• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    2014-06-01 12:30:02CHENXin陳鑫LUChuanjing魯傳敬CHENYing陳瑛CAOJiayi曹嘉怡
    關(guān)鍵詞:陳鑫

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    (Received March 15, 2013, Revised January 14, 2014)

    When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the free moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator’s deflection angle ranging from -3oto 3oon the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less than -1oor greater than 1o, the position of the center of mass and the pitching angle change greatly. If a proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth.

    cavitation, multiphase, underwater trajectory, dynamic mesh

    Introduction

    When a high-speed weapon covered with natural and ventilated cavities moves under water, the flow features are important issues for the research and development. Because of some unavoidable objective factors in the process of trajectory controls, such as that of adjusting the deflection angle of the cavitator, there exist abnormal deviations in the cavity pattern, the hydrodynamics and the underwater trajectory in some phase of motion. These deviations can degrade the weapon’s combat performance. Thus, the prediction of the flow properties of the vehicle is very important.

    For a submarine-launched missile model under the action of a fixed external thrust, Wang et al.[1]experimentally measured the thrust, the pressure overload and the structural strain of the model, and theoretically analyzed the underwater trajectory. Based on the theorems of the momentum and the moment of the momentum, Zhang et al.[2]built a mathematical model of the trajectory for a carrier with six degrees of freedom in the dynamic coordinate system. They proposed a control scheme of a rocket-assisted torpedo’s underwater trajectory using MATLAB/SIMULINK. Gu et al.[3]studied a problem of the underwater trajectory for a mine launched from a submarine in the phase of motion without external forces, and they put forward a theoretical model to analyze the underwater trajectory under the effect of the current in the simulation environment of MATLAB. An improved control and guidance system for supercavitating vehicles was designed. Cao et al.[4]established simplified equationsfor the longitudinal motion of supercavitating vehicles to simulate the trajectory of vehicles travelling at a speed of around 90 m/s. The calculating results show that the motion of a supercavitating vehicle at changeable depth and direction can be handled using typical control schemes of the top steer without a feedback system.

    The previous simulations are mostly carried out in the framework of self-developed programs or other tools like MATLAB based on many hypotheses using several semi-experimental and semi-theoretical formulas. These studies point to a kind of study method, to obtain the laws of vehicles’ motion affected by single-factor or multi-factors in an ideal state. However, with the development of computer hardware and numerical techniques, it is possible to couple the solution of the flow field and the body’s motion. This kind of study method[5]is advantageous in analyzing the flow structures and the mechanisms of a complicated physical phenomenon.

    1. Governing equations of the flow field

    The vapor phase should also satisfy the continuity condition during the phase-transition process[8]

    where ρ is the density, t stands for the time, u denotes the velocity vector, p is the pressure, the subscripts m, l and v, respectively, indicate the mixture, the liquid phase and the vapor phase.

    The volume fractions of the phases satisfy

    Additionally, two individual transport equations are employed to describe the phase-transition process between the vapor and the liquid.

    where RBis the radius of the vapor bubble, and a value of 10-6m is selected, αnucdenotes the volume fraction of the gas nuclei in the liquid, and here a value of 10-5is specified. In addition, Fvap=0.02, Fcond=0.001.

    2. Equations of motion for the free rigid body

    2.1Coordinate system

    The coordinate systems with the right-hand rule are defined as in Fig.1. The superscripts I and B refer to the inertial system and the body system, respectively. The cavitator’s deflection angle αd(<90o) is determined by the anticlockwise angle from the axis of yBto the plane of the cavitator. The different lift force can be obtained by adjusting the deflection angle to change the body’s attitude motion.

    Fig.1 The coordinate systems, cavitator’s deflection angle

    2.2Governing equations

    In the inertial coordinate system, the body’s translational motion is governed by the equation

    After the accelerations are computed from Eq.(8) and Eq.(9), the velocities, the coordinates of the body’s center of mass and the angular velocities, the Euler angles are derived by an explicit difference scheme.

