• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響

      2014-08-08 02:15:12褚貴新李俊華梁永超
      生態(tài)學(xué)報(bào) 2014年21期
      關(guān)鍵詞:假單蕾期無(wú)機(jī)

      陶 磊,褚貴新,*, 劉 濤, 唐 誠(chéng), 李俊華, 梁永超

      (1. 石河子大學(xué)農(nóng)學(xué)院資源與環(huán)境科學(xué)系, 新疆生產(chǎn)建設(shè)兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室, 石河子 832003;2. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部作物營(yíng)養(yǎng)與施肥重點(diǎn)實(shí)驗(yàn)室,北京 100081)

      有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響

      陶 磊1,褚貴新1,*, 劉 濤1, 唐 誠(chéng)1, 李俊華1, 梁永超2

      (1. 石河子大學(xué)農(nóng)學(xué)院資源與環(huán)境科學(xué)系, 新疆生產(chǎn)建設(shè)兵團(tuán)綠洲生態(tài)農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室, 石河子 832003;2. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部作物營(yíng)養(yǎng)與施肥重點(diǎn)實(shí)驗(yàn)室,北京 100081)

      施用有機(jī)物是作物增產(chǎn)、增加土壤有機(jī)質(zhì)和改善土壤生物學(xué)性狀的有效措施。在大田滴灌條件下,采用土壤酶學(xué)和微生物平板培養(yǎng)方法,研究了常規(guī)施肥(CF)減量20%—40%,配施3000、6000 kg/hm2有機(jī)類肥料對(duì)棉花產(chǎn)量、土壤微生物數(shù)量及土壤酶活性的影響。結(jié)果表明:降低CF用量20%—40%情況下,滴灌棉田配施3000、6000 kg/hm2的有機(jī)類肥料可獲得與CF處理相持平的產(chǎn)量(4945—4978 kg/hm2),有機(jī)肥和生物有機(jī)肥配施處理間的棉花產(chǎn)量差異不顯著(P<0.05)。細(xì)菌、放線菌和假單胞桿菌數(shù)量均隨有機(jī)肥用量的增加而升高,不同類有機(jī)肥配施間表現(xiàn)為OF+BF>BF>OF;真菌數(shù)量則隨有機(jī)肥施量升高而降低,其中OF+BF配施處理最為顯著。有機(jī)無(wú)機(jī)肥配施顯著提高了土壤酶活性,80% CF和60% CF與有機(jī)肥配施處理土壤堿性磷酸酶、熒光素二乙酸酯酶(FDA)、β-葡萄糖苷酶和脫氫酶的活性比CF處理分別升高了3.8%、17%、18%、55%和10.1%、19%、20%、60%,不同類型有機(jī)肥對(duì)土壤酶活性影響差異不顯著。土壤細(xì)菌/真菌比、土壤放線菌/真菌和假單胞桿菌/真菌比均隨有機(jī)肥施量的增加而升高,施用化肥或有機(jī)肥均顯著降低了假單胞桿菌/細(xì)菌比。細(xì)菌、放線菌和假單胞桿菌數(shù)量與土壤脫氫酶、β-葡萄糖苷酶、堿性磷酸酯酶和熒光素二乙酸酯酶活性均呈顯著或極顯著正相關(guān),真菌數(shù)量與4種酶活性呈負(fù)相關(guān)。CF減量20%—40%配施以3000、6000 kg/hm2有機(jī)肥不僅不會(huì)導(dǎo)致棉花減產(chǎn),而且對(duì)提高土壤酶活性、調(diào)節(jié)土壤細(xì)菌、真菌、放線菌群落組成結(jié)構(gòu),改善北疆綠洲滴灌棉田土壤生物學(xué)性狀有顯著作用。

      棉花; 土壤酶活性; 土壤微生物; 生物有機(jī)肥

      施肥是作物增產(chǎn)最有效的途徑。據(jù)聯(lián)合國(guó)糧農(nóng)組織(FAO)統(tǒng)計(jì),肥料對(duì)糧食作物的貢獻(xiàn)率在30%—50%[1],我國(guó)化肥長(zhǎng)期定位試驗(yàn)網(wǎng)數(shù)據(jù)統(tǒng)計(jì)也表明化肥對(duì)我國(guó)糧食產(chǎn)量的貢獻(xiàn)率為40.8%[2]。有機(jī)無(wú)機(jī)肥配施一直是我國(guó)農(nóng)業(yè)施肥的指導(dǎo)方針,然而近50年來(lái),化學(xué)肥料的施用量逐年增加,與之對(duì)應(yīng)的是有機(jī)肥施用量急劇下降。沈其榮等[3]研究表明,在1960、1980、2000、2010年我國(guó)有機(jī)肥施用量占總施肥量的80%、60%、30%、10%。長(zhǎng)期單施和過量施用化學(xué)肥料已造成土壤有機(jī)質(zhì)含量降低、理化性狀惡化[4],肥料利用率下降[5]和土壤微生物性狀發(fā)生變化[6]。化學(xué)肥料不合理和過度施用的負(fù)面影響已經(jīng)引起政府和科學(xué)界的重視,我國(guó)政府提出“引導(dǎo)農(nóng)民合理施肥,鼓勵(lì)增施有機(jī)肥”,從農(nóng)業(yè)廢棄物高效利用和維護(hù)農(nóng)田地力的角度出發(fā),有機(jī)無(wú)機(jī)配施將是我國(guó)今后肥料施用發(fā)展的必然趨勢(shì)[7]。國(guó)內(nèi)長(zhǎng)期定位施肥實(shí)驗(yàn)表明,有機(jī)無(wú)機(jī)肥配施不但可降低土壤容重,增加總孔隙度和物理性粘粒含量,改善土壤理化性狀[8],而且可顯著提升土壤物質(zhì)生產(chǎn)性能與地力[9- 10]

