李 瑤,席貽龍,王愛民,牛翔翔,溫新利,劉桂云
(安徽師范大學(xué)生命科學(xué)學(xué)院, 安徽省高校生物環(huán)境與生態(tài)安全省級(jí)重點(diǎn)實(shí)驗(yàn)室, 蕪湖 241000)
汀棠湖萼花臂尾輪蟲姊妹種組成和生活史特征的時(shí)間變化
李 瑤,席貽龍*,王愛民,牛翔翔,溫新利,劉桂云
(安徽師范大學(xué)生命科學(xué)學(xué)院, 安徽省高校生物環(huán)境與生態(tài)安全省級(jí)重點(diǎn)實(shí)驗(yàn)室, 蕪湖 241000)
于2011年7月對(duì)汀棠湖水體中的萼花臂尾輪蟲(Brachionuscalyciflorus)進(jìn)行了每周1次的采集、實(shí)驗(yàn)室克隆培養(yǎng)、DNA提取、COI基因擴(kuò)增、序列測(cè)定和分析,研究了萼花臂尾輪蟲種復(fù)合體結(jié)構(gòu)的時(shí)間變化;參照采樣期間自然水溫的波動(dòng)范圍(28—32 ℃)和處于輕度富營(yíng)養(yǎng)狀態(tài)的汀棠湖水體中藻類和有機(jī)碎屑等的豐富程度,選擇了在28 ℃和32 ℃等2個(gè)溫度以及1.0×106、3.0×106和5.0×106個(gè)細(xì)胞/mL等3個(gè)較高的斜生柵藻(Scenedesmusobliquus)密度下研究了輪蟲姊妹種生命表統(tǒng)計(jì)學(xué)參數(shù)(包括生命期望、平均壽命、世代時(shí)間、凈生殖率、種群內(nèi)稟增長(zhǎng)率和后代混交率)的時(shí)間變化。結(jié)果表明,59條序列共定義了38個(gè)單倍型,系統(tǒng)發(fā)生分析將38個(gè)單倍型分為2個(gè)支系,2支系間的COI基因序列差異百分比為13.9%—15.6%,2支系應(yīng)為2個(gè)姊妹種(姊妹種T1和姊妹種T2)。姊妹種T1的相對(duì)豐度由第1采集批次向第3采集批次快速降低,至第4采集批次時(shí)從水體中消失;與此相反,姊妹種T2的相對(duì)豐度卻隨著時(shí)間的推移而逐漸升高,但8月初從水體中消失。姊妹種T1各生命表統(tǒng)計(jì)學(xué)參數(shù)以及姊妹種T2的世代時(shí)間、凈生殖率、內(nèi)稟增長(zhǎng)率和后代混交率均隨著采集批次的增加而發(fā)生顯著的變化。在較低(< 20 個(gè)/L)的種復(fù)合體密度下,兩姊妹種之間不會(huì)因?yàn)槭澄锘蚩臻g資源等產(chǎn)生競(jìng)爭(zhēng);兩姊妹種在種群內(nèi)稟增長(zhǎng)率等主要適合度參數(shù)之間的無(wú)顯著性差異(P>0.05)是它們能夠共存于汀棠湖水體中的另一主要原因。而姊妹種T1和姊妹種T2在7月 29日和8月5日依次從水體中消失則與它們?cè)?周前的凈生殖率和種群內(nèi)稟增長(zhǎng)率等顯著降低(P<0.05)有關(guān)。消失時(shí)間上的差異可能在于姊妹種T1的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均不受溫度的顯著影響(P>0.05),而姊妹種T2的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均隨著溫度的升高而顯著地增大(P<0.05)。
萼花臂尾輪蟲;姊妹種;溫度;食物密度;生活史特征;時(shí)間變化
