欒燕 宋謝炎 陳列錳 鄭文勤 田小林 冉啟渝
1.中國科學(xué)院地球化學(xué)研究所,礦床地球化學(xué)國家重點實驗室,貴陽 550002
2.中國科學(xué)院大學(xué),北京 100049
3.四川省地質(zhì)礦產(chǎn)勘查開發(fā)局106地質(zhì)隊,成都 611130
層狀侵入體是鎂鐵-超鎂鐵質(zhì)巖漿在巖漿房中演化的產(chǎn)物,記錄了巖漿在巖漿房中演化的過程以及物理化學(xué)條件(Wager and Brown,1968;Naldrett,1989;宋謝炎等,1997;Barling et al.,2000;鐘宏等,2007;夏昭德等,2011)。反演層狀巖體形成時的物理化學(xué)條件(溫度、壓力、氧逸度等)已成為揭示幔源巖漿演化和巖漿礦床成因的重要手段(鐘宏等,2007),其中氧逸度變化是控制基性巖漿演化形成巖漿釩鈦磁鐵礦礦床的關(guān)鍵因素之一(Toplis and Carroll,1995,1996;Botcharnikov et al.,2008)。前人對峨眉山大火成巖省內(nèi)帶層狀巖體中釩鈦磁鐵礦形成時的溫壓和氧逸度條件等進行了一定的探討,如Pang et al.(2008a,b,2009)認(rèn)為鐵鈦氧化物是在接近液相線時與橄欖石等硅酸鹽礦物同時結(jié)晶形成的,并根據(jù)磁鐵礦和鈦鐵礦電子探針成分估計了攀枝花巖體氧化物結(jié)晶的溫度和氧逸度(1000℃,F(xiàn)MQ>+1.5),但由于磁鐵礦和鈦鐵礦都發(fā)生了固溶體分離,因此根據(jù)電子探針成分估算的溫度和氧逸度可能存在較大誤差。張曉琪等(2011)利用攀枝花巖體沒有發(fā)生固溶體分離的斜長石估算了攀枝花釩鈦磁鐵礦礦層形成時的溫度區(qū)間(1079~1121℃),但未對礦層形成時的氧逸度范圍進行限定。Bai et al.(2012)根據(jù)磁鐵礦以及母巖漿中的V含量估算了紅格巖體磁鐵礦結(jié)晶時的氧逸度范圍(FMQ+1~FMQ+2),但母巖漿中V含量的不確定性使得估算的氧逸度存在一定誤差。所以,利用上述方法探討釩鈦磁鐵礦礦層形成時的物理化學(xué)條件受到了一定限制。
紅格巖體不同于峨眉山大火成巖省內(nèi)帶其它賦存大型釩鈦磁鐵礦礦床的層狀巖體(如攀枝花巖體,Song et al.,2013;白馬巖體,Zhang et al.,2012)的一個顯著特征是,巖體各巖相帶中角閃石和金云母普遍分布,尤其是下部巖相帶角閃(磁鐵)輝石巖和角閃(磁鐵)橄輝巖中角閃石含量高達5%~15%;并且角閃石和金云母均未發(fā)現(xiàn)固溶體分離形成的出溶條紋,其電子探針成分可以代表它們結(jié)晶時的原始成分。前人研究表明,角閃石和金云母的成分受溫度、壓力、氧逸度和熔體總成分的影響,可以反映巖漿分離結(jié)晶過程中物化條件的改變(Kesler et al.,1975;Hammarstrom and Zen,1986;陳光遠(yuǎn)等,1988;周作俠,1991;Feeley and Sharp,1996;Selby and Nesbitt,2000;Ridolfi et al.,2008,2010),這樣就為我們估算紅格巖體形成時的物理化學(xué)條件提供了一個很好的機會,所以本文試圖利用角閃石和金云母的成分對紅格巖體的溫壓以及氧逸度條件進行約束。
峨眉山大火成巖省位于揚子板塊西部至青藏高原東緣的廣大地區(qū),并一直延伸至越南北部,出露面積超過5×105km2(圖1)。它主要由峨眉山玄武巖、鎂鐵-超鎂鐵質(zhì)層狀侵入體以及同源的酸性、堿性侵入巖組成,一般認(rèn)為是二疊紀(jì)峨眉山地幔柱作用的產(chǎn)物(Chung and Jahn,1995;Song et al.,2001;Xu et al.,2001;宋謝炎等,2001;Zhou et al.,2002;Zhang et al.,2006,2008,2009,2014)。攀西地區(qū)位于峨眉山大火成巖省的內(nèi)帶,沿南北向磨盤山-元謀斷裂和攀枝花斷裂帶出露一系列含V-Ti磁鐵礦礦床的基性-超基性層狀巖體,從北向南依次為太和巖體(262±3Ma,Zhou et al.,2008)、白馬巖體(262±3Ma,Guo et al.,2004)、新街巖體(259±3Ma,Zhou et al.,2002)、紅格巖體(259±1.3Ma,Zhong and Zhu,2006)和攀枝花巖體(263±3Ma,Zhou et al.,2005;259.8±0.8Ma,Hou et al.,2012;261.4±4.6Ma,Hou et al.,2013)(圖1)。根據(jù)巖石組合的不同,這些含礦巖體可以分為兩類:(1)鎂鐵-超鎂鐵質(zhì)侵入體,如紅格、新街巖體;(2)鎂鐵質(zhì)侵入體,如攀枝花、太和、白馬巖體。紅格巖體是攀西地區(qū)最大的賦存V-Ti磁鐵礦礦床的層狀巖體(攀西地質(zhì)大隊,1984①攀西地質(zhì)大隊.1984.攀枝花-西昌地區(qū)釩鈦磁鐵礦共生礦成礦規(guī)律與預(yù)測研究報告.166-180)。
圖1 攀西地區(qū)鎂鐵-超鎂鐵質(zhì)層狀侵入體分布圖(據(jù)Song et al.,2009)各侵入體年齡分別引自 Zhou et al.(2002,2005,2008),Guo et al.(2004),Zhong and Zhu(2006),Tao et al.(2009)和 Yu et al.(2014)Fig.1 Distribution of the layered mafic-ultramafic intrusions in the central zone of the Emeishan Large Igneous Province(after Song et al.,2009)Ages of these intrusions are from Zhou et al.(2002,2005,2008),Guo et al.(2004),Zhong and Zhu(2006),Tao et al.(2009)and Yu et al.(2014)
近水平的紅格巖體呈南北走向,長約16km,寬約5~10km,厚約1.2km(圖2a,b)。地表主要出露上部巖相帶的輝長巖和中部巖相帶的輝石巖(圖2a)。該巖體北部侵位于中元古代片巖和變質(zhì)砂巖中,南部侵位于新元古代的白云質(zhì)灰?guī)r中;在巖體東北角,上部巖相帶的輝長巖與峨眉山玄武巖直接接觸。由于后期二疊紀(jì)花崗巖和正長巖的侵入(255.2±3.6Ma,Xu et al.,2008),紅格巖體與圍巖的接觸關(guān)系被破壞,部分巖體呈捕擄體被包裹在花崗巖中(圖2a,b)。
圖2 紅格層狀巖體地質(zhì)簡圖(a)和勘探線剖面圖(b)(據(jù)四川106地質(zhì)隊,2010① 四川106地質(zhì)隊.2010.四川省攀西地區(qū)釩鈦磁鐵礦整裝勘查項目報告修改)Fig.2 Simplified geological map(a)and cross section of the exploration line(b)of the Hongge layered intrusion