      已有研究表明,利用有機(jī)肥或功能型的生物有機(jī)肥不僅可明顯提高土壤生物活性[11- 12],而且在調(diào)控健康土壤微生物區(qū)系和防治土傳病害方面有著突出作用[13- 14]。利用有機(jī)廢棄物變污染源為養(yǎng)分資源,探究科學(xué)合理的有機(jī)肥與無(wú)機(jī)肥配施比例,形成精制有機(jī)肥或功能型生物有機(jī)肥,不僅可達(dá)到減肥增效和提高養(yǎng)分資源高效利用,也關(guān)乎到以有機(jī)促無(wú)機(jī)提高化肥利用率,構(gòu)建健康土壤微生物區(qū)系,減輕土傳病害[15],進(jìn)而提高土壤可持續(xù)利用等關(guān)鍵問題。棉花是新疆農(nóng)業(yè)的支柱產(chǎn)業(yè),受經(jīng)濟(jì)利益驅(qū)動(dòng)北疆棉區(qū)長(zhǎng)期進(jìn)行棉花連作,致使棉田土壤微環(huán)境發(fā)生了改變[16],特別是近30余年的連作致使棉田土傳病害頻發(fā)。石磊巖[17]研究認(rèn)為這與棉田土壤微生物數(shù)量和土壤酶活性有關(guān)系,是綠洲滴灌土壤在長(zhǎng)期連作過程中致病性真菌的累積所致。本研究對(duì)有機(jī)肥部分替代化肥對(duì)棉花產(chǎn)量的效應(yīng)以及化肥與有機(jī)肥或生物有機(jī)肥不同配比對(duì)棉田土壤微生物性狀的影響進(jìn)行了研究,旨在比較有機(jī)肥、生物有機(jī)肥部分替代化學(xué)對(duì)綠洲農(nóng)田生產(chǎn)力、土壤微生物群落結(jié)構(gòu)及土壤生物學(xué)性狀的影響,所得結(jié)果可為滴灌條件下長(zhǎng)期連作棉田的土壤微生物區(qū)系構(gòu)建和提高綠洲農(nóng)田生產(chǎn)力及養(yǎng)分資源高效利用提供參考。

      1 材料與方法

      1.1 試驗(yàn)區(qū)概況與實(shí)驗(yàn)設(shè)計(jì)

      試驗(yàn)區(qū)基本情況:試驗(yàn)田位于石河子大學(xué)農(nóng)試場(chǎng)(E 84°58′ —86°24′, N 43°26′ —45°20′),年平均氣溫7.5—8.2℃,年降雨量180—270 mm,年蒸發(fā)量1000—1500 mm。供試土壤屬灌耕灰漠土(灌淤旱耕人為土,Calcaric Fluvisals),施肥處理前0 —20 cm土壤基礎(chǔ)有機(jī)質(zhì)含量23.6 g/kg;全氮 0.95 g/kg;全磷 0.3g/kg;堿解氮88.6 mg/kg;速效磷23.4 mg/kg;速效鉀136 mg/kg; pH值8.1。

      試驗(yàn)設(shè)置8個(gè)處理:(1) CK (不施肥);(2) CF (300 kg·N/hm2;90 kg·P2O5/hm2;60 kg·K2O/hm2);(3)80%CF+OF1(80%CF+有機(jī)肥3000 kg/hm2);(4) 60%CF+OF2(60%CF+有機(jī)肥6000 kg/hm2);(5) 80%CF+BF1(80%CF+生物有機(jī)肥3000 kg/hm2);(6) 60%CF+BF2(60%CF+生物有機(jī)肥6000 kg/hm2);(7) 80%CF+OF3+BF3(80%CF+有機(jī)肥2250 kg/hm2+生物有機(jī)肥750 kg/hm2);(8) 60%CF+OF4+BF4(60%CF+有機(jī)肥4500 kg/hm2+生物有機(jī)肥1500 kg/hm2)。每個(gè)小區(qū)面積90m2,各處理重復(fù)3次,隨機(jī)排列分布?;瘜W(xué)肥料為尿素(N=46%)、磷酸鉀銨(P2O5=24%)、磷酸二氫鉀(K2O=31.8%);有機(jī)肥為腐熟牛糞,有機(jī)質(zhì)含量24.8%;生物有機(jī)肥為江蘇新天地生物肥料有限公司生產(chǎn)的“BIO”生物有機(jī)肥,有機(jī)質(zhì)含量為29.7%,抗病菌種有效活菌數(shù)≥0.5億/g,氮磷鉀≥6%。有機(jī)肥和生物有機(jī)肥做基肥播前一次施入,化學(xué)肥料是在棉花生育期根據(jù)其需肥特性按比例分為8次隨水滴施。

      1.2 取樣及樣品處理

      本實(shí)驗(yàn)分別于2011年7月18日(棉花蕾期)和8月21日(棉花鈴期)兩次在各處理采集供分析用的土壤樣品,采樣深度為0—20 cm耕層土壤,每小區(qū)采3個(gè)樣品作為重復(fù),每個(gè)樣品均為多點(diǎn)混合,剔除礫石和植物殘根,過2 mm篩。7月18日土樣立刻進(jìn)行土壤微生物培養(yǎng),8月21日土樣分成兩部分,一部分立刻進(jìn)行微生物培養(yǎng),另一部分土樣置于4 ℃冰箱內(nèi)保存,1周內(nèi)測(cè)定土壤酶活性。

      1.3 測(cè)定方法

      1.3.1 土壤微生物平板培養(yǎng)

      細(xì)菌:培養(yǎng)基參考Perez-Piqueres[18],刮刀法接種稀釋10-5土壤懸浮液于瓊脂表面,29 ℃培養(yǎng)36 h計(jì)數(shù);真菌:培養(yǎng)基參考Perez-Piqueres[18],刮刀法接種稀釋10-2土壤懸浮液于瓊脂表面,29 ℃培養(yǎng)84 h計(jì)數(shù);放線菌:培養(yǎng)基參考Clive[19],刮刀法接種稀釋10-3土壤懸浮液于瓊脂表面,29 ℃培養(yǎng)108 h計(jì)數(shù);假單胞桿菌:培養(yǎng)基參考William[20],刮刀法接種稀釋10-4土壤懸浮液于瓊脂表面,29 ℃培養(yǎng)48 h計(jì)數(shù)。

      1.3.2 土壤酶活性測(cè)定

      測(cè)定方法參考《土壤與環(huán)境微生物研究法》[21]:土壤脫氫酶用TTC還原比色法,用單位時(shí)間內(nèi)單位土壤三苯基甲臢(TPF)生成量表示;堿性磷酸酶用苯磷酸二鈉法比色法,以每百克土的酚毫克數(shù)表示;β-葡萄糖苷酶采用β-葡萄糖苷-苯二酚滴定法,結(jié)果以1 g 土壤1 h 生成對(duì)硝基酚的量(μg)表示;熒光素二乙酸酯水解酶(FDA)采用比色法,以單位土壤在單位時(shí)間內(nèi)生成的熒光素量(μg)表示。

      1.4 數(shù)據(jù)分析

      用SPSS 17.0進(jìn)行統(tǒng)計(jì)分析,單因素方差分析(One way ANOVA),比較不同處理間差異顯著性(P=0.05)和Duncan新復(fù)極差法然后經(jīng)過t檢驗(yàn)(P<0.05),微生物數(shù)量與酶活性關(guān)系用Pearson相關(guān)系數(shù)分析,繪圖由GraphPad Prim5 軟件完成。