輪蟲是各類水體中廣泛分布的一類浮游動(dòng)物,在水生態(tài)系統(tǒng)的結(jié)構(gòu)組成、物質(zhì)循環(huán)和能量流動(dòng)過(guò)程中具有重要的作用。由于水環(huán)境中物理﹑化學(xué)和生物因子等普遍具有隨著時(shí)間的流逝或季節(jié)的更替而發(fā)生變化的特點(diǎn),棲息于其中的輪蟲種群也會(huì)隨之發(fā)生變化[1]。為了解自然水體中輪蟲種群遺傳結(jié)構(gòu)的時(shí)間變化,King和Zhao[2]、Gómez等[3]和江東海等[4]運(yùn)用等位酶電泳技術(shù),Ortells等[5]和董云偉等[6]運(yùn)用COI基因序列測(cè)定和分析技術(shù),項(xiàng)賢領(lǐng)等[7]應(yīng)用隨機(jī)擴(kuò)增多態(tài)DNA(RAPD)技術(shù),程新峰等[8]應(yīng)用rDNA ITS序列測(cè)定和分析技術(shù),研究了褶皺臂尾輪蟲(B.plicatilis)和萼花臂尾輪蟲等種群遺傳結(jié)構(gòu)的月份或季節(jié)變化??紤]到輪蟲具有較短的生命周期和潛在的種群快速變化能力,King[9]首次對(duì)蓋氏晶囊輪蟲(Asplanchnagirodi)進(jìn)行每周1次的采樣和克隆培養(yǎng),運(yùn)用等位酶電泳技術(shù)研究了其種群遺傳結(jié)構(gòu)的快速變化。之后,Li等[10]和溫新利[11]也通過(guò)每周采樣1次,運(yùn)用COI基因序列測(cè)定和分析技術(shù)分別研究了北京西海和蕪湖市鏡湖水體中萼花臂尾輪蟲種群遺傳結(jié)構(gòu)的快速變化。
近幾年來(lái),有關(guān)分子生物學(xué)研究和生殖隔離實(shí)驗(yàn)結(jié)果均表明,萼花臂尾輪蟲實(shí)際上是一個(gè)種復(fù)合體[8, 12- 16]。因此,有理由推測(cè)亞熱帶淺水湖泊中萼花臂尾輪蟲也是一個(gè)種復(fù)合體;但種復(fù)合體結(jié)構(gòu)的時(shí)間變化格局如何仍有待研究。如果種復(fù)合體內(nèi)若干個(gè)姊妹種在一定時(shí)間內(nèi)共存,則它們的種群內(nèi)稟增長(zhǎng)率等主要適合度參數(shù)之間可能存在無(wú)顯著性差異;因?yàn)樵跍\水湖泊中,特定時(shí)間內(nèi)較低的種復(fù)合體密度下姊妹種之間不會(huì)因?yàn)槭澄锘蚩臻g資源等產(chǎn)生競(jìng)爭(zhēng)。如果各姊妹種在各特定時(shí)間內(nèi)依次從水體中消失,則可能與它們的凈生殖率和種群內(nèi)稟增長(zhǎng)率等隨著水溫等環(huán)境因子的時(shí)間變化而發(fā)生顯著的變化有關(guān)。因此,開展輪蟲種復(fù)合體結(jié)構(gòu)和各姊妹種生態(tài)特征的時(shí)間變化研究,將有助于理解輪蟲種復(fù)合體結(jié)構(gòu)的時(shí)間變化格局和機(jī)制,特別是在特定時(shí)間內(nèi)姊妹種共存等的生態(tài)學(xué)機(jī)制。
本文以安徽省蕪湖市汀棠湖中的萼花臂尾輪蟲為對(duì)象,自2011年7月8日起,通過(guò)每周1次的輪蟲采集,實(shí)驗(yàn)室克隆培養(yǎng),DNA提取,COI基因擴(kuò)增、序列測(cè)定和分析等技術(shù)研究了輪蟲種復(fù)合體結(jié)構(gòu)的時(shí)間變化;參照采樣期間自然水溫的波動(dòng)范圍(28—32 ℃),同時(shí)考慮到處于輕度富營(yíng)養(yǎng)狀態(tài)的汀棠湖水體中藻類和有機(jī)碎屑等輪蟲食物較為豐富[17],本研究選擇了在28 ℃和32 ℃等2個(gè)溫度以及1.0×106、3.0×106和5.0×106個(gè)細(xì)胞/mL等3個(gè)較高的斜生柵藻密度下研究了輪蟲姊妹種生命表統(tǒng)計(jì)學(xué)參數(shù)的時(shí)間變化,旨在揭示亞熱帶淺水湖泊中萼花臂尾輪蟲種復(fù)合體結(jié)構(gòu)的時(shí)間變化及其生態(tài)學(xué)機(jī)制。
1.1 輪蟲的采集與培養(yǎng)