根據(jù)礦物組合及含量變化,特征礦物相(磷灰石、橄欖石)的出現(xiàn)和消失以及巖石結(jié)構(gòu)構(gòu)造特征等,紅格巖體從下往上可分下部巖相帶、中部巖相帶和上部巖相帶3個巖相帶(Luan et al.,2014)。下部巖相帶以含量高達5% ~15%的角閃石為特征;中部巖相帶以塊狀礦石的出現(xiàn)為特征;上部巖相帶以大量自形磷灰石的出現(xiàn)為特征(Luan et al.,2014)。
表1 紅格巖體巖性及造巖礦物結(jié)構(gòu)特征Table 1 Lithological features and mineral as semblages of the Hongge intrusion
下部巖相帶可以分為4個旋回(從下往上依次為I、II、III、IV),每個旋回從下往上伴隨著橄欖石的減少,由下部的角閃(磁鐵)橄輝巖過渡為上部的角閃(磁鐵)輝石巖(表1)。中部巖相帶可以分為4個旋回(從下往上依次為V、VI、VII、VIII),伴隨著Fe-Ti氧化物的減少,每個旋回由下部的塊狀礦石,向上過渡為磁鐵橄輝巖、磁鐵輝石巖或者(磁鐵)輝長巖(表1)。上部巖相帶可以分為2個旋回(IX、X),旋回IX主要為磷灰石磁鐵輝長巖,旋回X主要為磷灰石輝長巖,間夾少量磷灰石磁鐵輝長巖層(表1)。
角閃石主要賦存在巖體下部巖相帶的角閃(磁鐵)輝石巖以及角閃(磁鐵)橄輝巖巖中。角閃輝石巖中含有70% ~75%單斜輝石,8% ~20%Fe-Ti氧化物,7% ~10%角閃石,<5%橄欖石以及少量的斜長石和磷灰石。角閃橄輝巖中含有10%~35%橄欖石以及40% ~75%單斜輝石,而角閃磁鐵輝石巖和角閃磁鐵橄輝巖中磁鐵礦含量超過20%。在中部和上部巖相帶中,角閃石含量一般小于3%,局部含量可達5%~15%(表1)。紅格巖體角閃石主要有以下三種形態(tài)(表1、圖3):(1)嵌晶狀角閃石(粒度可達5cm),其中包裹橄欖石、單斜輝石以及Fe-Ti氧化物等礦物(圖3a),主要分布在下部巖相帶;(2)填隙狀角閃石,呈它形充填在單斜輝石、橄欖石及Fe-Ti氧化物顆粒之間(圖3b,e),主要分布在下部巖相帶,在中部巖相帶和上部巖相帶的局部出現(xiàn);(3)反應(yīng)邊角閃石,構(gòu)成單斜輝石的反應(yīng)邊(圖3c),在三個巖相帶中均會出現(xiàn)。
金云母在紅格巖體中分布不均,主要出現(xiàn)在下部巖相帶,一般含量低于4%,局部含量達到5% ~8%(表1)。金云母解理發(fā)育,呈他形填隙狀并包裹自形的Fe-Ti氧化物顆粒(圖3d)或者呈自形-半自形狀(圖3f)。
圖3 紅格巖體角閃石和金云母單偏光下結(jié)構(gòu)特征(a)-角閃磁鐵橄輝巖中嵌晶狀角閃石包裹橄欖石和自形Fe-Ti氧化物;(b)-角閃輝石巖中的填隙狀角閃石;(c)-磁鐵橄輝巖中的角閃石反應(yīng)邊結(jié)構(gòu);(d)-角閃輝石巖中金云母充填在單斜輝石顆粒之間,并包裹自形Fe-Ti氧化物;(e)-磁鐵輝石巖中的填隙狀角閃石;(f)-磁鐵輝石巖中的自形-半自形金云母.Ox-Fe-Ti氧化物;Ol-橄欖石;Cpx-單斜輝石;Hb-角閃石;Phl-金云母Fig.3 Textures of hornblende and phlogopite from the Hongge intrusion under plane-polarized light(a)-poikilitic hornblende enclosing olivine and euhedral Fe-Ti oxides in hornblende magnetite olivine clinopyroxenite;(b)-interstitial hornblende in hornblende clinopyroxenite;(c)-hornblende reaction rims in the magnetite olivine clinopyroxenite;(d)-phlogopite enclosing euhedral Fe-Ti oxides and filling between clinopyroxene grains in hornblende clinopyroxenite;(e)-interstitial hornblende in magnetite clinopyroxenite;(f)-euhedralhypidiomorphic phlogopite in magnetite clinopyroxenite.Ox-Fe-Ti oxide;Ol-olivine;Cpx-clinopyroxene;Hb-hornblende;Phl-phlogopite
角閃石和金云母電子探針成分分析在中國科學(xué)院地球化學(xué)研究所電子探針實驗室完成。分析儀器為:日本島津公司生產(chǎn)的 EMPA-1600電子探針。分析條件為:加速電壓25kV,電流10nA,分析束斑直徑為10μm。分析時所用標(biāo)樣為:美國生產(chǎn)的標(biāo)樣SPI#2753-AB,分析精度為0.01。主要氧化物百分含量的分析誤差<2%,分析結(jié)果見表2、表3。
圖4 紅格巖體角閃石分類與命名(據(jù)Leake et al.,1997)Fig.4 Classification of the hornblende in the Hongge intrusion(after Leake et al.,1997)
圖5 紅格巖體云母Mg-(AlVI+Fe3++Ti)-(Fe2++Mn)分類圖解(據(jù)Foster,1960)Fig.5 Mg-(AlVI+Fe3++Ti)-(Fe2++Mn)diagram of the mica in the Hongge intrusion(after Foster,1960)
根據(jù)角閃石化學(xué)分子式(表2),角閃石陽離子特征為:CaB=1.72~1.9,(Na+K)A=0.66~0.92。按國際礦物學(xué)協(xié)會角閃石專業(yè)委員會提出的命名原則,紅格巖體角閃石屬于鈣角閃石(CaB≥1.5,(Na+K)A≥0.5)。按鈣角閃石的進一步分類命名原則,紅格巖體角閃石Si=5.91~6.34,Mg/(Mg+Fe2+)=0.65~0.78,投影到Si-Mg/(Mg+Fe2+)圖解上定名為韭閃石、鎂綠鈣閃石和鈦閃石(圖4)(Leake et al.,1997)。紅格巖體角閃石化學(xué)成分顯示以下特征:富鎂(13.0% ~15.0%)、富CaO(11.0% ~12.5%)和貧鉀、富鈉(K2O=0.5% ~1.5%,Na2O=2.0% ~3.0%)。其TiO2含量主要分布在3.5%~5.0%之間,Al2O3含量主要在10.5% ~12.0%之間(表2)。