    2.3Dynamic mesh method

    The dynamic mesh method can be used to model the flows where the shape of the domain changes with time due to the motion on the domain boundaries. The motion can be a prescribed motion or/and unprecribed motion where the sequence motion is determined based on the solution at the current time. The updating of the volume mesh is handled automatically at each time step on the basis of the new positions of the boundaries. At present, there are three kinds of dynamic mesh methods used widely: the fixed-grid method[15], the sliding mesh method[16]and the local remeshing method[17].

    In the process of updating the volume mesh, the integral form of the conservation equation for a general scalar ζ on an arbitrary control volume V with a moving boundary can be expressed as

    where ugis the mesh velocity of the moving mesh, λ is the diffusion coefficient, Sζis the source term of ζ, A is used to represent the boundary of the control volume V.

    In the fixed-grid method adopted in this paper, the mesh in the computational domain moves with the motion of the body. In other words, the number of the grid and the relative positions between the grid nodes remain unchanged during the whole calculation.

    3. Results and discussions

    3.1Computational parameters

    The vehicle’s total length and maximal diameter are denoted by L and D, respectively, and the components along the axial direction include a cavitator (head rudder), two bowl-shaped flow guides, an afterbody, a cross trailing rudder and a trailing cylinder. The cavitator is a disk with a diameter of Dn.

    In the course of the simulation, the motion of the vehicle is confined entirely to the plane of the pitch. Thus, the flow is symmetrical with respect to the plane of zI=0, and there are just three degrees of freedom, namely (xI,yI,θz). The flow domain can be reduced by half to save the calculation time. A multi-block structured mesh is generated, containing a total number of about 1.5×106cells.

    The upstream boundary and the external boundary are disposed with a constant velocity. The downstream boundary is specified with a fixed static pressure. A fixed mass flux is set on the ventilating nozzle. The surface of the vehicle is under no-slip wall condition.

    The deflection angle of the cross trailing rudder is selected as 0oand keeps constant. The initialized velocities are set to a value of vIbx0in x direction, and 0 in both y and z directions. A starting coordinates of (0.5L,0,0) are specified at the center of mass of the vehicle. Each component of the initialized angular velocity is given a value of 0 rad/s. The Euler angles of (0,0,θz0) are given in the startup solution.

    Fig.2 CTb, Cqvs. T

    Fig.3 Shapes of cavity at different times, αd=0o

    3.2Cavity pattern

    Figure 3 illustrates the history of the shape of the cavity when αdis equal to 0o. It can be seen from Fig.3(a) and Fig.3(b) that before the gas ventilating, namely T<1.746, the vehicle is in the phase of the early acceleration accompanying the natural cavitation occurred at the head-body, near the shoulder and the end of the big cylinder and downstream from the cross trailing rudder.

    Figure 4 presents the relationships between the cavitation number, the cavity length and the cavitator’s deflection angles at T=0 and T=1.746, where

    Fig.4 Relations of σ,cL withdα at different times

    During the time T in the range of 1.746-12.225, the vehicle is in the phase of the acceleration and the ventilated cavitation. It is found from Fig.3(c) that, within the non-dimensional time of 0.837 after ventilating the gas, a supercavity is formed rapidly, and a natural cavity with a length of 1/3L-2/5L appears downstream from the cross trailing rudder. During the phase of the ventilated cavitation, the difference in the vehicle’s motion attitude between the cavitator’s deflection angles becomes gradually notable because of the variation of the lift.

    When T is equal to 11.352, the gas supply is stopped. After a time measured by the non-dimensional time of about 0.837, namely, T>12.225, the vehicle resumes to a state of natural cavitation again as shown in Fig.3(e). Meanwhile, the vehicle is already released from the external thrust at T=8.732. Therefore, the vehicle is in the phase of the deceleration, and the cavity length is reduced gradually as illustrated in Fig.3(h).

    3.3Hydrodynamics

    Fig.5 Relation ofdC with time

    Fig.6 Relation of Cpwith time, αd=0o

    Fig.7 Relation oflC with time

    It can be seen from Fig.5 that, during the phase of the acceleration, the drag coefficient goes down at first quickly and then slowly. After stopping the gas supply, the drag coefficient increases significantly. It should be noticed that, there are two distinctly sudden changes in the drag coefficient. The first sudden change results from the action of the ventilating gas. The second sudden change is caused by the transition from the cavitation to the non-cavitation on the trailing cylinder.