      2 結(jié)果與分析

      圖1 有機(jī)無(wú)機(jī)肥配施對(duì)棉花產(chǎn)量的影響Fig.1 The response of cotton yield to treatments of manure combined with chemical fertilizersCK: 不施肥對(duì)照; CF: 灌耕灰漠土(灌淤旱耕人為土)Conventional fertilization; 80%CF+OF1: 80%CF+有機(jī)肥3000 kg/hm2; 60%CF+OF2: 60%CF+有機(jī)肥6000 kg/hm2; 80%CF+BF1: 80%CF+生物有機(jī)肥3000 kg/hm2; 60%CF+BF2 : 60%CF+生物有機(jī)肥6000 kg/hm2; 80%CF+OF3+BF3 : 80%CF+有機(jī)肥2250 kg/hm2+生物有機(jī)肥750 kg/hm2; 60%CF+OF4+BF4 : 60%CF+有機(jī)肥4500 kg/hm2+生物有機(jī)肥1500 kg/hm2

      2.1 有機(jī)無(wú)機(jī)肥配施對(duì)棉花產(chǎn)量的影響

      由圖1可知,相較于CK,OF、BF、OF+BF配施等量化學(xué)肥料對(duì)棉花產(chǎn)量增幅分別為24% —31%、34% —37%和37% —40%;與CF處理相比,僅60%CF+ OF2處理的棉花產(chǎn)量有所下降,其它有機(jī)無(wú)機(jī)肥配施處理的產(chǎn)量略高于或接近CF,但差異不明顯(P<0.05)。表明在減少化學(xué)肥料用量的20% —40%的條件下,配施3000, 6000 kg/hm2的有機(jī)肥或生物有機(jī)肥,能完全滿足棉花生長(zhǎng)和穩(wěn)定產(chǎn)量的養(yǎng)分需求;有機(jī)無(wú)機(jī)肥配施處理間整體表現(xiàn)80%CF+(OF/BF) >60% CF+(OF/ BF),其中80%CF+OF3+BF3的產(chǎn)量最高,等量化學(xué)肥料配施有機(jī)肥與配施生物有機(jī)肥處理間無(wú)明顯差異。

      2.2 有機(jī)無(wú)機(jī)肥配施對(duì)土壤微生物數(shù)量的影響

      平板稀釋培養(yǎng)結(jié)果顯示(表1),不同施肥條件、棉花的不同生育期,棉田土壤細(xì)菌、放線菌和假單胞桿菌與真菌數(shù)量變化不一致。其中細(xì)菌數(shù)量變化趨勢(shì)隨著有機(jī)肥施入量的增加而增加,各施肥處理蕾期細(xì)菌數(shù)量大于鈴期;有機(jī)配施處理細(xì)菌數(shù)量在蕾期和鈴期分別是CF的1.15 —1.69和1.13 —1.61倍;有機(jī)配施處理間蕾期和鈴期細(xì)菌數(shù)量均表現(xiàn)為OF+BF>BF>OF,同類有機(jī)肥配施不等量化學(xué)肥料差異不顯著。相較CF,有機(jī)無(wú)機(jī)肥配施處理顯著增加土壤放線菌數(shù)量,增幅為蕾期7% —17%和鈴期10% —14%,蕾期和鈴期相同處理間放線菌變化不顯著;有機(jī)配施處理間無(wú)明顯差異。假單胞桿菌數(shù)量變化與細(xì)菌有著相似的趨勢(shì)。真菌數(shù)量變化趨勢(shì)則隨著施入化學(xué)肥料量的增加而升高,蕾期和鈴期均有CF>80%CF>60%CF>CK,鈴期大于蕾期真菌數(shù)量;有機(jī)配施處理間真菌數(shù)量在蕾期無(wú)差異,而鈴期則有OF>BF>OF+BF,但差異不明顯。

      表1 有機(jī)無(wú)機(jī)肥配施對(duì)土壤細(xì)菌、真菌、放線菌和假單胞桿菌數(shù)量的影響

      Table 1 The quantities of soil bacteria, fungi, actinomycetes and pseudomonas responsive to treatments of organic manure and chemical fertilizer

      處理Treatment細(xì)菌Bacteria/(×107cfu/g(干土))蕾期Budstage鈴期Bollstage真菌Fungi/(×104cfu/g(干土))蕾期Budstage鈴期Bollstage放線菌Actinomycetes/(×105cfu/g(干土))蕾期Budstage鈴期Bollstage假單胞桿菌Pseudomonas/(×106cfu/g(干土))蕾期Budstage鈴期Bollstage微生物總計(jì)Total/(×104cfu/g(干土))蕾期Budstage鈴期BollstageCK1.12f1.01e1.97c2.54de2.59c2.68d4.86a4.42c1125f1039fCF1.29e1.16e4.07a5.56a3.18b3.06cd4.95ab4.41c1321e1193e80%CF+OF11.59d1.33c2.81b3.89b3.41ab3.28bc5.35b5.05b1628d1365c60%CF+OF21.48d1.31cd2.87b3.58bc3.82a3.63ab5.39b5.29ab1524d1346cd80%CF+BF11.77c1.59b2.48b3.37bc3.64a3.77a5.34b5.26ab1805c1628b60%CF+BF21.86c1.67b2.61b3.07cd3.63a3.64ab5.68b5.37a1904c1714b80%CF+OF3+BF32.04b1.61b2.73b2.65de3.77a3.75a6.34a5.51a2079b1638b60%CF+OF4+BF42.18a1.87a2.46b2.17f3.71a3.81a6.44a5.54a2218a1914a

      表中所列數(shù)據(jù)為平均值,每一列中不同字母表示在0.05水平上差異顯著;CK表示不施肥對(duì)照;CF: 灌耕灰漠土(灌淤旱耕人為土)Conventional fertilization;80%CF+OF1:80%CF+有機(jī)肥3000 kg/hm2;60%CF+OF2:60%CF+有機(jī)肥6000 kg/hm2;80%CF+BF1:80%CF+生物有機(jī)肥3000 kg/hm2;60%CF+BF2:60%CF+生物有機(jī)肥6000 kg/hm2;80%CF+OF3+BF3:80%CF+有機(jī)肥2250 kg/hm2+生物有機(jī)肥750 kg/hm2;60%CF+OF4+BF4:60%CF+有機(jī)肥4500 kg/hm2+生物有機(jī)肥1500 kg/hm2