在云母的Mg-(AlVI+Fe3++Ti)-(Fe2++Mn)分類圖解中(圖5)(Foster,1960),紅格巖體的云母成分投點均在金云母區(qū)域。紅格巖體金云母具有高鎂、低鋁、低鐵的特征(MgO=18.7% ~22.9%,Al2O3=13.1% ~15.2%,F(xiàn)eOT=6.30%~11.4%)。其K2O含量為8.65% ~9.82%,Na2O含量為0.02%~0.96%,CaO含量小于 0.14%,K/Na比值大于16.7,顯示高鉀、低鈉、貧鈣的特征。
H b px 100-C b 4.2.22.8.15.3.10.5.7.23.19.03.3.22 H 692 4241101001311212996$b px 98 H 3.1.0.0.2.4 M t-C 717 423.62 120.00 8.00 0.07 15122.20 1.16 2.03 986.21 b96H O c p 735439.6.2.2.3.7 4.63 120.99 9.20 0.11 14122.53 0.97 2.01 985.91 t-b H95-Mb px C 749441.5.22.2 11.00.5.6.10.8.4.47 4.06 0.00 100.20 1311 H 212986 c p H b94 t-O 5 760 41.3.78.0.48 12.7.20.3.7.09 1.50 3.29 80.03 1412.10 20 M 2986 b H93 c pt-O 3 773 42.7.62.0.00 11.7.3.7.09.7 0.44 10.16 0 3.01 1311.34 21 M 2986#H b c p-O b 916 792 41.4.17.7.77 11.4.30.9.3.1 0.48 4.09 90.03 1411.11 21 H 2996 H b90 pxb -C 810540.9.67.2.07 11.5.6 10.14.2 13.6 12 0.27 3 021.09 1.98 976.18帶巖相H H b c p.6.8.7.0.2部b-O 8283413.23 101.52 8.90 0.11 14122.48 0.83 2.01 986.21下89H H b86 O c p 860342.1.4.4.0.2 4.44 110.00 100.09 14122.21 1.16 2.04 100 6.18 b t-"84 H -M c p 5.1.88.5.32.0.11.9.0.12.19.02.1.22 H b O 891 4231101001312212996 b t-82 H c p 4.1.77.0.01.4.11.7.6.10.49.01.3.11 H b-M O 916 4141111001311212996)b px w t%H b-C 9372.5.05.3.64.0.13.6.8.35.10.01.5.33 i nt r us i o n(80H 4241011001310212986 H b c p-O b 795 954.7 40.54.3 11.69.0.80.1.7.3.48 4.05 00.00 14.09 11 H 9212986)t%o ng g e b tw H -M c p 3.3.8.4.5.7.1(H !78b H O 969 414.65 110.32 100.12 13112.47 0.89 2.02 996.13成t he組b t-物f r o m H -M c p 5.8.91.4.68.9.12.5.0.31.13.02.8.05化77H b O 988 4041101001312212996氧要b t-主H b-M O c p 9984.1.72.4.51.30.21.0.5.45.86.02.0.09的ho r nbl e nde 76H 414111901411202996石o f閃角I VSi體o x i de s型 ) 位巖a j o r 帶回號 類m(數(shù)O3O3 nO g O O O O 占格M 相旋品 石 度點Si O2i O2 T l2e O a O F a2 e2o t a l F 子M巖 樣M C K2 N H2T紅巖 深A(yù) 離2陽2表a bl e T.781.270.470.010.020.271.000.972.010.841.150.490.220.010.700.710.330.911 1057.05 0 1.79 0.30 0.40 0.01 0.00 0.99 0.01 3.30 0.00 1.92 0.08 0.55 0.22 0.00 0.77 0.71 0.34 2.56 1021 0.58 2.09 0.06 0.52 0.01 0.11 1.15 0.00 3.15 0.02 1.96 0.02 0.71 0.19 0.09 0.73 0.69 0.36 2.39 1056 0.14.801.180.470.010.000 1.31 0.01.02 30.00 1.88.12 00.60 0.20.00 00.70 0.72.32 02.03 1082 0.07.901.190.420.010 0.17 1.02.00 03.20 0.03.95 10.03 0.68.05 00.14 0.76.71 00.34 2.35 959.41 0.661.270.410.010.000.331.040 2.94 0.00.83 10.17 0.53.22 00.00 0.69.73 00.30 1.84 1091.13 0.891.140.460.010 0.09 1.15.00 03.14 0.03.89 10.09 0.62.21 00.07 0.73.71 00.33 2.29 1080.31 0 1.82 0.17 0.42 0.02 0.01 1.32 0.00 3.06 0.00 1.97 0.03 0.63 0.21 0.01 0.70 0.72 0.32 2.04 1027 0.25 1.79 0.10 0.36 0.01 0.17 1.11 0.00 3.24 0.03 1.92 0.04 0.68 0.16 0.13 0.75 0.73 0.30 2.36 1040 0.69 1.82 0.15 0.49 0.01 0.00 1.28 0.01 3.06 0.00 1.92 0.08 0.55 0.22 0.00 0.70 0.72 0.32 2.13 1021 0.11.781.230.430.010.040.241.000.063.010.901.090.520.220.030.710.720.320.052 1020.27 0.891.040.530.010.110.301.000.003.030.861.110.500.280.080.700.710.320.082 1071.11 0.671.140.450.020.180.241.000.972.050.721.220.460.210.130.710.740.290.931 1114.28 0.911 0.08.51 00.01 0.08 1.23.00 03.09.02 01.88 0.10 0.62 0.20 0.06 0.72.71 00.33 2.25 1084.15 0.10 1.88 0.19 0.52 0.02 0.04 1.28 0.00 2.96 0.01 1.86 0.13 0.58 0.17 0.03 0.70 0.70 0.34 1.97 1062-0.95.07 1.05 0.55 0.02 0.08 0.35 1.00 0.97 2.02 0.91 1.07 0.59 0.21 0.05 0.69 0.70 0.33 0.03 210480-.911.080.530.030.170.161.000.043.050.821.130.580.160.130.730.710.330.202 1066.12 0 l l i n ++a g g a a a IA l)I VA 32V IA T M F e F e C M M C N N K+)V +值2e +比F +)2e )O]+2l F ℃N 4]數(shù)+e F A +N[6[系3e ++i +逸度T(%T位C位B位A位 子F g T 3e 氧離M +F 和陽+/(3/(/(度F e M g Si/Si A l/Si M g 溫