    Taking αd=0ofor example, Fig.6 shows the variation of the pressure coefficient with time monitored at the point A, which is 0.8 radius away from the center of the trailing cylinder’s bottom face. Figure 3(f) demonstrates that the trailing cylinder is covered with the natural cavity at T<14.845. So, the pressure on the bottom of the trailing cylinder approaches the saturated pressure of the liquid to raise the bottom drag coefficient of the vehicle. As T is equal to 15.019, the bottom face of the trailing cylinder is in the vicinity of the natural cavity’s closure region due to the decreasing velocity of the vehicle and the increasing natural cavitation number, as shown in the Fig.3(g). Under the influence of the high pressure in the cavity’s closure region, the pressure on the bottom face goes up suddenly to have an evidently lower bottom drag coefficient than before. Then, because of the further decrease of the vehicle’s velocity, the size of the natural cavity reduces gradually, which weakens the influence of the high pressure in the closure region on the bottom of the trailing cylinder with the result of the enlarged bottom drag coefficient. In addition, at a same time, after stopping the gas supply, the greater the deflection angle of the cavitator is, the smaller the drag coefficient is.

    Fig.8 Relation of Cmzwith time

    It can be seen from Fig.7 that the lift coefficient curve has an upward tendency as a whole. During the artificial ventilation, one sees propagations of the disturbance caused by the supercavity’s formation and disappearance, and the sharp variation in the wet area of the vehicle. Under these conditions, the lift coefficient assumes a wavy curve, as well as the pitching moment, the linear velocity in y direction, and the angular velocity about z axis. Moreover, the greater thecavitator’s deflection angle, the smaller the lift coefficient is. After the gas supply is stopped, the magnitude of the wavy curve drops step by step. At a same time, the larger the cavitator’s deflection angle is, the less the lift coefficient becomes.

    Figure 8 shows that the lift has a strong influence on the pitching moment. Both of them vary in a manner opposite to each other.

    Fig.9 Relation of Cvxwith time

    Fig.10 Relation of Cvywith time

    Fig.11 Relation ofzCωwith time

    3.4Underwater trajectory

    Fig.12 Distribution of the center of mass, T=20.957

    Fig.13 Distribution of θ2, T=20.957

    Figures 12-13 show the distributions of the center of mass and the pitching angle of the vehicle in the computational range of the cavitator’s deflection angle at T=20.957. It is found from these scattered points that the pitching angle turns from positive to negative with the increase of αd, and the navigation distance becomes greater, whereas the navigation depth becomes smaller. When the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    4. Conclusions

    In the present work, a method of numerical simulation is put forward to calculate the free moving phase of an underwater supercavitated vehicle under the action of an external thrust. The influences of the cavitator’s deflection angle ranging from-3oto 3oon the cavity pattern, the hydrodynamicsand the underwater trajectory are investigated. Based on computational results, several conclusions can be qualitatively drawn by analysis as follows:

    (1) According to the segmental law of the gas supply, the cavity pattern can be divided into three phases in order, namely, the natural cavitation, the ventilated cavitation and the natural cavitation. The deflection angle has very little impact on the cavity pattern.

    (2) The relation of the drag coefficient versus time is very complicated with some sudden changes under the action of a thrust and under ventilation conditions. On the whole, the lift coefficient goes up while the pitching moment coefficientgoes down, along with oscillations in the phase of the ventilated cavitation. When the deflection angle increases, the variation curves of the lift and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients are, whereas the higher the pitching moment coefficient is.

    (3) The effect of the external thrust makes the horizontal linear velocity accelerate at first, and then decelerate. Furthermore, the vertical linear velocity changes in a wave shape. At a given moment, the greater the deflection angle, the larger the vertical linear velocity is. With the growing deflection angle, the variation curves of the vertical linear velocity and the pitching angle velocity become flatter, along with oscillations in the phase of the ventilated cavitation. With a certain deflection angle of the cavitator, the underwater vehicle can navigate in a pseudo-fixed depth.