實(shí)驗(yàn)用萼花臂尾輪蟲于2011年7月采自蕪湖市汀棠湖。自7月8日起每周采集1次,直至輪蟲從水體中消失為止(8月5日)。期間,分別于8日、15日、22日和29日共采得輪蟲4批。本文按采得的時(shí)間順序依次把它們定義為第1批次、第2批次、第3批次和第4批次。采樣后,隨機(jī)挑取帶卵的萼花臂尾輪蟲非混交雌體,于(25±1)℃、自然光照(光照強(qiáng)度約1300 lx)條件下進(jìn)行克隆培養(yǎng)。輪蟲培養(yǎng)液采用Gilbert配方[18],所用的餌料為HB- 4培養(yǎng)基[19]培養(yǎng)的、處于指數(shù)增長(zhǎng)期的斜生柵藻。最終被成功進(jìn)行克隆培養(yǎng)的輪蟲克隆數(shù)為59個(gè)。待輪蟲繁殖至較高密度時(shí),將每個(gè)克隆中的50—100個(gè)個(gè)體取出,經(jīng)饑餓處理24 h,64 μm篩絹過(guò)濾收集,無(wú)菌水沖洗后轉(zhuǎn)移至EP管中,-20 ℃處理20 min至輪蟲死亡,6000 r/min離心5 min去除上清,-80 ℃保存用于分子生物學(xué)研究;剩余個(gè)體繼續(xù)培養(yǎng)用于生命表實(shí)驗(yàn)研究。
1.2 DNA提取、PCR擴(kuò)增、基因序列測(cè)定和分析
使用WizardTM基因組DNA純化試劑盒(Promega, USA)提取總DNA。具體方法為:將輪蟲從-80 ℃中取出,加入30 μL預(yù)冷的核裂解液,56 ℃水浴1 h,室溫冷卻,加入10 μL預(yù)冷蛋白沉淀液,劇烈震蕩2 min,15000 r/min離心10 min;吸取上清液到新離心管中,加入等量異丙醇和微量糖原混勻,15000 r/min離心10 min,沉淀經(jīng)70%乙醇洗滌1次,干燥后加入20 μL TE溶解,4 ℃保存?zhèn)溆谩?/p>
COI基因序列擴(kuò)增反應(yīng)在MJ Research公司生產(chǎn)PTC- 100TM擴(kuò)增儀上進(jìn)行。COI基因擴(kuò)增的PCR反應(yīng)體系為:10×Buffer 2.5 μL,25 mmol/L MgCl23.3 μL,dNTP 2 μL,兩條引物(10 μmol/L)各0.5 μL,DNA模板3 μL,Taq酶2 U,ddH2O補(bǔ)足至25 μL。COI基因擴(kuò)增PCR反應(yīng)程序?yàn)椋?4 ℃預(yù)變性5 min;94 ℃變性30 s,50℃退火30 s,72 ℃延伸1 min,循環(huán)35次;之后72 ℃充分延伸10 min,4 ℃保存。COI基因擴(kuò)增引物由寶生物工程有限公司(大連)合成,序列為HCO2198(5′-TAAACTTCAGGGTG ACCAAAAAATCA-3′)和LCO1941(5′-GGTCAA CAAATCATAAAGATATTGG-3′)[20]。PCR產(chǎn)物經(jīng)純化試劑盒(Tiangen)純化后,連接到pMD 19-T載體(Takara),轉(zhuǎn)化至E.coli中。挑取典型的陽(yáng)性菌落至南京金斯瑞生物科技有限公司測(cè)序,測(cè)序使用ABI 3730測(cè)序儀。
采用CLUSTAL X(1.8)軟件[21]進(jìn)行序列對(duì)位排列,并輔以人工校對(duì);用DNASTAR軟件計(jì)算兩兩序列的差異百分比。
系統(tǒng)發(fā)生樹的構(gòu)建方法與項(xiàng)賢領(lǐng)等[14]基本相同。
1.3 生命表實(shí)驗(yàn)和相關(guān)參數(shù)的定義與計(jì)算