b b 51 H -M t-G 5.3.6.8.4.5.5 p 15414.87 100.47 100.18 13112.55 0.85 2.00 986.18 1.82 0.06 A b H b 52p-G 4.9.7.1.5.2.2.6 A 30 40411.35 110.20 01311.58 2.77 0.00 298.12 6.88 1.08 0 b&b 54 H t-G 4.8.7.1.4.2 p-M 70414.41 111.76 8.80 0.14 14112.43 0.60 2.04 996.15 1.85 0.18 A b H b-G p 3 114.8.7.7.3.1.9 A 141 39.48 511.00 011.15 01212.18 2.42 1.99 198.99 5.01 2.06 0帶相b巖b部H t-G 342.51.7.87.9.22.3.1.89.62.02.1.24.76.12上57-M 179 4100100131120299610 A p b H b 58-G 4.1.6.8.8.1.9 A p 211 423102.02 9.90 0.21 13112.95 0.42 2.02 986.24 1.76 0.13 b b H64 t-G 4.8.1.7.2 p-M 221413.64 120.65 8.80 0.10 14112.92 0.50 2.02 986.09 1.91 0.32%A b b 65 H t-G 4.4.9.5.6.2.0 p-M 239 403.88 122.79 7.60 0.09 141121.08 2.03 995.97 2.03 0.20 A b b H67 t-G-M 3.9.2.9.8.7 p 270 41.28 312.50 1.80 7.10 01411.42 2.75 0.04 298.17 6.83 1.29 0 Ab H b t-G .9 343.8 71.2 439.9.94.2.9 11 M 40.00 100.09 13122.24 1.63 2.00 985.97 2.03 0.04$H b33 bt-G .5384 4.8 38.4.64.6.6 11.1.9.00 5 M 011.11 01212.44 2.25 1.97 197.91 5.05 2.00 0帶H b204 G b 4134.5.75.7.14.60.07.0.1.11.41.01.3.03.97.08相40311270151221298610巖部px中b#H 22t-C-M 4.4.25.5.00.20.08.6.2.43.44.02.1.13.87.13 b 543 41411090141221299610 H b px"H 72t-C 4.4.9.5.9.8.9 M 596 40.82 311.81 011.11 01211.81 2.82 0.00 298.06 6.94 1.17 0 H b107 c p!2.4.7.7.00.00.06.6.0.55.28.03.2.11.90.14 M t-O 633 41411090141221299610 I VSi I VA l l 2 IA V a bl e 位帶 號型)m O 占T 相回品類(數(shù)O3 i O2O3O e O nO O g O a O旋a2o t a l石子度點巖 樣Si O2 T l2 A F e2F M M C N K2H2T 離]4[2深巖陽表T位續(xù)o nt i nue d C輝.55.02.05.36.00.96.01.84.14.60.16.04.69.72.30.03 1086.10鐵00010201000000020-磁-b p-G;A.53.09巖長0.03 0.15 0.31 1.00 0.90 2.04 0.80 1.16 0.59 0.15 0.10 0.69 0.71 0.32 0.91 110940-b-輝G;巖石0.49 0.02 0.20 1.09 0.00 3.04 0.06 1.79 0.15 0.54 0.11 0.15 0.74 0.71 0.33 2.12 1034 0.20輝鐵磁.62.55閃0.02 0.00 0.48 1.05 0.77 2.00 0.90 1.10 0.54 0.27 0.00 0.65 0.69 0.35 0.80 11052-0 px-角t-C 出.50.08-M b 得0.03 0.10 0.35 1.00 0.91 2.03 0.77 1.21 0.63 0.12 0.07 0.69 0.72 0.30 0.88 111420-H; 算巖石1計為.40.03.23.23.00.99.06.77.17.68.08.16.71.73.30.92 1125.30輝 數(shù)00010201000000010鐵px-磁系其據(jù).41.01.07.09.00.10.02.87.11.73.10.06.74.70.37.12 1099.22t-C 根M 量00010301000000020;巖石O含.43.01.31.93.00.11.07.84.09.54.20.25.77.69.37.21 1038.48輝 ;H2閃 )00000301000000020 px-角1998-C ,a l..36b;H e t 0.01 0.17 0.95 0.00 0.22 3.05 0.87 1.09 0.60 0.14 0.15 0.77 0.71 0.34 0.32 21029.64 0巖e l l石o w P(.56.01.00.27.00.11.00.96.04.61.31.00.71.69.35.36 1086.06px-輝 算00010301000000020;C 計巖 件輝X軟.65.55橄.01.00.47.01.85.00.97.03.69.24.00.66.69.35.93 1081A 00010201000000010鐵-磁據(jù)閃3+根e.42c p-角F和0.01 0.24 0.95 0.00 0.30 3.03 0.93 1.04 0.57 0.27 0.20 0.78 0.71 0.34 0.63 21040.73 0t-O-M 數(shù)b 子離.47;H巖 .