    (4) At the finishing time of the free moving phase, with an increase in the deflection angle, the navigation distance of the vehicle increases, but the depth decreases. In addition, the pitching angle varies from positive to negative. As the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    [1] WANG Cong, WANG Xue-xiao and XU Shi-chang et al. Analysis and testing on dynamic property of submarine-launched missile[J]. Missiles and Space Vehicles, 2002, 2: 12-15(in Chinese).

    [2] ZHANG Xue-feng, PAN Guang and WANG Peng. Underwater trajectory design of rocket assisted torpedo[J]. Torpedo Technology, 2007, 15(4): 11-14(in Chinese).

    [3] GU Chuang, PANG Hong-zhao and ZHANG Yong. Research of sea water that affect the trajectory of mine projected by submarine[J]. Ship Electronic Engineering, 2010, 30(2): 168-171(in Chinese).

    [4] CAO Wei, WEI Ying-jie and HAN Wan-jin et al. Simulating the trajectory of supercavitating vehicles[J]. Journal of Harbin Engineering University, 2010, 31(3): 323-328(in Chinese).

    [5] YANG Xiao-guang, CHEN Huan-long and LIU Huaping et al. Simulation about 3D flow field of missile underwater motion and water-exit process[J]. Journal of Ballistics, 2010, 22(1): 107-110(in Chinese).

    [6] MANNINEN M., TAIVASSALO V. and KALLIO S. On the mixture model for multiphase flow[M]. Espoo, Finland: VTT Publications, 1996.

    [7] HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26-36.

    [8] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [9] SPALART P., ALLMARAS A. A one-equation turbulence model for aerodynamic flows[R]. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.

    [10] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged -kε turbulence model based on unstructured grids[J]. Journal of Hydrodynamics, 2008, 20(4): 514-523.

    [11] YANG Guo-gang, DING Xin-wei and BI Ming-shu et al. Improved SIMPLE algorithm used in numerical simulation of flammable gas cloud deflagration[J]. Journal of Dalian University of Technology, 2004, 44(6): 789-792(in Chinese).

    [12] CHENG Guang-hui, HUANG Ting-zhu and CHENG Xiao-yu. Preconditioned Gauss-Seidel type iterative method for solving linear systems[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9): 1275-1279.

    [13] CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566.

    [14] HU Yong, CHEN Xin and LU Chuan-jing et al. Study on the interaction between ventilated cavitating flow and the exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2008, 23(4): 438-445(in Chinese).

    [15] AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2002, 49: 999-1022.

    [16] BASARA B., ALAJBEGOVIC A. and BEADER D. Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method[J]. International Journal for numerical methods in fluids, 2004, 45(10): 1137-1159.

    [17] CHIANG C. H., JONG B. S. and LIN T. W. A robust feature-preserving semi-regular remeshing method for triangular meshes[J]. Visual Computer, 2011, 27(9): 811-825.

    10.1016/S1001-6058(14)60078-0

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11372185, 11102110) and the Shanghai Leading Academic Discipline Project (Grant No. B206).

