馬毅 魏鋒 衛(wèi)曉軼 洪德峰 馬俊峰 張學舜
摘要:對新單38株型相關(guān)性狀進行了調(diào)查研究。結(jié)果表明:新單38的株高、穗位高和雄穗長度均高于對照鄭單958,且差異達顯著或極顯著水平;葉向值極顯著大于鄭單958,其株型更緊湊。親本之間相比,新4白改(新單38母本)的葉夾角顯著小于鄭58(鄭單958母本),說明其株型相對緊湊;新6/敦系3(新單38父本)的雄穗分枝數(shù)顯著多于昌7-2(鄭單958父本),說明其雄穗更發(fā)達,更有利于制種。測產(chǎn)結(jié)果顯示,新單38單產(chǎn)比對照鄭單958高8.4%,達極顯著水平。
關(guān)鍵詞:玉米;新單38;株型;產(chǎn)量
中圖分類號:S513.01文獻標識號:A文章編號:1001-4942(2014)05-0029-02
通過選擇理想株型品種來提高玉米單產(chǎn)是育種者選育新品種的常用方法[1]。玉米株型育種包含了玉米生理生態(tài)育種的各個方面,株型性狀的相互影響,最終決定了產(chǎn)量的獲得[2]。玉米株型育種研究一直是育種者工作的熱點。新單38是2013年河南省審定的玉米新品種,對其株型各相關(guān)性狀進行研究可為該品種的推廣提供技術(shù)依據(jù)。
1材料與方法
1.1材料
新單38(新4白改×新6/敦系3)由新鄉(xiāng)市農(nóng)業(yè)科學院選育而成。以鄭單958(鄭58×昌7-2)為對照。
1.2方法
試驗于2013年在本院試驗田進行。隨機區(qū)組設(shè)計,重復3次。每個材料種植4行,行長4 m,行距60 cm,株距25 cm。管理同常規(guī)大田。
選代表性植株5株,于授粉后10天,測定株高、穗位高、第三節(jié)間莖粗、雄穗長度、雄穗分枝數(shù)、葉向值、葉夾角、葉面積共8個株型相關(guān)性狀[3]。分別記載棒三葉的葉夾角(leaf angle,LA)、高點長(葉基至最高點距離,LF)、葉長(leaf length,LL)、葉寬(leaf width,LW)。葉向值(leaf orientation value,LOV)=ε(90-θ)×(LF/LL)/n,其中n表示測定葉片數(shù),θ代表葉夾角的度數(shù)。以棒三葉平均葉夾角、葉向值、葉長、葉寬代表全株葉夾角、葉向值、葉長和葉寬[4]。
葉面積計算參照胡小平等的方法[5]。成熟后,收獲小區(qū)中間兩行進行測產(chǎn)。
1.3數(shù)據(jù)分析
用SPSS 17.0軟件進行數(shù)據(jù)處理及分析。
2結(jié)果與分析
對新單38及其親本8個株型相關(guān)性狀和產(chǎn)量進行方差分析,結(jié)果(表1)表明。新單38的株高、雄穗長度、葉向值和產(chǎn)量均極顯著高于對照鄭單958,分別高11.6%、13.3%、13.9%和8.4%;穗位高顯著高于對照(3.1%);新單38的第三節(jié)間莖粗、雄穗分枝數(shù)、葉夾角和葉面積4個性狀,與對照鄭單958相比,無顯著差異。
親本自交系間相比,除第三節(jié)間莖粗和葉面積外,自交系間的其余株型性狀均存在顯著或極顯著差異。其中,新單38雙親的株高和穗位高均低于昌7-2,高于鄭58,且差異均達極顯著水平;新單38母本新4白改的雄穗長度極顯著低于其余自交系;新單38父本新6/敦系3的雄穗分枝數(shù)顯著多于昌7-2;與鄭單958母本鄭58相比,新單38母本新4白改的葉夾角顯著小于對照(23.7%)。
3結(jié)論與討論
葉向值是表示葉片與莖稈夾角大小及葉片在空間下垂程度的綜合指標,其值越大,表明葉片上沖性越強,株型緊湊;值越小,則表示葉片下垂程度越大,株型越平展[6]。新單38的葉向值極顯著大于對照鄭單958,說明新單38株型更緊湊。
對新單38及其親本8個株型相關(guān)性狀的分析結(jié)果表明,新單38的株高、雄穗長度極顯著高于鄭單958,穗位高顯著高于鄭單958。從親本來看,新單38母本新4白改的葉夾角顯著小于鄭58,說明其母本的株型相對緊湊。新單38父本新6/敦系3的雄穗分枝數(shù)顯著多于昌7-2,說明其父本的雄穗更發(fā)達,更有利于制種。
參考文獻:
[1]王元東,段民孝,邢錦豐,等.玉米理想株型育種的研究進展與展望[J].玉米科學,2008,16(3):47-50.
[2]張旭,王占森,謝虹,等.玉米株型育種研究進展[J].種子,2010,29(2):52-55.
[3]黃磊玉,吳廣霞,王玉梅,等.黃早四及衍生自交系株型性狀研究[J].玉米科學,2011,19(1):27-30.
[4]趙文明.玉米株型相關(guān)性狀QTL定位與分析[D].鄭州:河南農(nóng)業(yè)大學,2008.
[5]胡小平,薛永祥.玉米單株葉面積的快速測定[J].玉米科學,1993,1(3):77-78.
[6]Pepper G E,Pearce R B,Mock J J.Leaf orientation and yield of maize[J].Crop Science,1977,17:883-886.(上接第11頁)
[19]Welsch R, Beyer P, Hugueney P, et al. Regulation and activation of phytoenesynthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis[J]. Planta, 2000, 211(6):846-854.
[20]Bramley P M. Regulation of carotenoid formation during tomato fruit ripening and development[J]. Exp. Bot., 2002, 53:2107-2113.
[21]Rodríguez-Villalón A, Gas E, Rodríguez-Concepción M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings[J]. Plant J., 2009, 60(3):424-435.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.
[22]Wydrzynski T, Satoh K. Photosystem Ⅱ: the light-driven water: plastoquinone oxidoreductase [J]. Photosynthesis Research,2006,87(3):331-335.
[23]Demmig-Adams B, Adams W W. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation[J]. New Phytol., 2006, 172:11-21.
[24]Dall′Osto L, Cazzaniga S, Havaux M. Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of hlorophyll b and xanthophyll biosynthesis mutants[J]. Mol. Plant, 2010, 3(3):576-593.
[25]Cazzonelli C I , Pogson B J. Source to sink: regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science, 2010, 15(5):266-274.
[26]Welsch R, Wüst F, Br C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes[J]. Plant Physiol., 2008, 147(1):367-380.
[27]Chaudhary N, Nijhawan A, Khurana J P, et al. Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis[J]. Mol. Genet. Genomics, 2010, 283(1):13-33.
[28]Howitt C A, Cavanagh C R, Bowerman A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Funct. Integr. Genomics, 2009,9(3):363-376.
[29]Li F, Vallabhaneni R, Wurtzel E T. PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis[J]. Plant Physiol., 2008, 146:1333-1345.