劉 建 王會(huì)梅 鮮 明 黃 昆
?
云存儲(chǔ)中一種抗竊聽攻擊的弱安全再生碼
劉 建*王會(huì)梅 鮮 明 黃 昆
(國(guó)防科技大學(xué)電子信息系統(tǒng)復(fù)雜電磁環(huán)境效應(yīng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 長(zhǎng)沙 410073)
糾刪碼和再生碼是保證云存儲(chǔ)可靠性的有效機(jī)制,但是它們并不能提供節(jié)點(diǎn)被竊聽情況下存儲(chǔ)數(shù)據(jù)的機(jī)密性。該文設(shè)計(jì)了兩類抗竊聽攻擊的弱安全再生碼方案,方案結(jié)合All-or-Nothing變換與精確修復(fù)再生碼策略,保證了攻擊者在竊聽能力有限的情況下無(wú)法獲取關(guān)于原始數(shù)據(jù)符號(hào)的任何有意義信息,同時(shí)具有較小的數(shù)據(jù)修復(fù)帶寬。該文給出了通用編碼構(gòu)造方法,證明了其安全性,并通過(guò)實(shí)驗(yàn)進(jìn)行了對(duì)比分析,結(jié)果表明與其它安全再生碼相比該方案的編解碼時(shí)間更短,且具有更好的秘密數(shù)據(jù)存儲(chǔ)能力。
云存儲(chǔ);再生碼;安全;竊聽;All-or-Nothing變換
本文主要結(jié)構(gòu)如下:第2節(jié)主要介紹一些基本知識(shí)、模型和準(zhǔn)則;第3節(jié)介紹了弱安全最小帶寬再生碼和弱安全最小存儲(chǔ)再生碼并給出了通用的編碼構(gòu)造方法;隨后在第4節(jié)進(jìn)行了安全性分析、設(shè)計(jì)實(shí)驗(yàn)分析了計(jì)算復(fù)雜度、存儲(chǔ)開銷等方案性能;第5節(jié)總結(jié)全文。
該變換由Rivest[16]首先提出,保證了攻擊者在獲得全部密文之前無(wú)法獲取任何單個(gè)明文符號(hào)。定義如下:
WSMBRC方案主要包括3個(gè)過(guò)程,分別是數(shù)據(jù)編碼與分發(fā)、失效數(shù)據(jù)修復(fù)以及數(shù)據(jù)重構(gòu)與恢復(fù)。其中失效數(shù)據(jù)修復(fù)過(guò)程與傳統(tǒng)PM-MBR相同,下面主要介紹其余兩過(guò)程:
(1)數(shù)據(jù)編碼與分發(fā)
式中=(+1)/。
(2)數(shù)據(jù)重構(gòu)與恢復(fù)
類似地,WSMSRC也主要包括3個(gè)過(guò)程:數(shù)據(jù)編碼與分發(fā)、失效數(shù)據(jù)修復(fù)以及數(shù)據(jù)重構(gòu)與恢復(fù)。這里主要介紹第1個(gè)部分,另外兩個(gè)部分參考WSMBRC,此處不再詳述。
由2.1節(jié)可知,WSMBRC與WSMSRC本質(zhì)上是AONT變換與PM-MBR/MSR編碼的級(jí)聯(lián)。如果將其中的PM-MBR/MSR編碼替換為其它采用精確修復(fù)策略的MBR/MSR編碼(如圖1所示),只要相關(guān)參數(shù)滿足特定條件,就可以保證數(shù)據(jù)存儲(chǔ)的弱安全。對(duì)于其安全性證明及需要滿足的條件將在4.1節(jié)詳細(xì)分析。
圖1 弱安全再生碼構(gòu)造方法
證畢
圖2 MSR情況下數(shù)據(jù)重構(gòu)示意圖
此時(shí)攻擊者所獲取的數(shù)據(jù)量為
(4)竊聽能力對(duì)安全性的影響 方案利用范德蒙矩陣實(shí)現(xiàn)了AONT變換,由文獻(xiàn)[5]中的定理1可知:
圖3 WSMBRC方案數(shù)據(jù)編碼上傳過(guò)程
圖4 方案編解碼時(shí)間對(duì)比
本文方案計(jì)算復(fù)雜度雖然優(yōu)于文獻(xiàn)[10]方案,但是仍增加了數(shù)據(jù)上傳和下載時(shí)延,因此適用于保存歸檔數(shù)據(jù),而且對(duì)實(shí)時(shí)性要求不高的存儲(chǔ)場(chǎng)合,這與傳統(tǒng)的非系統(tǒng)再生碼/糾刪碼的應(yīng)用場(chǎng)合是一致的。