    Biography: CHEN Xin (1976-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    陳鑫
    傳銷(xiāo)頭目反傳銷(xiāo):我要贖罪
    新傳奇(2021年28期)2021-08-23 10:20:40
    Experimental investigation on DBD plasma reforming hydrocarbon blends
    大地精靈
    Sediment transport in pure acceleration-skewed oscillatory sheet flow *
    Experimental and numerical investigations of the aerodynamic noise reduction of automotive side view mirrors *
    好書(shū)推薦
    微信群聊惹的禍
    做人與處世(2017年9期)2017-07-27 11:02:16
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    陳鑫的午后三點(diǎn)
    環(huán)境保護(hù)主要問(wèn)題及對(duì)策研究
    国产亚洲欧美精品永久| 一级毛片我不卡| 国产精品免费视频内射| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 制服诱惑二区| 国产成人av激情在线播放| 水蜜桃什么品种好| 久久久国产欧美日韩av| 深夜精品福利| 日本av免费视频播放| av一本久久久久| 国产老妇伦熟女老妇高清| 亚洲专区中文字幕在线| 国产一区二区三区综合在线观看| 69精品国产乱码久久久| 国产精品一区二区在线不卡| 老司机亚洲免费影院| 97在线人人人人妻| 成人亚洲欧美一区二区av| 欧美成狂野欧美在线观看| 日韩大片免费观看网站| 国产精品麻豆人妻色哟哟久久| 久久亚洲精品不卡| 欧美激情 高清一区二区三区| 黑丝袜美女国产一区| 久久精品成人免费网站| 国产成人av教育| 国产97色在线日韩免费| 菩萨蛮人人尽说江南好唐韦庄| 可以免费在线观看a视频的电影网站| 高清av免费在线| av天堂久久9| 好男人视频免费观看在线| 99国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 三上悠亚av全集在线观看| 免费黄频网站在线观看国产| 黄片小视频在线播放| 午夜福利免费观看在线| 国产成人精品久久二区二区91| 波多野结衣一区麻豆| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 乱人伦中国视频| 看十八女毛片水多多多| av福利片在线| 精品少妇内射三级| 极品少妇高潮喷水抽搐| 成年美女黄网站色视频大全免费| 啦啦啦在线观看免费高清www| av电影中文网址| 精品亚洲成国产av| 国产精品av久久久久免费| 精品久久久久久电影网| 高清欧美精品videossex| videos熟女内射| 大陆偷拍与自拍| 国产麻豆69| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| 午夜福利在线免费观看网站| 国产成人欧美在线观看 | 看免费成人av毛片| 亚洲人成电影免费在线| 精品少妇内射三级| 欧美av亚洲av综合av国产av| 你懂的网址亚洲精品在线观看| 日韩一卡2卡3卡4卡2021年| 精品少妇内射三级| 在线观看人妻少妇| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 狂野欧美激情性bbbbbb| 午夜免费男女啪啪视频观看| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 黄色 视频免费看| www.av在线官网国产| 日韩伦理黄色片| 国产成人免费无遮挡视频| 久久久久久久大尺度免费视频| 捣出白浆h1v1| 又大又黄又爽视频免费| 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线免费看完整版不卡| 中文字幕最新亚洲高清| 久久久久久人人人人人| 国产精品.久久久| 国产成人一区二区三区免费视频网站 | 菩萨蛮人人尽说江南好唐韦庄| 日日夜夜操网爽| 嫩草影视91久久| 久久国产精品大桥未久av| 七月丁香在线播放| 亚洲成人手机| 午夜影院在线不卡| 国产成人精品久久二区二区91| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 亚洲,欧美,日韩| 国产精品成人在线| 真人做人爱边吃奶动态| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| av一本久久久久| 另类精品久久| www.999成人在线观看| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 一区二区三区激情视频| 看十八女毛片水多多多| 大片电影免费在线观看免费| 久久久久久免费高清国产稀缺| 国产欧美亚洲国产| 日韩大片免费观看网站| 欧美成人午夜精品| 