      2.3 有機(jī)無(wú)機(jī)肥對(duì)土壤微生物數(shù)量比的影響

      通過土壤不同種類微生物數(shù)量比值可反映不同施肥處理對(duì)農(nóng)田土壤微生物群落組成結(jié)構(gòu)的影響。由圖2可知,蕾期CF處理顯著降低了土壤細(xì)菌/真菌比,而施用有機(jī)肥或生物有機(jī)肥則能顯著提高土壤細(xì)菌/真菌比,并且隨著施用量的增加而升高,在蕾期和鈴期均有相同表現(xiàn)趨勢(shì)。有機(jī)配施處理間蕾期和鈴期細(xì)菌數(shù)量均表現(xiàn)為OF+BF>BF>OF,同類有機(jī)肥配施不等量化學(xué)肥料差異不顯著。其中蕾期,施用3000 kg/hm2和6000 kg/hm2有機(jī)肥或生物有機(jī)肥處理的細(xì)菌/真菌比值分別較CF處理的增加了1.1和1.6倍。不同有機(jī)肥配施處理間的細(xì)菌/真菌比值以60%CF+OF4+BF4處理最大,其它不同處理對(duì)細(xì)菌/真菌比的影響無(wú)明顯差異。土壤放線菌/真菌和假單胞桿菌/真菌比值對(duì)施肥各處理的響應(yīng)特點(diǎn)與施肥處理對(duì)細(xì)菌/真菌比值的影響相似(圖2)。表明施用有機(jī)肥或生物有機(jī)肥可改變滴灌棉田細(xì)菌、真菌、放線菌等群落的組成結(jié)構(gòu),提高細(xì)菌在土壤微生物群落的所占比例。施用化肥或有機(jī)肥均顯著降低了假單胞桿菌/細(xì)菌比,其中蕾期施用3000 kg/hm2和6000 kg/hm2有機(jī)類肥料的假單胞桿菌/細(xì)菌較CF處理降低了19.1%和16.7%。,說明增施有機(jī)肥可改變土壤細(xì)菌的群落結(jié)構(gòu),降低假單胞桿菌在細(xì)菌群落中所占的比例。

      圖2 有機(jī)無(wú)機(jī)肥配施對(duì)細(xì)菌/真菌、放線菌/真菌、假單胞桿菌/真菌和假單胞桿菌/細(xì)菌的數(shù)量比Fig.2 The influence of organic manure combined with chemical fertilizers on quantity ratios of bacteria/fungi, actinomycetes/fungi, pseudomonadaceae/fungi and pseudomonadaceae/bacteria

      2.4 有機(jī)無(wú)機(jī)肥配施對(duì)土壤土壤酶活性的影響

      土壤堿性磷酸酶、熒光素二乙酸酯酶(3, 6-二乙酰熒光素, FDA) 、β-葡萄糖苷酶和脫氫酶是土壤有機(jī)碳降解和養(yǎng)分轉(zhuǎn)化的關(guān)鍵酶,其活性常被表征土壤微生物活性。由圖3可知,有機(jī)無(wú)機(jī)肥配施各處理均顯著增強(qiáng)了堿性磷酸酶、熒光素二乙酸酯酶、土壤脫氫酶、β-葡萄糖苷酶4種酶的活性,尤其是土壤脫氫酶活性。相較CF,有機(jī)無(wú)機(jī)肥配施處理堿性磷酸酶活性增強(qiáng)了0.1% —12.9%,并且隨著有機(jī)肥施入量的增加而增加,配施等量化學(xué)肥料,堿性磷酸酶活性表現(xiàn)為OF+BF>BF>OF。表明增施有機(jī)肥可顯著增加堿性磷酸酶活性,但有機(jī)肥與生物有機(jī)肥處理間無(wú)明顯差異。熒光素二乙酸酯酶、β-葡萄糖苷酶與堿性磷酸酶活性有相似的趨勢(shì)。相較于CK和CF處理,有機(jī)無(wú)機(jī)配施處理對(duì)土壤脫氫酶活性影響較大,分別增強(qiáng)了1.2 —1.9和1.0 —1.6倍,有機(jī)配施間80%CF+BF脫氫酶活性略低于其他處理。

      2.5 土壤微生物數(shù)量與酶活性的影響

      土壤微生物是土壤酶的主要來(lái)源之一,因此土壤微生物數(shù)量與土壤酶密切相關(guān)。表2中細(xì)菌數(shù)量與土壤脫氫酶、β-葡萄糖苷酶、堿性磷酸酯酶和熒光素二乙酸酯酶活性均呈顯著或極顯著正相關(guān)(P<0.05),說明細(xì)菌對(duì)這4種酶活性均有顯著的促進(jìn)作用,根據(jù)Y=Kx+b線性擬合回歸方程的斜率K可知,土壤酶活性對(duì)細(xì)菌數(shù)量反應(yīng)大小表現(xiàn)為:β-葡萄糖苷酶>脫氫酶>堿性磷酸酶≈熒光素二乙酸酯酶活性。放線菌和假單胞桿菌與以上4種酶活性也呈正相關(guān),各酶活對(duì)放線菌和假單胞桿菌反應(yīng)大小順序均為β-葡萄糖苷酶>脫氫酶>熒光素二乙酸酯酶>堿性磷酸酶活性。4種酶活性與真菌數(shù)量是負(fù)相關(guān)關(guān)系,通過其與酶活性擬合方程的斜率可以看出真菌數(shù)量對(duì)熒光素二乙酸酯酶和堿性磷酸酶活性影響較弱,而與β-葡萄糖苷酶、脫氫酶活性呈顯著和極顯著負(fù)相關(guān)。

      圖3 有機(jī)無(wú)機(jī)肥配施對(duì)堿性磷酸酶、FDA、β-葡萄糖苷酶和脫氫酶活性的影響Fig.3 The influence of organic manure combined with chemical fertilizers on activities of alkaline phosphates, FDA, β-glucosidase and dehydrogenase in soils

      Table 2 Liner correlation equations between quantities of soil bacteria, fungi, actinomycetes, pseudomonas and the activities of alkaline phosphatase, FDA,β-glucosidase and dehydrogenase

      微生物數(shù)量/cfu/g(干土)Quantitiesofsoilmicroorganism擬合方程Fittingequation相關(guān)系數(shù)Correlationcoefficientβ-葡萄糖苷酶y1=2.7155x+3.5494R2=0.70590.84**細(xì)菌數(shù)量脫氫酶y2=2.0037x-0.5873R2=0.54790.74*QuantitiesofBacteria×107/堿性磷酸酶y3=0.1093x+0.1577R2=0.70090.837**cfu/g(干土)FDAy4=0.1685x+0.026R2=0.78760.887**β-葡萄糖苷酶y1=-0.5714x+9.5626R2=0.5581-0.747*真菌數(shù)量脫氫酶y2=-0.5292x+4.2446R2=0.6824-0.826**QuantitiesofFungus×105/堿性磷酸酶y3=-0.0305x+0.3807R2=0.4595-0.678*cfu/g(干土)FDAy4=-0.0171x+0.378R2=0.3064-0.553β-葡萄糖苷酶y1=2.165x-0.0082R2=0.890.943**放線菌數(shù)量脫氫酶y2=1.6552x-3.4115R2=0.74160.861**QuantitiesofActinomycete×105/堿性磷酸酶y3=0.0829x+0.0291R2=0.79980.894**cfu/g(干土)FDAy4=0.125x-0.1627R2=0.86050.928**β-葡萄糖苷酶y1=1.9215x-2.3465R2=0.86370.929**假單胞桿菌數(shù)量脫氫酶y2=1.6358x-6.0506R2=0.89240.945**QuantitiesofPseudomonas×106/堿性磷酸酶y3=0.1066x-0.2754R2=0.77060.878**cfu/g(干土)FDAy4=0.0662x-0.0228R2=0.62860.793*

