王曉琳,賀鋒濤,賈瓊瑤,劉 佳
基于光纖振動(dòng)的激光散斑控制
王曉琳,賀鋒濤*,賈瓊瑤,劉 佳
(西安郵電大學(xué)電子工程學(xué)院,西安710061)
散斑噪聲的存在使得圖像灰度劇烈變化,降低了圖像分辨率,影響成像質(zhì)量。為了控制散斑噪聲,使用波長(zhǎng)為405nm的激光作為顯微系統(tǒng)照明光源,利用音圈電機(jī)振動(dòng)光纖,通過對(duì)拋光玻璃顯微成像,用CCD圖像采集卡采集圖像后進(jìn)行了散斑噪聲對(duì)比度分析。結(jié)果表明,在光纖振動(dòng)幅度不變、振動(dòng)頻率在4Hz~55Hz內(nèi)逐漸增加時(shí),圖像散斑對(duì)比度在0.0326~0.1197范圍內(nèi)逐漸變小;當(dāng)頻率大于51Hz時(shí),圖像散斑對(duì)比度曲線趨于平穩(wěn)且對(duì)比度在0.0326處獲得了最小值,圖像清晰,達(dá)到良好的散斑控制。
激光光學(xué);激光散斑;散斑對(duì)比度;頻率
激光具有方向性好、亮度高、單色性和相干性好的特性,在精密測(cè)量和圖像顯示[1-5]等領(lǐng)域得到廣泛應(yīng)用。但由于激光的強(qiáng)相干性,成像時(shí)會(huì)形成散斑噪聲,使得圖像灰度劇烈變化,隱藏圖像的細(xì)節(jié)信息,影響成像質(zhì)量,降低了圖像的清晰度和分辨率[6-7],所以需要對(duì)散斑進(jìn)行控制。如何減弱散斑噪聲的影響一直是人們研究的問題[8]。不少科研工作人員提出了降低散斑對(duì)比度的方法,如利用不同波長(zhǎng)的光源照明來降低激光相干性[9],從而減弱散斑;利用脈沖激光的疊加、移動(dòng)散射體等方法來降低散斑[8]。這些方法雖然減弱散斑的影響,但系統(tǒng)較為復(fù)雜。作者采用405nm的激光作為系統(tǒng)的照明光源,結(jié)合CCD圖像采集卡對(duì)樣品圖像進(jìn)行采集,在采集過程中利用音圈電機(jī)振動(dòng)光纖來消除由于激光相干性所產(chǎn)生的散斑噪聲,有效地降低了散斑對(duì)比度。這種方法成本低、精度高、結(jié)構(gòu)簡(jiǎn)單、且實(shí)用可行,使得本系統(tǒng)易于實(shí)現(xiàn)。
光學(xué)顯微鏡的分辨率由顯微物鏡的分辨率、CCD攝像頭的分辨率和圖像采集卡的分辨率決定;但主要取決于顯微物鏡的分辨率[10]。由瑞利判據(jù)可知,物鏡的分辨率由d=0.61決定,即與照明光源的波長(zhǎng)成正比,與物鏡的數(shù)值孔徑(numericalaperture,NA)dNA成反比。因此,提高分辨率則可選用短波長(zhǎng)的光源或者提高數(shù)值孔徑[11]。該系統(tǒng)選用顯微鏡物鏡的數(shù)值孔徑dNA=0.65保持不變,采用短波長(zhǎng)為405nm的激光作為光源,其理論分辨率可達(dá)380nm。但由于散斑的存在,影響了成像的質(zhì)量,所以作者利用光纖振動(dòng)的方法對(duì)激光散斑進(jìn)行控制。
本系統(tǒng)由三部分組成,即光學(xué)顯微鏡、CCD圖像采集和微型計(jì)算機(jī),如圖1所示。其基本原理為:405nm的激光通過振動(dòng)的光纖傳輸?shù)骄酃忡R上,使激光匯聚在孔徑光闌中,當(dāng)從孔徑光闌出射后,經(jīng)一組聚光透鏡匯聚,通過分光鏡和輔助物鏡聚焦在顯微物鏡的焦平面,物鏡使光束變?yōu)槠叫泄饩鶆蛘丈湓跍y(cè)量樣品上,從樣品表面反射回的帶有樣品信息的光經(jīng)顯微鏡、輔助物鏡后,被分光鏡反射,反射光束經(jīng)棱鏡后呈倒立放大的實(shí)像,通過目鏡接收放大后,由CCD攝像頭在CCD顯示器上成像;最終顯示在計(jì)算機(jī)中[12]。
Fig.1 Schematic diagram
該系統(tǒng)采用振動(dòng)光纖的方法減小散斑噪聲,即將一個(gè)音圈電機(jī)固定在光纖上,通過音圈電機(jī)振動(dòng)帶動(dòng)光纖振動(dòng),當(dāng)405nm的激光經(jīng)過振動(dòng)的光纖時(shí),其相位發(fā)生變化,即破壞了激光的強(qiáng)相干性,從而起到減小散斑噪聲的作用。
用對(duì)比度[13]作為激光散斑控制的評(píng)價(jià)標(biāo)準(zhǔn)。實(shí)驗(yàn)裝置選用40×的顯微物鏡,CCD攝像頭像素為786×576以及0.65的數(shù)值孔徑。當(dāng)數(shù)值孔徑不變時(shí),選用405nm激光作為系統(tǒng)的照明光源,分別采集音圈電機(jī)振動(dòng)頻率在4Hz~55Hz時(shí)的拋光玻璃表面散斑圖像,如圖2所示,共52幅。利用公式(其中,I是散斑圖樣的強(qiáng)度)[14]通過MATLAB軟件計(jì)算其對(duì)比度。計(jì)算結(jié)果如表1所示。