陽0.01 0.00 0.14 1.02 0.23 3.00 0.91 1.09 0.61 0.27 0.00 0.74 0.71 0.33 0.54 21097.36 0輝巖橄 長鐵 輝.43.08鐵磁0.01 0.09 0.44 1.00 0.85 2.03 0.90 1.08 0.74 0.16 0.06 0.67 0.70 0.35 0.69 11113c p-磁-0t-O 石;M 灰?guī)r-磷.52b.01.00.11.03.20.00.87.13.60.24.00.74.71.33.58 1111.21輝00010301000000020橄t-G閃p-M;A i l)-角T n ++巖M 3e 2a g g a a a IA c p F F e C M M C N N K+)V +-O 長值2e +b 輝比F +)2e )O ;H 鐵]+2l F ℃N 巖6數(shù)+e A +N -磁[系3e F++i b輝逸A位B位 ’度T(g子C位+/(F T +3e 氧-橄t-G離M +F 和c p ;M陽3e /(/(度 :O 巖F g M Si/Si l/Si A M g 溫 注長
角閃石的成分除受其寄主巖漿總成分的影響外,很大程度上與巖漿的結(jié)晶條件(溫度、壓力、氧逸度、水逸度、堿度等強度參數(shù))有關(guān)。前人研究表明,隨著壓力的升高,鈣質(zhì)角閃石的Si含量降低,全鋁AlT、AlVI和Na2O含量則升高;AlIV與Ti呈正相關(guān)關(guān)系,與溫度、壓力及氧逸度有關(guān),角閃石中AlIV和Ti含量隨溫度的升高而增加,而AlVI含量隨溫度的變化不明顯 (Hammarstrom and Zen,1986;Blundy and Holland,1990;Ague,1997;Ridolfi et al.,2008,2010)。紅格巖體角閃石和金云母的鏡下觀察未發(fā)現(xiàn)固溶體分離形成的出溶條紋,其電子探針成分可以代表它們結(jié)晶時的原始成分,因此,角閃石和金云母成分可以用來估算紅格巖體形成時的物理化學(xué)條件。
表3 紅格巖體金云母的主要氧化物組成(wt%)Table 3 Major oxides of phlogopite from the Hongge intrusion(wt%)
角閃石的嵌晶狀結(jié)構(gòu)及其在光學(xué)顯微鏡下顯示的均一干涉色均表明紅格巖體的角閃石是巖漿成因的,而非后期熱液蝕變的產(chǎn)物(Luan et al.,2014)。紅格巖體角閃石Al2O3含量為10.5% ~12.0%,Si/(Si+Ti+Al)=0.69~0.74,結(jié)合鈣質(zhì)角閃石的Al2O3-TiO2分類圖解(圖6a)可知,紅格巖體角閃石具有幔源巖漿角閃石的特征(Al2O3>10%,Si/(Si+Ti+Al)≤0.765)(姜常義和安三元,1984);其Al/Si比值為0.30~0.37,Mg/(Fe3++Fe2++VIAl)比值為1.69~2.63,具有中-基性巖漿角閃石的特征(Al/Si=0.10~0.67,Mg/(Fe3++Fe2++VIAl)=1.50~2.0),在 Al/Si-Mg/(Fe3++Fe2++VIAl)圖解上,投影在中-基性巖漿角閃石區(qū)域(圖6b)(據(jù)薛君治等,1987)。將紅格巖體金云母的化學(xué)分析結(jié)果在MgO-FeOT/(MgO+FeOT)圖上投點,主要落在幔源巖漿相關(guān)區(qū)域(圖6c)(周作俠,1986,1988),暗示紅格巖體金云母的形成也與幔源巖漿作用有關(guān)。上述特征都說明紅格巖體角閃石和金云母都是與幔源巖漿作用有關(guān)的原生礦物。
鄧晉福(1983)提出了通過Ca/(Ca+Na+K)數(shù)值計算角閃石結(jié)晶溫度的公式:
根據(jù)公式(1)計算得出,紅格巖體角閃石的結(jié)晶溫度為1000~1100℃,與Luan et al.(2014)通過MELTs模擬計算得出的角閃石結(jié)晶溫度(~1080℃)相吻合。如圖3a所示,F(xiàn)e-Ti氧化物呈自形被角閃石包裹,說明Fe-Ti氧化物結(jié)晶早于角閃石,其結(jié)晶溫度也高于角閃石。Luan et al.(2014)通過MELTs模擬得出磁鐵礦開始結(jié)晶的溫度為1165℃,所以紅格巖體釩鈦磁鐵礦礦層的形成溫度大致為1100~1165℃,略高于攀枝花層狀巖體中釩鈦磁鐵礦礦層的形成溫度(1079~1121℃,張曉琪等,2011),這可能是因為紅格巖體母巖漿富含水分,從而促進了磁鐵礦的早期結(jié)晶(Luan et al.,2014)。
Ernst and Liu(1998)給出了從玄武質(zhì)巖漿中結(jié)晶的角閃石中Al2O3和TiO2含量隨溫度、壓力同時變化的曲線格子,可用于半定量估算角閃石結(jié)晶時的溫度和壓力。紅格巖體角閃石Al2O3含量主要分布在10.5% ~12.0%,TiO2含量在3.5% ~5.0%左右(表2),通過內(nèi)插法得出角閃石結(jié)晶時溫度在960~1040℃之間,而壓力小于2.6kbar(圖7)。這種半定量方法估算的角閃石結(jié)晶溫度明顯低于根據(jù)公式(1)定量計算的角閃石結(jié)晶溫度(1000~1100℃),所以其估算的壓力也偏大,通過角閃石結(jié)晶溫度(1000~1100℃)校正后得出其結(jié)晶壓力小于2.2kbar,暗示紅格巖體的侵位深度小于7.3km。
角閃石和金云母中都含有變價元素Fe,其Fe3+/Fe2+比值對氧逸度(fO2)的變化非常敏感。如圖8a,b所示,下部巖相帶和中部巖相帶每個旋回內(nèi),從下往上紅格巖體角閃石Fe3+/(Fe3+/Fe2+)比值逐漸降低,與全巖Fe3+/Fe2+和Mt/(Mt+Ilm)比值的變化一致(圖8c,d),暗示下部巖相帶和中部巖相帶每一次新補充的巖漿在結(jié)晶分異過程中氧逸度是逐漸降低的。Ridolfi et al.(2008)得出了根據(jù)角閃石分子式計算其結(jié)晶時氧逸度的公式,并且他們對公式進行了校正(Ridolfi et al.,2010):
根據(jù)公式(2)計算出紅格巖體角閃石結(jié)晶時氧逸度變化范圍在NNO-0.55到NNO+0.73之間(表2、圖8b)。
圖6 紅格巖體角閃石和金云母成因判別圖解(a)-角閃石Al2O3-TiO2圖解(據(jù)姜常義和安三元,1984);(b)-角閃石Mg/(Fe3++Fe2++VIAl)-Al/Si圖解(據(jù)薛君治等,1986);(c)-金云母MgO-FeOT/(FeOT+MgO)圖解(據(jù)周作俠,1986)Fig.6 Binary plots of the hornblende and phlogopite from the Hongge intrusion(a)-Al2O3-TiO2diagram of hornblende(after Jiang et al.,1984);(b)-Mg/(Fe3++Fe2++VIAl)-Al/Si diagram of hornblende(after Xue et al.,1986);(c)-MgO-FeOT/(FeOT+MgO)diagram of phlogopite(after Zhou,1986)