成人免费观看视频高清| 精品欧美一区二区三区在线| 免费看av在线观看网站| 色网站视频免费| 狂野欧美激情性xxxx| 手机成人av网站| 91麻豆精品激情在线观看国产 | 日日夜夜操网爽| 午夜免费成人在线视频| 电影成人av| 久久影院123| 999精品在线视频| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 久久久精品区二区三区| 成人亚洲欧美一区二区av| 婷婷丁香在线五月| 婷婷色av中文字幕| 视频区欧美日本亚洲| 七月丁香在线播放| 亚洲三区欧美一区| 国产男女超爽视频在线观看| 男女国产视频网站| 男人舔女人的私密视频| 永久免费av网站大全| 在线观看国产h片| 男人舔女人的私密视频| 国产精品 国内视频| 精品一区二区三区av网在线观看 | 午夜福利视频精品| 欧美黑人精品巨大| 国产国语露脸激情在线看| 老司机深夜福利视频在线观看 | 欧美日韩成人在线一区二区| 亚洲成人手机| 免费看不卡的av| 日本午夜av视频| 人妻人人澡人人爽人人| 欧美97在线视频| 只有这里有精品99| 高清欧美精品videossex| av视频免费观看在线观看| 日本色播在线视频| 国产片特级美女逼逼视频| 久久亚洲国产成人精品v| 黄色片一级片一级黄色片| 国产精品熟女久久久久浪| a级片在线免费高清观看视频| 国产精品成人在线| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 亚洲天堂av无毛| 91精品伊人久久大香线蕉| 人人妻,人人澡人人爽秒播 | 18禁裸乳无遮挡动漫免费视频| 久久99热这里只频精品6学生| 9热在线视频观看99| av在线app专区| 久久鲁丝午夜福利片| 日韩人妻精品一区2区三区| 性少妇av在线| 校园人妻丝袜中文字幕| 在线观看www视频免费| 亚洲第一av免费看| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 久久青草综合色| 亚洲欧美一区二区三区国产| 国产日韩欧美在线精品| 午夜福利免费观看在线| 久久这里只有精品19| 久久久久久久久免费视频了| 韩国高清视频一区二区三区| 欧美人与善性xxx| a级毛片在线看网站| 成人国产av品久久久| 亚洲成av片中文字幕在线观看| cao死你这个sao货| 久久久国产一区二区| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 精品国产乱码久久久久久男人| 免费av中文字幕在线| 中文字幕亚洲精品专区| 亚洲七黄色美女视频| 久久国产精品人妻蜜桃| 免费少妇av软件| 欧美成狂野欧美在线观看| 一级毛片我不卡| 1024香蕉在线观看| 精品国产一区二区久久| 国产亚洲一区二区精品| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| 宅男免费午夜| 亚洲伊人久久精品综合| 在线观看www视频免费| 丝袜美腿诱惑在线| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| 中文字幕色久视频| 国产欧美日韩一区二区三区在线| 汤姆久久久久久久影院中文字幕| 天天躁日日躁夜夜躁夜夜| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 少妇粗大呻吟视频| 又大又爽又粗| www日本在线高清视频| 男女床上黄色一级片免费看| 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 热99久久久久精品小说推荐| 可以免费在线观看a视频的电影网站| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| 久久影院123| 午夜福利视频在线观看免费| 亚洲人成电影免费在线| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 男男h啪啪无遮挡| 人妻 亚洲 视频| 人人妻人人澡人人看| 国产黄色视频一区二区在线观看| 久久久久精品人妻al黑| 亚洲精品国产色婷婷电影| 新久久久久国产一级毛片| 国产黄频视频在线观看| 成年人午夜在线观看视频| 大香蕉久久网| 高潮久久久久久久久久久不卡| 国产在线观看jvid| 99热网站在线观看| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 午夜福利在线免费观看网站| 亚洲,一卡二卡三卡| 精品人妻在线不人妻| 精品久久久久久电影网| 妹子高潮喷水视频| 国产成人影院久久av| av电影中文网址| 精品人妻熟女毛片av久久网站| 国产精品免费大片| 天天影视国产精品| 性少妇av在线| 亚洲av成人不卡在线观看播放网 | 两个人看的免费小视频| 午夜免费观看性视频| 最新在线观看一区二区三区 | 国产女主播在线喷水免费视频网站| 久久 成人 亚洲| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 91国产中文字幕| 国产片特级美女逼逼视频| 国产成人精品在线电影| 国产1区2区3区精品| 久久亚洲国产成人精品v| 亚洲综合色网址| 久久人人97超碰香蕉20202| 18在线观看网站| 