根據(jù)COI序列差異百分比和系統(tǒng)發(fā)生關(guān)系分析結(jié)果,分別以第1、2和3批次中的姊妹種T1僅有的8個(gè)、5個(gè)和1個(gè)克隆,第3批次中的姊妹種T2僅有的3個(gè)克隆,加之從第1、2和4批次中隨機(jī)選取的姊妹種T2各10個(gè)克隆(共47個(gè)克隆)用于生命表統(tǒng)計(jì)學(xué)參數(shù)研究。實(shí)驗(yàn)設(shè)28 ℃和32 ℃等2個(gè)溫度以及1.0×106、3.0×106和5.0×106個(gè)細(xì)胞/mL等3個(gè)斜生柵藻密度。實(shí)驗(yàn)前,將47個(gè)輪蟲克隆分別置于6個(gè)溫度-食物密度組合條件下進(jìn)行為期1周的預(yù)培養(yǎng),預(yù)培養(yǎng)在光照培養(yǎng)箱中進(jìn)行,光照強(qiáng)度約1300 lx。預(yù)培養(yǎng)過(guò)程中,每12 h懸浮1次沉積于試管底部的藻類食物;每24 h更換輪蟲培養(yǎng)液并投喂餌料1次,同時(shí)除去一部分個(gè)體使輪蟲種群始終處于指數(shù)增長(zhǎng)期。
實(shí)驗(yàn)時(shí),從預(yù)培養(yǎng)1周后的各輪蟲克隆中吸取若干個(gè)帶卵的非混交雌體,分別置于和預(yù)培養(yǎng)條件相同的玻璃杯中進(jìn)行培養(yǎng);期間,每隔4 h觀察1次,由此獲得若干個(gè)齡長(zhǎng)小于4 h的輪蟲幼體用于生命表實(shí)驗(yàn)。實(shí)驗(yàn)在8 mL的玻璃杯中進(jìn)行,輪蟲培養(yǎng)液體積為5 mL。每個(gè)玻璃杯中培養(yǎng)的輪蟲幼體為10個(gè),分別來(lái)自10個(gè)輪蟲克隆所產(chǎn)的齡長(zhǎng)小于4 h的幼體(第1、2和3批次中的姊妹種T1來(lái)自僅有的8個(gè)、5個(gè)和1個(gè)克隆,第3批次中的姊妹種T2來(lái)自僅有的3個(gè)克隆);實(shí)驗(yàn)設(shè)5個(gè)重復(fù)。實(shí)驗(yàn)條件與預(yù)培養(yǎng)相同。實(shí)驗(yàn)過(guò)程中,每隔8 h觀察1次,計(jì)數(shù)各玻璃杯中輪蟲母體的存活數(shù)和孵化出的幼體數(shù),并移去死亡個(gè)體;將孵化出的幼體轉(zhuǎn)移至另一個(gè)玻璃杯中在同樣條件下繼續(xù)培養(yǎng),待其攜卵后確定雌體類型;觀察的同時(shí)用微吸管懸浮沉于杯底的藻細(xì)胞;每隔24 h更換培養(yǎng)器皿和培養(yǎng)液并投喂食物1次。實(shí)驗(yàn)至全部個(gè)體死亡時(shí)為止。
生命表統(tǒng)計(jì)學(xué)參數(shù)的定義和計(jì)算方法與劉寧等[22]基本相同。
1.4 數(shù)據(jù)處理和分析方法
采用SPSS 16.0統(tǒng)計(jì)分析軟件對(duì)生命表統(tǒng)計(jì)學(xué)參數(shù)進(jìn)行統(tǒng)計(jì)分析。對(duì)所得的各生活史參數(shù)進(jìn)行正態(tài)分布檢驗(yàn)后,對(duì)符合正態(tài)分布的數(shù)據(jù)進(jìn)行方差分析。運(yùn)用三因素方差分析法分析溫度、食物密度、批次及其交互作用對(duì)輪蟲各姊妹種各生命表統(tǒng)計(jì)學(xué)參數(shù)的影響,以及溫度、食物密度、姊妹種及其交互作用對(duì)輪蟲各批次各生命表統(tǒng)計(jì)學(xué)參數(shù)的影響,采用多重比較(SNK-q檢驗(yàn)法)分析2溫度間、3食物密度間、3或4批次間輪蟲各姊妹種各生活史參數(shù)的差異顯著性,以及各批次2輪蟲姊妹種間各生活史參數(shù)的差異顯著性。
2.1 COI基因序列特點(diǎn)和姊妹種組成
擴(kuò)增所得COI基因部分序列長(zhǎng)度為661 bp,其中變異位點(diǎn)、多態(tài)位點(diǎn)和簡(jiǎn)約信息位點(diǎn)分別為131個(gè)、40個(gè)和91個(gè);59條序列共定義38個(gè)單倍型,其中共享單倍型4個(gè)(表1,表2)。