圖7 角閃石 Al-Ti溫壓曲線格子(據(jù) Ernst and Liu,1998)Fig.7 Temperature and pressure grid ofAl-Tiin hornblende(after Ernst and Liu,1998)
如圖9所示,紅格巖體三個巖相帶金云母在Fe3+-Fe2+-Mg圖解中投點均位于NNO(鎳-氧化鎳)緩沖劑附近并與其平行(Wones and Eugster,1965),說明紅格巖體金云母結(jié)晶時的氧逸度為NNO(~FMQ+0.7),與公式(2)計算得出的角閃石氧逸度相吻合。而根據(jù)角閃石成分計算得出其形成溫度為1000~1100℃(見上文),即其對應(yīng)的氧逸度絕對值(lgfO2)在-10.8到-8之間(圖10)。紅格巖體角閃石和金云母都屬于晶間礦物,其結(jié)晶溫度低于磁鐵礦的結(jié)晶溫度(~1165℃,Luan et al.,2014),而且其結(jié)晶時的氧逸度也是低于磁鐵礦的。所以,推測紅格巖體磁鐵礦結(jié)晶時的氧逸度高于NNO+0.73(FMQ+1.43),在1165℃時的絕對氧逸度也大于-7.3(圖10)。
V作為一種變價元素對氧逸度的變化也非常靈敏,其在磁鐵礦與硅酸鹽熔體之間的分配系數(shù)主要受到氧逸度的影響(Horn et al.,1994;Canil,1999,2002;Toplis and Corgne,2002;Mallmann and O’Neill,2009)。V在磁鐵礦中主要以V3+的形式存在,而巖漿中V的價態(tài)隨著氧逸度的升高可能從V3+變成V5+,所以磁鐵礦中V的含量會隨著氧逸度的升高而降低。V在磁鐵礦中的分配系數(shù)(DV磁鐵礦/玄武質(zhì)巖漿=26,Rollinson,1993)遠(yuǎn)遠(yuǎn)高于其在鈦鐵礦中的分配系數(shù)(DV鈦鐵礦/玄武質(zhì)巖漿=8.8 ~9.2,Dygert et al.,2013),所以磁鐵礦發(fā)生鈦鐵礦的固溶體分離時,其V含量基本不受影響,因此磁鐵礦中的V可以用來估算氧逸度的相對變化。如圖8e所示,下部巖相帶和中部巖相帶每個旋回自下而上,磁鐵礦中V2O3含量是逐漸升高的,因為伴隨著磁鐵礦的結(jié)晶,巖漿中的Fe3+/Fe2+比值和氧逸度隨之降低。這與下部巖相帶和中部巖相帶全巖Fe3+/Fe2+和Mt/(Mt+Ilm)比值,以及角閃石Fe3+/Fe2+比值反映的氧逸度變化相吻合。而在上部巖相帶IX旋回中,從下往上全巖Fe3+/Fe2+和Mt/(Mt+Ilm)比值隨著磁鐵礦V2O3含量的降低而逐漸升高,與下部巖相帶和中部巖相帶的變化規(guī)律相反(圖8c,d,e),暗示IX旋回在分離結(jié)晶過程中氧逸度是升高的,這可能與上部巖相帶母巖漿中的P2O5有關(guān)。紅格巖體上部巖相帶母巖漿與下部巖相帶和中部巖相帶的殘余巖漿混合后富集P2O5(Luan et al.,2014)。Toplis et al.(1994a,b)的實驗研究表明玄武質(zhì)熔體中的P2O5會還原熔體中的Fe3+,從而抑制磁鐵礦的結(jié)晶。但隨著磷灰石的大量結(jié)晶,熔體中的P2O5含量逐漸降低,導(dǎo)致Fe3+/Fe2+比值升高和氧逸度逐漸升高,磁鐵礦結(jié)晶受到的抑制作用也隨之逐漸減小。所以全巖Fe3+/Fe2+和Mt/(Mt+Ilm)比值從下往上逐漸升高,而磁鐵礦中的V2O3含量逐漸降低。但上部巖相帶IX旋回中角閃石的Fe3+/Fe2+比值與下部巖相帶和中部巖相帶角閃石變化一致,并未呈現(xiàn)出相反的變化趨勢。這是因為磷灰石大量結(jié)晶消耗了熔體中的P2O5,殘余巖漿中的P2O5含量降低,導(dǎo)致其對殘余巖漿中Fe3+/Fe2+比值的影響減小。所以,從殘余巖漿中結(jié)晶出來的角閃石的Fe3+/Fe2+比值不受P2O5影響,顯示出與下部巖相帶和中部巖相帶角閃石相同的變化趨勢。
圖8 紅格巖體角閃石Fe3+/(Fe3++Fe2+)比值(a)和氧逸度(b),全巖Fe3+/Fe2+(c)和Mt/(Mt+Ilm)比值(d),以及磁鐵礦V2O3含量(e)隨深度變化柱狀圖全巖和磁鐵礦數(shù)據(jù)來自Luan et al.(2014)Fig.8 Stratigraphic variations of the Hongge hornblende Fe3+/(Fe3+/Fe2+)ratios(a)and oxygen fugacity(b),the whole-rock Fe3+/Fe2+and Mt/(Mt+Ilm)ratios(c and d,respectively),the magnetite V2O3contents(e)The whole-rock and magnetite data are from Luan et al.(2014)
圖9 紅格巖體金云母 Fe3+-Fe2+-Mg三元圖解(據(jù)Wones and Eugster,1965)Fig.9 Fe3+-Fe2+-Mg ternary diagram of phlogopite in the Hongge intrusion(after Wones and Eugster,1965)
圖10 紅格巖體角閃石lgfO2-T曲線圖實線代表氧緩沖劑(據(jù)Eugster and Wones,1962),虛線代表紅格巖體角閃石結(jié)晶時的氧逸度Fig.10 Plots of lgfO2vs.T diagram of the hornblende from the Hongge intrusionSolid represents oxygen buffer(after Eugster and Wones,1962)and dash represents the oxygen fugacity when the hornblende of the Hongge intrusion crystallized
(1)紅格巖體角閃石的結(jié)晶溫度為1000~1100℃,推測釩鈦磁鐵礦礦層的形成溫度大致為1100~1165℃。
(2)紅格巖體角閃石的結(jié)晶壓力小于2.2kbar,暗示紅格巖體的侵位深度小于7.3km。
(3)紅格巖體角閃石和金云母結(jié)晶時的氧逸度為NNO-0.55~NNO+0.73,估算磁鐵礦結(jié)晶時的氧逸度高于NNO+0.73。
(4)下部巖相帶和中部巖相帶每個旋回自下而上,角閃石Fe3+/(Fe3+/Fe2+)比值以及全巖Fe3+/Fe2+和Mt/(Mt+Ilm)比值有規(guī)律地逐漸降低,暗示每一次新補充的巖漿隨著磁鐵礦的結(jié)晶分異,氧逸度總是逐漸降低的。而上部巖相帶IX旋回氧逸度的升高是受上部巖相帶母巖漿中P2O5的制約。
致謝 野外考察得到了四川106地質(zhì)隊的大力幫助;在中國科學(xué)院地球化學(xué)研究所礦床地球化學(xué)國家重點實驗室完成電子探針分析過程中,得到周國富研究員、劉世榮副研究員給予的諸多指導(dǎo)和幫助;在此一并深表謝意!