Fig.2 The speckle image of polishing glass surface under different frequency
Table 1 Speckle contrast
通過MATLAB軟件,對(duì)采集到的多幅顯微圖像進(jìn)行散斑對(duì)比度計(jì)算及對(duì)比度曲線擬合,得到音圈電機(jī)振動(dòng)幅度不變頻率變化時(shí)散斑對(duì)比度曲線,如圖3所示??梢钥闯?,隨著振動(dòng)頻率在4Hz~55Hz范圍內(nèi)增加時(shí),圖像散斑對(duì)比度在0.0326~0.1197之間逐漸變小,在5Hz時(shí),其對(duì)比度最大,屏幕上會(huì)顯示無規(guī)則分布的散斑噪聲,如圖2中的2所示。當(dāng)頻率大于51Hz時(shí),圖像散斑對(duì)比度曲線趨于平穩(wěn),在0.0326對(duì)比度處獲得了最小值,具有良好的散斑消除效果,即通過頻率的控制完成了對(duì)激光散斑的控制。
Fig.3 Contrast curve with the frequency change
為了進(jìn)一步說明散斑控制的效果,選擇最大對(duì)比度和最小對(duì)比度的兩幅散斑圖像,即5Hz和51Hz進(jìn)行光強(qiáng)分析,如圖4和圖5所示。
Fig.4 Intensity distribution of speckle pattern of2 of Fig.2
Fig.5 Intensity distribution of speckle pattern of51 of Fig.2
從圖4中頻率為5Hz時(shí)散斑圖的光強(qiáng)分布可以看出,光強(qiáng)的起伏較大,在0.2~0.8范圍內(nèi)波動(dòng),多處區(qū)域出現(xiàn)尖峰,對(duì)應(yīng)圖2中的2,其對(duì)比度為0.1197,驗(yàn)證了頻率較小時(shí),圖像會(huì)出現(xiàn)無規(guī)則分布的散斑噪聲。圖5為51Hz時(shí)散斑圖的光強(qiáng)分布,其光強(qiáng)起伏較小,集中在0.35~0.5范圍內(nèi)波動(dòng),只有個(gè)別區(qū)域出現(xiàn)尖峰,其對(duì)比度為0.0326,使顯微圖像達(dá)到5%以下的散斑對(duì)比度,低于人眼對(duì)圖像的分辨,說明散斑噪聲得到了很好的控制。
用波長(zhǎng)為405nm的激光作為激光顯微成像系統(tǒng)的照明光源,對(duì)散斑消除前后的DVD-R盤片顯微成像圖像進(jìn)行采集對(duì)比,如圖6所示。
Fig.6 a—DVD-R disk image when existing speckle noise b—DVD-R disk image without speckle noise
圖6a為光纖靜止時(shí)采集到的DVD-R盤片圖像,可以看出,DVD-R由于散斑的影響無法分辨。當(dāng)用音圈電機(jī)振動(dòng)光纖后,在頻率為51Hz時(shí),采集到如圖6b所示的DVD-R盤片圖像,由于光纖受到振動(dòng),破壞了激光的強(qiáng)相干性,起到了消除圖像散斑的作用??梢钥闯?,此時(shí)DVD-R盤片圖像的信息點(diǎn)能清晰觀察。
該系統(tǒng)中光學(xué)顯微鏡的照明光源選用了405nm的短波長(zhǎng)激光,當(dāng)數(shù)值孔徑不變時(shí),能有效地提高系統(tǒng)分辨率,通過振動(dòng)音圈電機(jī)帶動(dòng)光纖振動(dòng)的方法來減弱由于采用激光作為光源時(shí)所產(chǎn)生的散斑,并對(duì)拋光玻璃表面在振動(dòng)電機(jī)不同頻率下采集的圖像進(jìn)行對(duì)比度分析。結(jié)果表明,當(dāng)幅度不變而頻率提高時(shí),散斑的消除效果越來越理想,但在頻率提高到一定閾值時(shí),對(duì)比度值基本不變,即散斑消除效果趨于穩(wěn)定,實(shí)現(xiàn)了不同頻率下對(duì)激光散斑的控制,該方法成本低、靈敏度高、結(jié)構(gòu)簡(jiǎn)單,這對(duì)激光散斑消除具有重要意義。
[1] JEONG Y J,PYO Y,IWASHITA Y,et al.High-precision threedimensional laser measurement system by cooperative multiple mobile robots[C]//System Integration,2012 IEEE/SICE Internation-al Symposium.Tokyo,Japan:IEEE,2012:198-205.