      **: 在0.01水平上差異顯著; *: 在0.05水平上差異顯著

      3 討論

      本研究表明,減少20—40%當(dāng)?shù)爻R?guī)化肥施用量情況下,配施3000、6000 kg/hm2有機(jī)肥或生物有機(jī)肥不但可使棉花產(chǎn)量達(dá)到與完全施用化肥相同的效果,而且施用有機(jī)肥或生物有機(jī)肥對(duì)滴灌條件下長(zhǎng)期連作棉田土壤微生物數(shù)量和酶活性產(chǎn)生了顯著的影響。從有機(jī)肥對(duì)土壤微生物群落組成結(jié)構(gòu)、微生物數(shù)量與酶活性等方面的影響分析,有機(jī)肥和生物有機(jī)肥含豐富有機(jī)碳源[22],對(duì)提高土壤微生物數(shù)量、酶活性及驅(qū)動(dòng)微生物群落組成結(jié)構(gòu)方面發(fā)揮著顯著作用。李秀英等[23]在國(guó)家長(zhǎng)期肥料定位試驗(yàn)站褐潮土上的試驗(yàn)研究表明與單施化肥處理相比,化肥配施有機(jī)肥或秸稈可明顯提高土壤中細(xì)菌和真菌數(shù)量,放線菌數(shù)量周年平均增加可達(dá)24.2%;李忠佩等[24]研究表明,由于秸稈還田、根茬、施用有機(jī)肥等大量有機(jī)物歸還,耕作30a和80a土壤0 —10 cm、10 —20 cm土層細(xì)菌數(shù)量分別比耕作3a的增加了1.11和3.8 倍與19 和12 倍;錢海燕等[25]研究也表明秸稈還田配施化肥及微生物菌劑刺激了微生物的生長(zhǎng)和活動(dòng),細(xì)菌與真菌數(shù)量顯著高于對(duì)照處理(CK),本研究中有機(jī)無(wú)機(jī)肥配施特別是配施生物有機(jī)肥顯著降低土壤真菌數(shù)量,與Nanda[26]在連續(xù)施用有機(jī)無(wú)機(jī)肥肥配施對(duì)土壤微生物數(shù)量的研究結(jié)果相同,但李秀英等[23]的實(shí)驗(yàn)則表明有機(jī)無(wú)機(jī)肥配施會(huì)提高真菌數(shù)量,其原因可能與施入的有機(jī)肥類型以及施肥模式有關(guān),特別是施入生物有機(jī)肥中含有大量的功能菌,對(duì)真菌土傳病菌生長(zhǎng)有抑制作用。本研究發(fā)現(xiàn)不同施肥處理不但改變了細(xì)菌、真菌、放線菌和假單胞桿菌的數(shù)量,而且對(duì)土壤微生物群落結(jié)構(gòu)也有影響,如有機(jī)無(wú)機(jī)肥配施能顯著增加土壤細(xì)菌/真菌、放線菌/真菌和假單胞桿菌/真菌的比值,這與劉杏蘭等[27]和孫瑞蓮等[28]的研究一致。因此有機(jī)肥在土壤中的作用不僅僅是提供營(yíng)養(yǎng),它在優(yōu)化調(diào)控土壤細(xì)菌、真菌等微生物群落區(qū)系結(jié)構(gòu),促進(jìn)根際土壤PGPR菌,進(jìn)而提高作物產(chǎn)量等方面的作用更應(yīng)該引起重視[29- 30]。

      土壤酶主要來(lái)源于土壤微生物,其活性與土壤微生物的數(shù)量和群落結(jié)構(gòu)有密切關(guān)系。張向前等[31]在對(duì)間作玉米土壤微生物數(shù)量和酶活性研究中發(fā)現(xiàn)細(xì)菌、真菌和放線菌對(duì)土壤酶有正向促進(jìn)作用,顧美英[32]對(duì)新疆棉田微生物研究亦發(fā)現(xiàn)細(xì)菌數(shù)量和土壤酶活性有一定的相關(guān)性,而放線菌和真菌與土壤酶無(wú)顯著相關(guān)性。從本研究結(jié)果分析來(lái)看,雖然與化肥處理相比,有機(jī)無(wú)機(jī)肥配施處理能顯著提高4種酶活性,但是堿性磷酸酶、熒光素二乙酸酯酶、β-葡萄糖苷酶3種酶活性在有機(jī)無(wú)機(jī)肥配施處理之間的差異并不顯著,即有機(jī)肥與生物有機(jī)肥之間對(duì)以上3種酶活性的作用并無(wú)明顯差異。而且在本研究發(fā)現(xiàn),細(xì)菌和放線菌與堿性磷酸酶、熒光素二乙酸酯酶、β-葡萄糖苷酶和脫氫酶4種土壤酶活性都呈顯著正相關(guān),但真菌與4種酶活性卻表現(xiàn)為一定的負(fù)相關(guān),這和孫秀山[33]與趙萌[34]分別對(duì)花生和西瓜的連作研究發(fā)現(xiàn)真菌數(shù)量和部分土壤酶負(fù)相關(guān)相符,其原因可能與作物的類型和耕作模式以及施用化肥導(dǎo)致土壤pH值變化抑制了部分酶活性有關(guān)。長(zhǎng)期棉花連作導(dǎo)致枯、黃萎病真菌類致病菌土傳病害是影響新疆植棉區(qū)棉花產(chǎn)量的主要因素,通過生物有機(jī)無(wú)機(jī)復(fù)合肥中的大量有機(jī)物質(zhì)和有益微生物共同作用,促進(jìn)土壤微生物數(shù)量升高,改善土壤微生物組成比例,提高土壤微生物種群數(shù)量多樣性土壤酶活性,這可能是新疆綠洲長(zhǎng)期連作棉田有機(jī)類肥料能部分替代化肥,提高養(yǎng)分資源高效利用及高農(nóng)田土壤生產(chǎn)力的重要途徑與技術(shù)措施。

      4 結(jié)論

      (1) 在新疆北疆棉區(qū),施用3000、6000 kg/hm2的有機(jī)或生物有機(jī)肥,替代20%—40%常規(guī)化肥用量可保證棉花正常生長(zhǎng),并達(dá)到與單施化肥處理相同產(chǎn)量。

      (2) 有機(jī)無(wú)機(jī)肥配施可明顯改善土壤生物活性,與CF相比,施用3000、6000 kg/hm2有機(jī)肥和生物有機(jī)肥處理的β-葡萄糖苷酶和脫氫酶分別提高了0.2 —0.3和1.0 —1.6倍,并能顯著提高土壤堿性磷酸酶、熒光素二乙酸酯酶活性。

      (3) 有機(jī)無(wú)機(jī)肥配施可明顯增加棉田土壤細(xì)菌、放線菌和假單胞桿菌數(shù)量,抑制真菌的生長(zhǎng)。增施有機(jī)肥可顯著提高細(xì)菌/真菌、放線菌/真菌、假單胞桿菌/真菌,降低假單胞桿菌/細(xì)菌的比值,通過有機(jī)無(wú)機(jī)肥配施可達(dá)到調(diào)控土壤微生物區(qū)系組成結(jié)構(gòu)比例的目的。

      [1] Stewart W M. Contribution of fertilizer to crop yield. Xie L Translated. Agrochemical Science and Technology, 2003, (3): 31- 33.