Ague JJ.1997.Thermodynamic calculation of emplacement pressures for batholithic rocks,California:Implications for the aluminum-inhornblende barometer.Geology,25(6):563 -566
Bai ZJ,Zhong H,Naldrett AJ,Zhu WG and Xu GW.2012.Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan Large Igneous Province,Southwest China.Econ.Geol.,107(3):507 -524
Barling J,Weis D and Demaiffe D.2000.A Sr-,Nd-and Pb-isotopic investigation ofthe transition between twomegacyclic ofthe Bjerkreim-Sokndal layered intrusion,South Norway.Chem.Geol.,165(1-2):47-65
Blundy JD and Holland TJB.1990.Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral.Petrol.,104(2):208 -224
Botcharnikov RE,Almeev RR,Koepke J and Holtz F.2008.Phase relations and liquid linesofdescentin hydrous ferrobasalt-Implications for the Skaergaard intrusion and Columbia River flood basalts.J.Petrol.,49(9):1687 - 1727
Canil D.1999.Vanadium partitioning between orthopyroxene,spinel and silicate melt and the redox states of mantle source regions for primary magmas.Geochim.Cosmochim.Acta,63(3-4):557-572
Canil D.2002.Vanadium in peridotites,mantle redox and tectonic environments:Archean to present.Earth Planet.Sci.Lett.,195(1-2):75-90
Chen GY,Sun DS and Yin HA.1988.Genetic Mineralogy and Prospecting Mineralogy.Chongqing:Chongqing Publishing House,555-647(in Chinese)
ChungSL and Jahn BM.1995. Plume-lithosphereinteraction in generation of the Emeishan flood basalts at the Permian-Triassic boundary.Geology,23(10):889-892
Deng JF.1983.Melt-mineral Equilibrium Thermodynamics.Beijing:Geological Publishing House(in Chinese)
Dygert N,Liang Y and Hess P.2013.The importance of melt TiO2in affecting major and trace element partitioning between Fe-Ti oxides and lunar picritic glass melts.Geochim.Cosmochim.Acta,106:134-151
Ernst WG and Liu J.1998.Experimental phase equilibrium study of Al and Ti contents of calcic amphibole in MORB-A semiquantitative thermobarometer.Am.Miner.,83(9 -10):952-969
Eugster HP and Wones DR.1962.Stability relations of the ferruginous biotite,annite.J.Petrol.,3(1):82 -125
Feeley TC and Sharp ZD.1996. Chemical and hydrogen isotope evidencefor in situ dehydrogenation ofbiotitein silicic magma chambers.Geology,24(11):1021 -1024
Foster MD.1960.Interpretation of the composition of trioctahedral micas.U.S.Geol.Surey.Prof.Paper,345:11 -49
Guo F,F(xiàn)an WM,Wang YJ and Li CW.2004.When did the emeishan mantle plume activity start?Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China.Int.Geol.Rev.,46(3):226 -234
Hammarstrom JM and Zen EAN.1986.Aluminum in hornblende:An empirical igneous geobarometer.Am.Miner.,71(11 -12):1297-1313
Horn I,F(xiàn)oley SF,Jackson SE and Jenner GA.1994.Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt.Chem.Geol.,117(1 -4):193-218
Hou T,Zhang ZC and Pirajno F.2012.A new metallogenic model of the Panzhihua giant V-Ti iron oxide deposit in the Emeishan large province:Based on high-Mg olivine-bearing wehrlites and new field evidence.Int.Geol.Rev.,54(15):1721 -1745
Hou T,Zhang ZC,Encarnacion J,Santosh M and Sun YL.2013.The role recycled oceanic crust in magmatism and metallogenesis:Os-Sr-Nd isotpes,U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit,central Emeishan large igneous province.Contrib.Mineral.Petrol.,165(4):805 -822
Jiang CY and An SY.1984.On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenedid sigificance.J.Mineral.Petrol.,(3):1 - 9(in Chinese with English abstract)
Kesler SE, Issgonis MJ,Brownlow AH,Damon PE, Moore WJ,Northcote KE and Preto VA.1975.Geochemistry of biotites from mineralized and barren intrusivesysterms.Econ.Geol.,70(3):559-567
Leake BE,Woolley AR,Arps CES,Birch WD,Gilbert MC,Grice JD,Hawthorne FC,Kato A,Kisch HJ,Krivovichev VG,Linthout K,Laird J,Mandaring JA,Maresch WV,Nichel EH,Rock NMS,Schumacher JC, Simth DC, Stephenson NCN, UngarettiL,Whittaker EJW and Youzhi G.1997.Nomenclature of amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association,Commission on New Minerals and Mineral Names.The Canadian Mineralogist,82(9 -10):1019-1037
Luan Y,Song XY,Chen LM,Zheng WQ,Zhang XQ,Yu SY,She YW,Tian XL and Ran QY. 2014. Key factorscontrolling the accumulation of the Fe-Ti oxides in the Hongge layered intrusion in the Emeishan Large Igneous Province,SW China.Ore Geol.Rev.,57:518-538
Mallmann G and O’Neill HSC.2009.The Crystal/Melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements(Al,P,Ca,Sc,Ti,Cr,F(xiàn)e,Ga,Y,Zr and Nb).J.Petrol.,50(9):1765 -1794
Naldrett AJ.1989. Magmatic Sulfide Deposits. New York:Oxford University Press
Pang KN,Li CS,Zhou,MF and Ripley EM.2008a.Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions,SW China:Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma.Contrib.Mineral.Petrol.,156(3):307 -321
Pang KN,Zhou MF,Lindsley D,Zhao D and Malpas J.2008b.Origin of Fe-Ti oxide ores in mafic intrusions:Evidence from the Panzhihua intrusion,SW China.J.Petrol.,49(2):295 -313
Pang KN,Li CS,Zhou MF and Ripley EM.2009.Mineral compositional constraints on petrogenesis and oxide ore genesis of the Late Permian Panzhihua layered gabbroic intrusion,SW China.Lithos,110(1 -4):199-214
Powell R,Holland T and Worley B.1998.Calculating phase diagrams involving solid solutions via non-linear equations,with examples using THERMOCALC.J.Metamorphic Geol.,16(4):577 -588
Ridolfi F,Puerini M,Renzulli A,Menna M and Toulkeridis T.2008.The magmatic feeding system of El Reventador volcano(Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry ofthe 2002 erupted products. J. Volcanol.Geotherm.Res.,176(1):94-106
Ridolfi F,Renzulli A and Puerini M.2010.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subductionrelated volcanoes.Contrib.Mineral.Petrol.,160(1):45 -66
Rollinson HR. 1993. Using Geochemical Data:Evaluation,Presentation,Interpretation. New York:Longman Scientific &Technical,1 -108
Selby D and Nesbitt BE.2000.Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada:Evaluation of magmatic and hydrothermal fluid chemistry.Chem.Geol.,171(1 -2):77 -93
Song XY,Wang YL,Zhang ZJ,Ma RZ.1997.Critical factors of the formation of the rhythmic layering of layered intrusion.Journal of Chengdu University of Technology,24(4):61-64(in Chinese with English abstract)
Song XY,Zhou MF,Hou ZQ,Cao ZM,Wang YL and Li YG.2001.Geochemical constraints on the mantle source of the upper Permian Emeishan continental flood basalts,southwestern China.Int.Geol.Rev.,43(3):213-225
Song XY,Hou ZQ,Cao ZM,Lu JR,Wang YL,Zhang CJ and Li YG.2001.Geochemical characteristic and period of Emei Igneous Province.Acta Geologica Sinica,75(4):498 -506(in Chinese with English abstract)
Song XY,Keays RR,Xiao L,Qi HW and Ihlenfeld C.2009.Platinumgroup element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province,SW China.Chem.Geol.,262(3-4):246-261
Song XY,Qi HW,Hu RZ,Chen LM,Yu SY and Zhang JF.2013.Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma:Evidence from the Panzhihua intrusion,SW China.Geochem.Geophys.Geosyst.,14(3):712 -732
Tao Y,Ma YS,Miao LC and Zhu FL.2009.SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion,Yunnan Province,SW China.Chin.Sci.Bull.,54(1):168 -172
Toplis MJ,Carroll MR and Libourel G.1994a.The effect of phosphorus on the iron redox ratio,viscosity,and density of an evolved ferrobasalt.Contrib.Mineral.Petrol.,117(3):293 - 304
Toplis MJ,Libourel G and Carroll MR.1994b.The role of phosphorus in crystallisation processes of basalt:An experimental study.Geochim.Cosmochim.Acta,58(2):797-810
Toplis MJ and Carroll MR.1995.An Experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability,phase relations,and mineral-melt equilibria in ferro-basaltic systems.J.Petrol.,36(5):1137-1170.