[2] WANG X D,LIUW Y,JIN Y H,et al.Laser radar image acquisition and display integrated system based on DSP and CPLD[J].Optics and Precision Engineering,2004,12(2):190-194(in Chinese).
[3] BIY,SUN Zh P,LIRN,et al.High power blue Nd∶YAG laser by intracavity summing frequency[J].Optics and Precision Engineering,2005,13(1):16-21(in Chinese).
[4] YANG Ch J,ZHOU J Zh,ZHANG Y K,et al.Study on calculation of minimum laser energy of sheet metal deformation by laser shock forming[J].Optics and Precision Engineering,2006,14(3):396-401(in Chinese).
[5] YIN R Y,TONG Y,ZHAOY Q,et al.Optical Doppler technologies for micro-circulation measurement and their recent progress[J].Optical Technique,2013,39(2):112-123(in Chinese).
[6] YU G,WANG Sh G,YUN J H,et al.Technology of digital speckle pattern interferometry and its applications[J].Laser Technology,2002,26(3):237-240(in Chinese).
[7] ZHANG Y P,WANG K F.Application of LabVIEW and MATLAB in ESPI image processing[J].Laser Technology,2009,33(6):582-585(in Chinese).
[8] LIX,LIUW Q,TIAN ZH,et al.Speckle contrast reduction of laser display system[J].Chinese Journal of Liquid Crystals and Displays,2008,23(2):153-156(in Chinese).
[9] JIA Q Y,HE F T.Speckle homogenization in laser projection display[J].Laser Technology,2013,37(3):400-403(in Chinese).
[10] ZHANG D L,HE F T,F(xiàn)ENG X Q,et al.High-resolution optical micro-survey system with blue illuminating scurce[J].Applied Optics,2005,26(3):57-59(in Chinese).
[11] HE F T,LIU J.Analysis on the speckle contrast of the microscopic image of laser[J].Journal of Northwest University(Natural Science Edition),2012,42(3):377-380(in Chinese).
[12] HE F T,LIU J,WANG Z,et al.The micro-measurement system of high-resolution 405nm laser[J].Journal of Northwest University(Natural Science Edition),2011,41(4):603-605(in Chinese).
[13] JANAKA S,REGE A,LIN.Laser speckle contrast imaging:theory,instrumentation and applications[J].IEEE Reviews in Biomedical Engineering,2013(6):99-110.
[14] REN Sh Y,ZHANG Zh,LIU G D,et al.Restraining speckle of laser imaging system in accurate measurement[J].Optics and Precision Engineering,2007,15(3):331-336(in Chinese).
Laser speck le control based on optical fiber vibration
WANGXiaolin,HEFengtao,JIA Qiongyao,LIUJia
(College of Electronic Engineering,Xi’an University of Post and Telecommunications,Xi’an 710061,China)
The image gray can be changed by severely the speckle noise,so the image resolution can be reduced and the image quality was decreased.In order to control the speckle noise,using a laser at405nm wavelength as light source of the microscopic imaging system and a voice coil motor vibrating the optical fiber,images was obtained by the polished lens and captured with a CCD image acquisition card,the speckle noise contrasts were studied.The results show that when the fiber vibration amplitude is stable and the vibration frequency is increased from 4Hz to 55Hz,the image speckle contrasts change in the range of0.0326~0.1197 and the overall trend gradually becomes smaller.The image speckle contrast levels off when the frequency is more than 51Hz.When the speckle contrast reaches the minimum at0.0326,the image is clear and the laser imaging speckle can be controlled satisfactorily.
laser optics;laser speckle;speckle contrast;frequency
TN249
A
10.7510/jgjs.issn.1001-3806.2014.02.007
1001-3806(2014)02-0177-04
國(guó)家自然科學(xué)基金資助項(xiàng)目(61201193)
王曉琳(1987-),女,碩士研究生,主要從事激光成像方面的研究。
*通訊聯(lián)系人。E-mail:hefengtao@xupt.edu.cn
2013-07-08;
2013-08-20