表1 汀棠湖萼花臂尾輪蟲各批次的采集信息和克隆數(shù)
Table 1 Details of sampling date, population code and number of sequenced clones (n) found in each collection from Lake Tingtang
采樣批次Collectionbatch采樣時(shí)間Collectiondate種群代號(hào)Populationcode克隆數(shù)n107-08YA22207-15LB16307-22LC4407-29LD17
表2 汀棠湖萼花臂尾輪蟲共享單倍型及其克隆
Table 2 Shared haplotypes and clones found in each collection from Lake Tingtang
共享單倍型Sharedhaplotypes克隆ClonesSH1YA22,YA10,YA20SH2YA11,LD34SH3YA29,LB18,LB21,LB44SH4YA26,YA19,YA6,YA31,YA14,YA21,LB5,LB41,LB35,LC1,LC2,LC11,LD4,LD9,LD20,LD21
運(yùn)用貝葉斯法、最大似然法、最大簡(jiǎn)約法和鄰接法構(gòu)建的系統(tǒng)發(fā)生樹的拓?fù)浣Y(jié)構(gòu)基本一致(圖1)。38個(gè)單倍型以較高置信度聚合為2個(gè)支系:支系Ⅰ和支系Ⅱ。
所有38個(gè)單倍型間序列差異百分比為0—15.6%,平均為8.27%。支系Ⅰ和支系Ⅱ內(nèi)部COI基因部分序列差異百分比分別為0—1.2%和0—1.1%,支系Ⅰ和支系Ⅱ間的序列差異百分比為13.9%—15.6%。根據(jù)李化炳等[13]和Xiang等[15,23]對(duì)蕪湖市幾個(gè)水體中萼花臂尾輪蟲姊妹種間的交配實(shí)驗(yàn)和COI基因部分序列分析結(jié)果,本研究中的支系Ⅰ和支系Ⅱ應(yīng)屬不同的姊妹種,分別命名為姊妹種T1和姊妹種T2。
汀棠湖中,萼花臂尾輪蟲種復(fù)合體內(nèi)兩姊妹種的相對(duì)豐度隨著時(shí)間的推移而呈現(xiàn)快速變化的特點(diǎn)。姊妹種T1的相對(duì)豐度由第1批次向第3批次快速降低,直至第4批次從水體中消失;與此相反,姊妹種T2的相對(duì)豐度卻隨著時(shí)間的推移而逐漸升高(圖2)。
汀棠湖中,萼花臂尾輪蟲兩姊妹種的遺傳多樣性并不隨采集時(shí)間的推移而呈現(xiàn)出規(guī)律性的變化(表3)。
圖1 基于萼花臂尾輪蟲59條COI基因部分序列構(gòu)建的系統(tǒng)發(fā)生樹Fig.1 Phylogenetic trees based on partial sequences of 59 COI genes of B. calyciflorus
Table 3 Number of clones (n), haplotype diversity (h) and nucleotide diversity (p) of the twoB.calyciflorussibling species from Lake Tingtang
種群代號(hào)Populationcode姊妹種T1siblingspeciesT1nhp姊妹種T2siblingspeciesT2nhpYA80.893±0.1110.00351±0.00090140.835±0.1010.00271±0.00066LB51.000±0.1260.00787±0.00156110.891±0.0740.00374±0.00071LC1--30.000±0.0000.0000±0.00000LD0--170.956±0.0440.00372±0.00069