Toplis MJ and Carroll MR.1996.Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen:Implications for the Skaergaard intrusion and other natural systems.J.Petrol.,37(4):837-858
Toplis MJ and Corgne A.2002.An experimental study of element partitioning between magnetite,clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium.Contrib.Mineral.Petrol.,144(1):22 - 37
Wager LR and Brown GM.1968.Layered Igneous Intrusions.Edinburgh and London:Oliver and Boyd,1-588
Wones DR and Eugster HP.1965.Stability of biotite:Experiment,theory,and application.Am.Miner.,50(9):1228 -1272
Xia ZD,Jiang CY,Xia MZ,Ling JL and Lu RH.2011.Characteristics and magmatism of mafic-ultramafic layered intrusions.Northwestern Geology,44(1):85-94(in Chinese with English abstract)
Xu YG,Chung SL,Jahn BM and Wu GY.2001.Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China.Lithos,58(3 -4):145-168
Xu YG,Luo ZY,Huang XL,He B,Xiao L,Xie LW and Shi YR.2008.Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume.Geochim.Cosmochim.Acta,72(13):3084-3104
Xue JZ,Bai XR and Chen W.1986.Genetic Mineralogy.Wuhan:China University of Geosciences Press,114 -121(in Chinese)
Yu SY,Song XY,Chen LM and Li XB.2014.Postdated melting of subcontinental lithospheric mantle by the Emeishan mantle plume:Evidence from the Anyi intrusion,Yunnan,SW China.Ore Geol.Rev.,57:560 -573
Zhang XQ,Zhang JF,Yuan P,Song XY,Guan JX and Deng YF.2011.Implications of compositions of plagioclase and olivine on the formation ofthe Panzhihua V-Timagnetite deposit,Sichuan Province.Acta Petrologica Sinica,27(12):3675 - 3688(in Chinese with English abstract)
Zhang XQ,Song XY,Chen LM,Xie W,Yu SY,Zheng WQ,Deng YF,Zhang JF and Gui SG.2012.Fractional crystallization and the formation of thick Fe-Ti-V oxide layers in the Baima layered intrusion,SW China.Ore Geol.Rev.,49:96 -108
Zhang ZC,Mahoney JJ,Mao JW and Wang FS.2006.Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province,China.J.Petrol.,47(10):1997 -2019
Zhang ZC,Zhi XC,Chen L,Saunders AD and Reichow MK.2008.Re-Os isotopic compositions of picrites from the Emeishan flood basalt province,China.Earth Planet.Sci.Lett.,276(1 -2):30 -39
Zhang ZC,Mao JW,Saunders AD,Ai Y,Li Y and Zhao L.2009.Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province,SW China,based on isotopic and bulk chemical constraints.Lithos,113(3-4):369-392
Zhang ZC,Hou T,Santosh M,Li HM,Li JW,Zhang ZH,Song XY and Wang M.2014.Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview.Ore Geology Reviews,57:247-263
Zhong H and Zhu WG.2006.Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province,SW China.Miner.Deposita,41(6):599 -606
Zhong H, Hu RZ, ZhuWG andLiu BG.2007. Genesis and mineralization of layered intrusion.Earth Science Frontiers,14(2):159-172(in Chinese with English abstract)
Zhou MF,Malpas J,Song XY,Robinson PT,Sun M,Kennedy AK,Lesher CM and Keays RR.2002.A temporal link between the Emeishan large igneous province(SW China)and the end-Guadalupian mass extinction.Earth Planet.Sci.Lett.,196(3 -4):113-122
Zhou MF,Robinson PT,Lesher CM,Keays RR,Zhang CJ and Malpas J.2005.Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits,Sichuan Province,SW China.J.Petrol.,46(11):2253-2280
Zhou MF,Arndt NT,Malpas J,Wang CY and Kennedy AK.2008.Two magma series and associated ore deposit types in the Permian Emeishan large igneous province,SW China.Lithos,103(3 -4):352-368
Zhou ZX.1986.The origin of intrusive mass in Fengshandong,Hubei Province.Acta Petrotogica Sinica,2(1):59-70(in Chinese with English abstract)
Zhou ZX.1988.Chemical characteristics of mafic mica in intrusive rocks and its geological meaning.Acta Petrotogica Sinica,4(3):63-73(in Chinese with English abstract)
Zhou ZX.1991.Application of Mg-Fe mica chemical composition,rare elements,REE,Cu,Cl,F(xiàn) to distinguishing petrogenetic types.In:Wu LR and Li BL(eds.).Two Great Mesozoic Types of Porphyry Ore Deposits in the East of China.Beijing:Science Press,76 -82(in Chinese)
附中文參考文獻
陳光遠(yuǎn),孫岱生,殷輝安.1988.成因礦物學(xué)與找礦礦物學(xué).重慶:重慶出版社,555-647
鄧晉福.1983.熔漿-礦物平衡熱力學(xué).北京:地質(zhì)出版社
姜常義,安三元.1984.論火成巖中鈣質(zhì)角閃石的化學(xué)組成特征及其巖石學(xué)意義.礦物巖石,(3):1-9
宋謝炎,王玉蘭,張正階,馬潤則.1997.層狀侵入體韻律層理成因的關(guān)鍵因素.成都理工學(xué)院院報,24(4):61-64
宋謝炎,侯増謙,曹志敏,盧記仁,汪云亮,張成江,李佑國.2001.峨眉大火成巖省的巖石地球化學(xué)特征及時限.地質(zhì)學(xué)報,75(4):498-506
夏昭德,姜常義,夏明哲,凌錦蘭,盧榮輝.2011.鎂鐵質(zhì)-超鎂鐵質(zhì)層狀巖體基本特征及巖漿作用.西北地質(zhì),44(1):85-94
薛君治,白學(xué)讓,陳武.1986.成因礦物學(xué).武漢:中國地質(zhì)大學(xué)出版社,114-121
張曉琪,張加飛,宋謝炎,鄧宇峰,官建祥,鄭文勤.2011.斜長石和橄欖石成分對四川攀枝花釩鈦磁鐵礦床成因的指示意義.巖石學(xué)報,27(12):3675-3688
鐘宏,胡瑞忠,朱維光,劉秉光.2007.層狀巖體的成因及成礦作用.地學(xué)前緣,14(2):159-172
周作俠.1986.湖北豐山洞巖體成因探討.巖石學(xué)報,2(1):59-70
周作俠.1988.侵入巖的鎂鐵云母化學(xué)成分特征及其地質(zhì)意義.巖石學(xué)報,4(3):63-73
周作俠.1991.Mg-Fe云母的化學(xué)成分、微量元素、REE、Cu、Cl、F 等在識別巖石成因類型上的應(yīng)用.見:吳利仁,李秉倫編.中國東部中生代兩類斑巖型礦床.北京:科學(xué)出版社,76-82