表1 MSR情況下存儲(chǔ)空間對(duì)比(MB)
表2 MBR情況下存儲(chǔ)空間對(duì)比(MB)
本文主要考慮云存儲(chǔ)系統(tǒng)中部分節(jié)點(diǎn)被竊聽的條件下數(shù)據(jù)存儲(chǔ)的安全性,針對(duì)傳統(tǒng)糾刪碼或再生碼策略無(wú)法提供該類安全需求的問(wèn)題,提出了基于AONT變換和精確修復(fù)再生碼的弱安全再生碼——WSMBRC和WSMSRC,隨后給出了通用的編碼構(gòu)造方案并證明了其安全性。該方案具有如下特點(diǎn):其安全性不依賴于傳統(tǒng)加解密體制,不需要密鑰管理與分配等操作,因而具有較低的系統(tǒng)設(shè)計(jì)復(fù)雜度;相比其它安全再生碼方案具有較小的編解碼時(shí)間;提供弱安全保證,即當(dāng)攻擊者竊聽能力低于門限值時(shí)無(wú)法獲取關(guān)于原始數(shù)據(jù)符號(hào)的任何有意義信息;與其它門限存儲(chǔ)方案相比,具有較低的失效數(shù)據(jù)修復(fù)帶寬,且沒有造成任何的存儲(chǔ)容量損失,即安全存儲(chǔ)的信息量達(dá)到了系統(tǒng)存儲(chǔ)容量。
本文利用線性AONT變換實(shí)現(xiàn)了弱安全性,但造成了較大的計(jì)算復(fù)雜度。因此如何降低方案的計(jì)算復(fù)雜度,以及非線性AONT變換對(duì)數(shù)據(jù)安全性和計(jì)算復(fù)雜度會(huì)產(chǎn)生何種影響將是下一步的工作方向。
圖5 編解碼時(shí)間隨符號(hào)長(zhǎng)度變化情況
[1] Bessani A, Correia M, Quaresma B,.. DepSky: dependable and secure storage in a cloud-of-clouds[C]. Proceedings of ACM EuroSys, Salzburg, Austria, 2011: 31-46.
[2] Dimakis A G, Godfrey P G, Wu Y,.. Network coding for distributed storage systems[J]., 2010, 56(9): 4539-4551.
[3] Shamir A. How to share a secret[J]., 1979, 22(11): 612-613.
[4] Yamamoto H. Secret sharing system using (,,) threshold scheme[J].(), 1986, 69(9): 46-54.
[5] Oliveira P F, Lima L, Vinhoza T T V,.. Coding for trusted storage in untrusted networks[J]., 2012, 7(6): 1890-1899.
[6] Kurihara M and Kuwakado H. Secret sharing schemes based on minimum bandwidth regenerating codes[C]. 2012 International Symposium on Information Theory and its Applications (ISITA), Honolulu, Hawaii, USA, 2012: 255-259.
[7] Rawat A S, Koyluoglu O O, Silberstein N,.. Optimal locally repairable and secure codes for distributed storage systems[OL]. http://arxiv.org/pdf/1210.6594v2.pdf, 2013.
[8] Rawat A S, Koyluoglu O O, Silberstein N,.. Secure locally repairable codes for distributed storage systems[OL]. https://webspace.utexas.edu/ok756/www/pdfs/ISIT13\_SecrecyLocal.pdf, 2013.
