃, the temperature continues to rise, the NO removal efficiency and decrease its absorption capacity. The presence of SO2 on the NO removal efficiency and absorption capacity has a certain role in promoting. Analyzed the(NH4)2 so3 reductive removal NO mechanism, the results of the study for ammonia desulphurization system increases the denitration function provides the experimental basis.
Key words: ammonia method;(NH4)2SO3 solution; NO; removal efficiency; absorption capacity
[16]OBLATH S B,MARKOWITZ S S,NOVAKOV T,et al.Kinetics of the foromation of Hydroxylamine disulfonate by reaction of nitrite with sulfites[J].J Phys Chem,1981,85(8):1017-1021.
[17]CLIFTON C L,ALTSTEIN N,HUIE R E.Rate-constant for the reaction of NO2 with sulfur(Ⅳ)over the pH range 5.3~13[J].Environ Sci Technol,1988,22(5):586-589.
[18]LITTLEJOHN D,WANG Y Z,CHANG S G.Oxidation of aqueous sulfite ion by nitrogen dioxide[J].Environ Sci Technol,1993,27(10):2162-2167.
[19]SHEN C H,ROCHELLE G T.Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite[J].Environ Sci Technol,1998,32(13):1994-2003.
[20]SIDDIQI M A,PETERSEN J,LUCAS K.A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes[J].Ind Eng Chem Res,2001,40(9):2116-2127.
〔編輯:白潔〕
Abstract: The selection of(NH4)2SO3 solution as absorption liquid, at NO bubbling reaction tower on experimental study on the characteristics of absorption, discusses the solution of(NH4)2SO3 concentration, NO concentration, gas flow rate, temperature and SO2 concentration on the NO removal efficiency and the influence of absorptive capacity. Research shows that the NO removal efficiency and with(NH4)2SO3 absorption capacity increased with increasing solution concentration and NO entrance concentration, and decreases as the inlet gas flow. And with the increase of temperature, the NO removal efficiency and absorption capacity increased first and reach maximum arrived at 50 ℃, the temperature continues to rise, the NO removal efficiency and decrease its absorption capacity. The presence of SO2 on the NO removal efficiency and absorption capacity has a certain role in promoting. Analyzed the(NH4)2 so3 reductive removal NO mechanism, the results of the study for ammonia desulphurization system increases the denitration function provides the experimental basis.
Key words: ammonia method;(NH4)2SO3 solution; NO; removal efficiency; absorption capacity