      [2] Shi Y L, Wang L L, Liu S B, Nie H G. Development of chemical fertilizer industry and its effect on agriculture of China. Acta Pedologica Sinica, 2008, 45(5): 852- 864.

      [3] Shen Q R, Tan J F, Qian X Q. An Introduction to Soil and Fertilizer. Beijing: Higher Education Press, 2001: 4- 6, 270- 271.

      [4] Wang J F, Xing S Z. Negative effects of application chemical fertilizers on farmland and the control measures.. Agro-Environmental Protection, 1998, 17(1): 40- 43.

      [5] Roelck M, Han Y, Schleef K H, Zhu J G, Liu G, Cai Z C, Richter J. Recent trends and recommendations for nitrogen fertilization in intensive agriculture in eastern China. Pedosphere, 2004, 14(4): 449- 460.

      [6] Liu H, Lin Y H, Zhang Y S, Tan X X, Wang X H. Effects of long-term fertilization on Biodiversity and enzyme activity in grey desert soil. Acta Ecologica Siaica, 2008, 28(8): 3898- 3904.

      [7] Shen Q R, Wu J. National readjustment and control is needed to develop the organic fertilizer industry. Visit the national organic fertilizer professional committee of Nanjing agricultural university, director of vice President Shen Qirong doctoral tutor. The Chinese Cooperation Times, 2009- 6- 12 (14).http://www.fert.cn/news/2009/6/12/200961217151286582.shtml.

      [8] He X Y, Hao M D, Li H C, Cai Z F. Effects of different fertilization on yield of wheat and water and fertilizer use efficiency in the Loess Plateau. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1333- 1340.

      [9] Lin X J, Wang F, Cai H S, Lin R B, He C M, Li Q H, Li Y. Effects of different organic fertilizers on soil microbial BFmass and yield of peanut. Chinese Journal of Eco-Agriculture, 2009, 17(2): 235- 238.

      [10] Liu G R, Feng Z B, Liu X M, Chen X M, Zou S W, Li Z Z, Zhou W. Effects of different manure sources on soil characters in upland red soil. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 927- 932, 938- 938.

      [11] Plaza C, Hernandez D, Garcia-Gil J C, Polo A. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 2004, 36(10): 1577- 1585.

      [12] Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology, 2004, 40(2): 87- 94.

      [13] Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C. Soil health through soil disease suppression: Which strategy from descriptors to indicators. Soil Biology and Biochemistry, 2007, 39(1): 1- 23.

      [14] Yang X M, Xu Y C, Huang Q W, Xu M, Liang R H, Hu J, Ran W, Shen Q R. Organic-like fertilizers and its relation to sustainable development of agriculture and protection of eco-environment. Acta Pedologica Sinica, 2008, 45(5): 925- 32.

      [15] Chen F, Xiao T J, Zhu Z, Yang X M, Ran W, Shen Q R. Effect of Bio-organic fertilizers on root-knot nematode of muskmelon in field. Plant Nutrition and Fertilizer Science, 2011, 17(5): 1262- 1267.

      [16] Hu X T, Li M S. Effect of trickle irrigation under sub-film on the soil conditions of rhizosphere in cotton. Chinese Journal of Eco-Agriculture, 2003, 11(3): 121- 123.

      [17] Shi L Y. The analysis of Cotton verticillium wilt disasters factors. China Cotton, 1999, 26(7): 8- 9.

      [18] Perez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C. Response of soil microbial communities to compost amendments. Soil Biology and Biochemistry, 2006, 38(3): 460- 470.

      [19] Pankhurst C E, McDonald H J, Hawke B G, Kirkby C A. Effect of tillage and stubble management on chemical and microBiological properties and the development of suppression towards cereal root disease in soils from two sites in NSW, Australia. Soil Biology and Biochemistry, 2002, 34(6): 833- 840.

      [20] Sigler W V, Nakatsu C H, Reicher Z J, Turco R F. Fate of the biological control agent pseudomonas aureofaciens TX-1 after application to turfgrass. Applied and Environmental Microbiology, 2001, 67(8): 3542- 3548.

      [21] Li Z G, Luo Y M, Teng Y. The Research of Soil and Environmental Microbial. Beijing: Science Press, 2008: 395- 417.

      [22] Li D P, Wu Z J, Chen L J. Influence of fertilizing modes of organic agriculture on the soil microbial activities. Chinese Journal of Eco-Agriculture, 2005, 13(2): 99- 101.

      [23] Li X Y, Zhao B Q, Li X H, Li Y T, Sun R L, Zhu L S, Xu J, Wang L X, Li X P, Zhang F D. Effects of different fertilization systems on soil microbe and its relation to soil fertility. Scientia Agricultura Sinica, 2005, 38(8): 1591- 1599.

      [24] Li Z P, Zhang T L, Chen B Y, Yi R L, Shi Y Q. Soil organic matter dynamics in a cultivation chronosequence of paddy fields in subtropical China. Acta Pedologica Sinca, 2003, 40(3): 344- 352.

      [25] Qian H Y, Yang B J, Huang G Q, Yang Y P, Fan Z, Fang Y. Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields. Ecology and Environmental Sciences, 2012, 21(3): 440- 445.

      [26] Nanda S K, Das P K, Behera B. Effects of continuous manuring on microbial population, ammonification and CO2evolution in a rice soil. Oryza, 1998, 25(4): 413- 416.

      [27] Liu X L, Gao Z, Liu C S, Si L Z. Effect of combined application of organic manure and fertilizers on crop yield and soil fertility in a located experiment. Acta Pedologica Sinica, 1996, 33(2): 138- 147.

      [28] Sun R L, Zhu L S, Zhao B Q, Zhou Q X, Xu J, Zhang F D. Effects of long-term fertilization on soil microorganism and its role in adjusting and controlling soil fertility. Chinese Journal of Applied Ecology, 2004, 15(10): 1907- 1910.

      [29] Kong W D, Liu K X, Liao Z W. Effects of different organic materials and their composting levels on soil microbial community. Chinese Journal of Applied Ecology, 2004, 15(3): 487- 4921.