[9] Pawar S, Rouayheb E S, and Ramchandran K. Securing dynamic distributed storage systems against eavesdropping and adversarial attacks[J]., 2012, 58(10): 6734-6753.
[10] Shah N B, Rashmi K V, and Kumar P V. Information-theoretically secure regenerating codes for distributed storage[C]. Proceedings of IEEE Global Communications Conference (GLOBECOM), Houston, TX, USA, 2011: 1-5.
[11] Silva D and Kschischang F R. Universal weakly secure network coding[C]. Proceedings of IEEE Information Theory Workshop (ITW), Volos, Greece, 2009: 281-285.
[12] Dimakis A G, Ramchandran K, Wu Y,.. A survey on network codes for distributed storage[J]., 2011, 99(3): 476-489.
[13] Suh C and Ramchandran K. Exact-repair mds code construction using interference alignment[J].2011, 57(3): 1425-1442.
[14] Rashmi K, Shah N B, and Kumar P V. Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[J].2011, 57(8): 5227-5239.
[15] Tamo I, Wang Z, and Bruck J. Zigzag codes: MDS array codes with optimal rebuilding[J].2013, 59(3): 1597-1616.
[16] Rivest R. All-Or-Nothing Encryption and the Package Transform[M]. New York: Springer, 1997: 210-218.
[17] Stinson D R. Something about All-Or-Nothing (transforms)[J]., 2001, 22(2): 133-138.
[18] Shah N B, Rashmi K V, Kumar P V,.. Explicit codes minimizing repair bandwidth for distributed storage[C]. Proceedings of IEEE Information Theory Workshop (ITW), Cairo, 2010: 1-5.
[19] Goparaju S, Rouayheb S E, Calderbank R,Data secrecy in distributed storage systems under exact repair[OL]. http://arxiv.org/pdf/1304.3156v2.pdf, 2013.
[20] Gohberg I and Olshevsky V. Fast algorithms with preprocessing for matrix-vector multiplication problems[J]., 1994, 10(4): 411-427.
劉 建: 男,1986年生,博士生,研究方向?yàn)榫W(wǎng)絡(luò)安全.
王會(huì)梅: 女,1981年生,講師,研究方向?yàn)榫W(wǎng)絡(luò)安全、電子信息系統(tǒng)建模仿真與評(píng)估.
鮮 明: 男,1970年生,研究員,博士生導(dǎo)師,研究方向?yàn)榫W(wǎng)絡(luò)安全、電子信息系統(tǒng)建模仿真與評(píng)估.
黃 昆: 男,1989年生,博士生,研究方向?yàn)榫W(wǎng)絡(luò)安全.
Weakly Secure Regenerating Codes for Cloud Storage against Eavesdropper
Liu Jian Wang Hui-mei Xian Ming Huang Kun
(,,410073,)
Erasure codes and regenerating codes can guarantee data reliability, but fail to provide data confidential when some nodes are observed by eavesdropper. Thus, two regenerating code schemes satisfying the security property against the eavesdropper are proposed in this paper. Combining the All-or-Nothing transform and exact repair regenerating codes, the proposed schemes not only ensure that an intruder eavesdropping limited number of nodes are unable to obtain any meaningful information about the original data symbols, but also provide data reliability with low repair bandwidth. Furthermore, a general construction method is presented, and the security is proved, and the performance of the proposed scheme is evaluated by a serial of experiments. The result shows that the proposed schemes achieve faster encode/decode procedures and better secrecy capacity compared with other secure regenerating coding schemes or threshold storage schemes.
Cloud storage; Regenerating codes; Security; Eavesdropper; All-or-Nothing transform
TP393; TP309
A
1009-5896(2014)05-1221-08
10.3724/SP.J.1146.2013.01035
劉建 ljabc730@nudt.edu.cn
2013-07-16收到,2013-11-27改回