欧美精品啪啪一区二区三区 | 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三 | 亚洲情色 制服丝袜| 欧美在线黄色| 99热网站在线观看| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 女人被躁到高潮嗷嗷叫费观| 日本色播在线视频| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 亚洲精品第二区| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 人妻人人澡人人爽人人| kizo精华| 日本vs欧美在线观看视频| 欧美性长视频在线观看| 亚洲,欧美,日韩| 人人妻人人澡人人看| 我要看黄色一级片免费的| 亚洲国产毛片av蜜桃av| 欧美成狂野欧美在线观看| 精品少妇内射三级| 国产精品国产av在线观看| 婷婷色综合大香蕉| 欧美性长视频在线观看| 国产一区二区三区综合在线观看| 啦啦啦在线观看免费高清www| 欧美成人午夜精品| 久久中文字幕一级| 久久综合国产亚洲精品| 天天影视国产精品| 婷婷色综合大香蕉| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 亚洲av电影在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 日韩大片免费观看网站| 亚洲欧美色中文字幕在线| 国产一区二区在线观看av| 狠狠精品人妻久久久久久综合| 久久九九热精品免费| 亚洲欧美日韩另类电影网站| 中国美女看黄片| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 欧美乱码精品一区二区三区| 一级毛片黄色毛片免费观看视频| 老司机深夜福利视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 精品欧美一区二区三区在线| 青春草视频在线免费观看| 一本色道久久久久久精品综合| 女人高潮潮喷娇喘18禁视频| 亚洲免费av在线视频| 伊人久久大香线蕉亚洲五| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 99热国产这里只有精品6| 中文字幕亚洲精品专区| 日本wwww免费看| 亚洲精品国产av蜜桃| 欧美日韩一级在线毛片| av线在线观看网站| 女人精品久久久久毛片| 亚洲第一av免费看| 国产成人啪精品午夜网站| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 波多野结衣av一区二区av| 在线av久久热| 在线观看人妻少妇| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院| 搡老乐熟女国产| 久久天堂一区二区三区四区| 久久国产精品人妻蜜桃| 欧美日本中文国产一区发布| 中文字幕av电影在线播放| 九草在线视频观看| 午夜免费鲁丝| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码 | 国产免费现黄频在线看| 欧美国产精品一级二级三级| 伊人久久大香线蕉亚洲五| 电影成人av| 日日摸夜夜添夜夜爱| 国产真人三级小视频在线观看| 国产精品一国产av| 精品久久久精品久久久| 18禁国产床啪视频网站| 成人国语在线视频| 在线观看www视频免费| 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| 欧美在线黄色| 99精品久久久久人妻精品| 9热在线视频观看99| 午夜福利免费观看在线| 激情五月婷婷亚洲| 老熟女久久久| 欧美亚洲 丝袜 人妻 在线| 久久久久国产精品人妻一区二区| 久久性视频一级片| 国产高清视频在线播放一区 | 色播在线永久视频| 国产熟女欧美一区二区| 曰老女人黄片| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 99热国产这里只有精品6| 国产一区亚洲一区在线观看| 一区福利在线观看| 欧美大码av| 在线精品无人区一区二区三| 热re99久久国产66热| 亚洲av电影在线进入| av电影中文网址| 久久精品国产亚洲av高清一级| 一边摸一边抽搐一进一出视频| 亚洲av欧美aⅴ国产| 亚洲精品成人av观看孕妇| 久久99精品国语久久久| 中文字幕制服av| 国产一区二区在线观看av| 免费黄频网站在线观看国产| 欧美中文综合在线视频| 久久av网站| 日本av手机在线免费观看| 欧美激情极品国产一区二区三区| 一本久久精品| 精品福利永久在线观看| 国产精品国产三级国产专区5o| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃| 久久久久久亚洲精品国产蜜桃av| 一区二区日韩欧美中文字幕| 亚洲欧美日韩高清在线视频 | 午夜福利,免费看| 亚洲精品久久午夜乱码| 黑丝袜美女国产一区| 老司机亚洲免费影院| 麻豆av在线久日| 婷婷色av中文字幕| 99热网站在线观看| 久久精品aⅴ一区二区三区四区| 搡老乐熟女国产| 日本黄色日本黄色录像| 欧美乱码精品一区二区三区| 久久久久久久久久久久大奶| 欧美亚洲日本最大视频资源| 