      [30] Tan Z Z, Liu K X, Liao Z W. The effect of BHA on soil microbial diversity and controlling bacterial wilt of tomato. Humic Acid, 2005, (6): 23- 27.

      [31] Zhang X Q, Huang G Q, Bian X M, Jiang X H, Zhao Q G. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils. Acta Ecologica Sinica, 2012, 32(22): 7082- 7090.

      [32] Gu M Y, Xu W L, Mao J, Liang Z, Zhang J D, Fang S J. Effects of cotton continuous cropping on the amount of soil microbes and enzyme activities in Xinjiang. Agricultural Research in the Arid Areas, 2009, 27(1): 1- 5.

      [33] Sun X S, Feng H S, Wan S B, Zuo X Q. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions. Acta Agronomica Sinica, 2001, 27(5): 617- 621.

      [34] Zhao M, Li M, Wang M Y, Wang Y, Zhang X Y. Effects of watermelon replanting on main microflora of rhizosphere and activities of soil enzymes. Microbiology, 2008, 35(8): 1251- 1254.

      參考文獻(xiàn):

      [1] Stewart W M. 肥料對(duì)作物產(chǎn)量的貢獻(xiàn). 謝玲譯. 農(nóng)資科技, 2003, (3): 31- 33.

      [2] 石元亮, 王玲莉, 劉世彬, 聶鴻光. 中國(guó)化學(xué)肥料發(fā)展及其對(duì)農(nóng)業(yè)的作用. 土壤學(xué)報(bào), 2008, 45(5): 852- 864.

      [3] 沈其榮, 譚金芳, 錢曉晴. 土壤肥料學(xué)通論. 北京: 高等教育出版社, 2001: 4- 6, 270- 271.

      [4] 汪建飛, 邢素芝. 農(nóng)田土壤施用化肥的負(fù)效應(yīng)及其防治對(duì)策. 農(nóng)業(yè)環(huán)境保護(hù), 1998, 17(1): 40- 43.

      [6] 劉驊, 林英華, 張?jiān)剖? 譚新霞, 王西和. 長(zhǎng)期施肥對(duì)灰漠土生物群落和酶活性的影響. 生態(tài)學(xué)報(bào), 2008, 28(8): 3898- 3904.

      [7] 沈其榮, 吳江. 發(fā)展有機(jī)肥行業(yè)需要國(guó)家層面引導(dǎo)——訪全國(guó)有機(jī)肥專業(yè)委員會(huì)主任、南京農(nóng)業(yè)大學(xué)副校長(zhǎng)、博士生導(dǎo)師沈其榮. 中華合作時(shí)報(bào), 2009- 6- 12(14). http://www.fert.cn/news/2009/6/12/200961217151286582.shtml.

      [8] 何曉雁, 郝明德, 李慧成, 蔡志風(fēng). 黃土高原旱地小麥?zhǔn)┓蕦?duì)產(chǎn)量及水肥利用效率的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(6): 1333- 1340.

      [9] 林新堅(jiān), 王飛, 蔡海松, 林戎斌, 何春梅, 李清華, 李昱. 不同有機(jī)肥源對(duì)土壤微生物生物量及花生產(chǎn)量的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009, 17(2): 235- 238.

      [10] 劉光榮, 馮兆濱, 劉秀梅, 陳先茂, 鄒紹文, 李祖章, 周衛(wèi). 不同有機(jī)肥源對(duì)紅壤旱地耕層土壤性質(zhì)的影響. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2009, 31(5): 927- 932, 938- 938.

      [14] 楊興明, 徐陽(yáng)春, 黃啟為, 徐茂, 梁永紅, 胡江, 冉煒, 沈其榮. 有機(jī)(類)肥料與農(nóng)業(yè)可持續(xù)發(fā)展和生態(tài)環(huán)境保護(hù). 土壤學(xué)報(bào), 2008, 45(5): 925- 32.

      [15] 陳芳, 肖同建, 朱震, 楊興明, 冉煒, 沈其榮. 生物有機(jī)肥對(duì)甜瓜根結(jié)線蟲病的田間防治效果研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(5): 1262- 1267.

      [16] 胡曉棠, 李明思. 膜下滴灌對(duì)棉花根際土壤環(huán)境的影響研究. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2003, 11(3): 121- 123.

      [17] 石磊巖. 棉花黃萎病災(zāi)害因素分析. 中國(guó)棉花, 1999, 26(7): 8- 9.

      [21] 李振高, 駱永明, 滕應(yīng). 土壤與環(huán)境微生物研究法. 北京: 科學(xué)出版社, 2008: 395- 417.

      [22] 李東坡, 武志杰, 陳利軍. 有機(jī)農(nóng)業(yè)施肥方式對(duì)土壤微生物活性的影響研究. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2005, 13(2): 99- 101.

      [23] 李秀英, 趙秉強(qiáng), 李絮花, 李燕婷, 孫瑞蓮, 朱魯生, 徐晶, 王麗霞, 李小平, 張夫道. 不同施肥制度對(duì)土壤微生物的影響及其與土壤肥力的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(8): 1591- 1599.

      [24] 李忠佩, 張?zhí)伊? 陳碧云, 尹瑞齡, 施亞琴. 紅壤稻田土壤有機(jī)質(zhì)的積累過程特征分析. 土壤學(xué)報(bào), 2003, 40(3): 344- 352.

      [25] 錢海燕, 楊濱娟, 黃國(guó)勤, 嚴(yán)玉平, 樊哲, 方豫. 秸稈還田配施化肥及微生物菌劑對(duì)水田土壤酶活性和微生物數(shù)量的影響. 生態(tài)環(huán)境學(xué)報(bào), 2012, 21(3): 440- 445.

      [27] 劉杏蘭, 高宗, 劉存壽, 司立征. 有機(jī)-無(wú)機(jī)肥配施的增產(chǎn)效應(yīng)及對(duì)土壤肥力影響的定位研究. 土壤學(xué)報(bào), 1996, 33(2): 138- 147.

      [28] 孫瑞蓮, 朱魯生, 趙秉強(qiáng), 周啟星, 徐晶, 張夫道. 長(zhǎng)期施肥對(duì)土壤微生物的影響及其在養(yǎng)分調(diào)控中的作用. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(10): 1907- 1910.

      [29] 孔維棟, 劉可星, 廖宗文. 有機(jī)物料種類及腐熟水平對(duì)土壤微生物群落的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(3): 487- 492.

      [30] 譚兆贊, 劉可星, 廖宗文. 生化腐植酸對(duì)土壤微生物多樣性及番茄青枯病的影響. 腐植酸, 2005, (6): 23- 271.

      [31] 張向前, 黃國(guó)勤, 卞新民, 江學(xué)海, 趙其國(guó). 間作對(duì)玉米品質(zhì)、產(chǎn)量及土壤微生物數(shù)量和酶活性的影響. 生態(tài)學(xué)報(bào), 2012, 32(22): 7082- 7090.

      [32] 顧美英, 徐萬(wàn)里, 茆軍, 梁智, 張志東, 房世杰. 連作對(duì)新疆綠洲棉田土壤微生物數(shù)量及酶活性的影響. 干旱地區(qū)農(nóng)業(yè)研究, 2009, 27(1): 1- 5.

      [33] 孫秀山, 封海勝, 萬(wàn)書波, 左學(xué)青. 連作花生田主要微生物類群與土壤酶活性變化及其交互作用. 作物學(xué)報(bào), 2001, 27(5): 617- 621.

      [34] 趙萌, 李敏, 王淼焱, 王玉, 張學(xué)義. 西瓜連作對(duì)土壤主要微生物類群和土壤酶活性的影響. 微生物學(xué)通報(bào), 2008, 35(8): 1251- 1254.

      Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition

      TAO Lei1, CHU Guixin1,*, LIU Tao1, TANG Cheng1, LI Junhua1, LIANG Yongchao2

      1DepartmentofResourcesandEnvironmentalScience,CollegeofAgriculture,TheKeyLaboratoryofOasisEco-agricultureoftheXinjiangProductionandConstructionCorps,ShiheziUniversity,Shihezi832003,China2KeyLaboratoryofCropNutritionandFertilization,MinistryofAgriculture,InstituteofAgriculturalResourcesandRegionalPlanning,ChinaAcademyofAgriculturalSciences,Beijing100081,China

      Organic fertilizer application is an effective approach to enhancing soil organic matter, soil biological activity as well as crop yield in agriculture. In the present research, a two-year field experiment was established to study the impacts of combined use of organic fertilizer with chemical fertilizer (CF) on cotton yield, soil microbial biomass, soil enzyme activities and soil microbial community structural composition in drip-irrigation condition in northern Xinjiang. Compared with CK, 100% chemical fertilizer treatment (300 kg N/hm2, 90 kg P2O5/hm2, 60 kg K2O/hm2) or treatments of organic manure at different rates combined with chemical fertilizer significantly increased (P<0.05) cotton yield. With chemical fertilizer or organic manure supply, cotton yield could be reached up to 4945—4978 kg/hm2, however, there was no statistical difference (P<0.05) among 100% CF fertilization and treatments with 20% to 40% chemical fertilizer substituted by 3000—6000 kg/hm2organic fertilizer. The number of soil bacteria, actinomycetes as well as pseudomonas significantly increased with increasing amendment rate of organic manure, but the number of soil fungi decreased with organic fertilizer rates increasing. For instance, the number of soil bacteria increased by 13%—41% in the treatments of organic manure at different rates combined with CF than in the treatment with 100% CF, whereas, the number of soil fungi in the treatment with 100% CF fertilizer is 1.4—1.6 times higher than that in the treatment with organic manure combined with CF at budding stage of cotton. Organic fertilizer application significantly enhanced (P<0.05) soil enzyme activities. Compared with the treatment with 100% CF supply, soil enzyme activities of alkaline phosphatase, fluorescein acetate esterase, β-glucosidase and dehydrogenase increased by 3.8%, 17%, 18% and 55% in the treatments with 80% CF combined with 3000 kg/hm2organic manure, and increased by 10.1%, 19%, 20%, and 60% in the treatments with 60% CF fertilizer combined with 6000 kg/hm2organic manure (BF-organic), respectively. The ratios of soil bacteria/fungi, soil actinomycetes/fungi and pseudomonas/fungi increased with increasing application rate of organic manure, but pseudomonas/bacteria ratio markedly reduced in the treatment with 100 CF or organic fertilizer supply. A significant positive correlation (P<0.05) was observed between the number of soil bacteria, actinomycetes and pseudomonas was significantly positively correlated with the activity of soil enzymes including dehydrogenase, β-glucosidase, alkaline phosphatase and fluorescein acetate esterase, respectively. However, an obvious negative correlation was observed between soil fungi number and the activity of soil enzymes such as dehydrogenase, β-glucosidase, alkaline phosphatase and fluorescein acetate esterase. Our conclusion is that 20%—40% of total chemical fertilizer application rate can be substituted by 3000—6000 kg/hm2organic fertilizer with no cotton yield decrease. Moreover, organic fertilizer addition addition plays a significant role in increasing soil enzyme activities, regulating soil microbial community structural composition as well as improving soil biological properties in cotton mono-cropping system under drip-irrigation condition in northern Xinjiang.

      cotton; soil enzyme activities; soil microorganism; organic manure

      農(nóng)業(yè)部行業(yè)項(xiàng)目資助(201103004)

      2013- 01- 29; 網(wǎng)絡(luò)出版日期:2014- 03- 13

      10.5846/stxb201301290184

      *通訊作者Corresponding author.E-mail: chuguixinshzu@163.com

      陶磊,褚貴新, 劉濤, 唐誠(chéng), 李俊華, 梁永超.有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響.生態(tài)學(xué)報(bào),2014,34(21):6137- 6146.

      Tao L, Chu G X, Liu T, Tang C Li J H, Liang Y C.Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition.Acta Ecologica Sinica,2014,34(21):6137- 6146.

      猜你喜歡
      假單蕾期無(wú)機(jī)
      不同階段干旱脅迫對(duì)新陸早45號(hào)生長(zhǎng)發(fā)育及產(chǎn)量形成的影響
      無(wú)機(jī)滲透和促凝劑在石材防水中的應(yīng)用
      石材(2020年9期)2021-01-07 09:30:04
      牛奶假單胞菌耐藥性獲解析
      牛奶假單胞菌耐藥性獲解析
      加快無(wú)機(jī)原料藥產(chǎn)品開發(fā)的必要性和途徑
      棉花萌發(fā)期抗旱性與苗期干旱存活率的關(guān)系
      有機(jī)心不如無(wú)機(jī)心
      山東青年(2016年2期)2016-02-28 14:25:31
      棉花田間管理技術(shù)
      蕾期鹽脅迫對(duì)棉花生長(zhǎng)發(fā)育的影響
      Fe2(SO4)3氧化脫除煤中無(wú)機(jī)硫的研究
      长沙县| 三穗县| 汉中市| 沙雅县| 徐汇区| 清丰县| 辛集市| 册亨县| 诸暨市| 安阳县| 麻栗坡县| 赤峰市| 兴安县| 陇西县| 白河县| 花垣县| 五指山市| 惠东县| 临沭县| 洞头县| 越西县| 德州市| 县级市| 安阳市| 宝鸡市| 荥阳市| 四子王旗| 嘉峪关市| 梓潼县| 庐江县| 邻水| 葫芦岛市| 惠水县| 方正县| 诏安县| 鹤峰县| 贵德县| 砀山县| 霍林郭勒市| 措美县| 射阳县|