精品久久久久久电影网| 国产精品香港三级国产av潘金莲 | 久久国产精品大桥未久av| 热99国产精品久久久久久7| 午夜福利免费观看在线| 一级黄片播放器| 90打野战视频偷拍视频| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| 亚洲 国产 在线| 国产成人免费观看mmmm| 午夜免费观看性视频| 精品一区二区三区av网在线观看 | 亚洲欧美一区二区三区国产| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 一级毛片电影观看| 九草在线视频观看| 不卡av一区二区三区| 麻豆av在线久日| 欧美 日韩 精品 国产| 亚洲免费av在线视频| 久久久精品免费免费高清| 亚洲精品久久午夜乱码| 国产亚洲精品久久久久5区| 久久久久国产精品人妻一区二区| 日韩伦理黄色片| 搡老岳熟女国产| 中国国产av一级| 色94色欧美一区二区| 在线 av 中文字幕| 欧美日韩视频精品一区| 免费黄频网站在线观看国产| 制服人妻中文乱码| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美软件| 免费人妻精品一区二区三区视频| 亚洲伊人色综图| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 首页视频小说图片口味搜索 | 大码成人一级视频| 亚洲熟女毛片儿| 美女大奶头黄色视频| 亚洲精品日本国产第一区| 狂野欧美激情性bbbbbb| 亚洲国产最新在线播放| 大陆偷拍与自拍| 咕卡用的链子| 国产亚洲欧美在线一区二区| 高潮久久久久久久久久久不卡| a级片在线免费高清观看视频| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 一边亲一边摸免费视频| 国产主播在线观看一区二区 | 日本欧美视频一区| 最黄视频免费看| 婷婷色av中文字幕| 1024视频免费在线观看| 一边摸一边抽搐一进一出视频| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 亚洲熟女精品中文字幕| 国产精品久久久av美女十八| 50天的宝宝边吃奶边哭怎么回事| 免费观看av网站的网址| 超碰97精品在线观看| 操美女的视频在线观看| 亚洲成人国产一区在线观看 | 成年人免费黄色播放视频| 国产精品人妻久久久影院| 亚洲精品乱久久久久久| 欧美+亚洲+日韩+国产| 人人妻人人澡人人看| 久久久久久人人人人人| 精品久久久久久电影网| 久久久国产欧美日韩av| 日本猛色少妇xxxxx猛交久久| 两个人免费观看高清视频| 国产男女内射视频| 搡老岳熟女国产| 国产精品三级大全| 午夜免费观看性视频| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码 | av有码第一页| 免费一级毛片在线播放高清视频 | 天堂俺去俺来也www色官网| cao死你这个sao货| 亚洲精品成人av观看孕妇| 久久99一区二区三区| 国产视频一区二区在线看| 国产一区二区三区av在线| 丝袜在线中文字幕| 男人操女人黄网站| 国产精品久久久久久精品古装| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 麻豆乱淫一区二区| 麻豆国产av国片精品| 91字幕亚洲| 操美女的视频在线观看| 丝袜喷水一区| 亚洲成国产人片在线观看| av在线老鸭窝| 免费观看av网站的网址| 婷婷色综合www| 亚洲欧美一区二区三区黑人| 老司机亚洲免费影院| 免费高清在线观看视频在线观看| 天天躁夜夜躁狠狠躁躁| 日韩一卡2卡3卡4卡2021年| 一区福利在线观看| 国产成人av激情在线播放| 人人妻人人澡人人爽人人夜夜| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 99九九在线精品视频| 欧美日韩亚洲综合一区二区三区_| 人妻人人澡人人爽人人| 永久免费av网站大全| 亚洲成人免费电影在线观看 | 久久久久久久精品精品| 久久国产精品大桥未久av| 国产精品免费视频内射| 国产亚洲精品久久久久5区| 91精品国产国语对白视频| 国产成人精品在线电影| 欧美国产精品va在线观看不卡| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| 亚洲成国产人片在线观看| 精品人妻在线不人妻| 久久精品久久精品一区二区三区| 香蕉丝袜av| www.熟女人妻精品国产| 亚洲第一青青草原| 丝袜美足系列| 国产成人精品久久久久久| 水蜜桃什么品种好| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 欧美激情极品国产一区二区三区| 无限看片的www在线观看| 日韩av不卡免费在线播放| 超碰成人久久| 91国产中文字幕| 午夜福利视频在线观看免费| √禁漫天堂资源中文www| 精品人妻熟女毛片av久久网站| 婷婷色综合www| 在线观看免费日韩欧美大片| 丝瓜视频免费看黄片| 久久久久视频综合| 男人舔女人的私密视频| 精品久久蜜臀av无| 久久天堂一区二区三区四区| 免费在线观看日本一区| 黄频高清免费视频| 亚洲中文字幕日韩| 精品国产一区二区久久|