圖2 汀棠湖萼花臂尾輪蟲兩姊妹種的相對(duì)豐度Fig.2 Relative abundance of the two sibling species in B. calyciflorus complex from Lake Tingtang
2.2 兩姊妹種的生命表統(tǒng)計(jì)學(xué)參數(shù)
基于2溫度和3食物密度下、各批次采自汀棠湖中的萼花臂尾輪蟲2姊妹種的存活率和繁殖率算得的各生命表統(tǒng)計(jì)學(xué)參數(shù)列于圖3。
三因素方差分析表明,溫度對(duì)輪蟲姊妹種T1各生命表統(tǒng)計(jì)學(xué)參數(shù)均無(wú)顯著的影響(P>0.05),但對(duì)輪蟲姊妹種T2各生命表統(tǒng)計(jì)學(xué)參數(shù)均有極顯著的影響(P<0.01);食物密度對(duì)2姊妹種各生命表統(tǒng)計(jì)學(xué)參數(shù)均有極顯著的影響(P<0.01);批次對(duì)姊妹種T1各生命表統(tǒng)計(jì)學(xué)參數(shù)均有極顯著的影響(P<0.01),對(duì)姊妹種T2的世代時(shí)間、凈生殖率、內(nèi)稟增長(zhǎng)率和后代混交率有顯著的影響(P<0.05)(表4)。
圖3 2溫度和3食物密度下各批次采集的萼花臂尾輪蟲2姊妹種出生時(shí)的生命期望、平均壽命、世代時(shí)間、凈生殖率、內(nèi)稟增長(zhǎng)率和后代混交率(均數(shù)±標(biāo)準(zhǔn)誤)Fig.3 Life expectancy at hatching, average lifespan, generation time, net reproductive rate, intrinsic rate of population increase and proportion of sexual offspring of two sibling species in B. calyciflorus complex collected at four batches from Lake Tingtang and cultured at two temperatures and three food levels (Mean±SE)
輪蟲各生命表統(tǒng)計(jì)學(xué)參數(shù)對(duì)升高的溫度和食物密度以及增加的采集批次的反應(yīng)在2姊妹種間存在著差異。姊妹種T1的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均不受溫度的顯著影響(P>0.05),而姊妹種T2的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均隨著溫度的升高而顯著地增大(P<0.05)。
輪蟲2姊妹種的平均壽命、出生時(shí)的生命期望和后代混交率對(duì)升高的食物密度的反應(yīng)相似,均表現(xiàn)為1.0×106個(gè)細(xì)胞/mL和3.0×106個(gè)細(xì)胞/mL食物密度下較短或較低,5.0×106個(gè)細(xì)胞/mL食物密度下較長(zhǎng)或較高。姊妹種T1的世代時(shí)間、凈生殖率和種群內(nèi)稟增長(zhǎng)率以及姊妹種T2的凈生殖率均隨著食物密度的升高而延長(zhǎng)或增大;而姊妹種T2的世代時(shí)間在1.0 ×106和3.0×106個(gè)細(xì)胞/mL食物密度下較短,5.0×106個(gè)細(xì)胞/mL食物密度下較長(zhǎng);姊妹種T2的種群內(nèi)稟增長(zhǎng)率在1.0×106個(gè)細(xì)胞/mL較低,在3.0×106和5.0×106個(gè)細(xì)胞/mL食物密度下較高。
表4 溫度、食物密度和采集批次對(duì)輪蟲2姊妹種出生時(shí)的生命期望、平均壽命、世代時(shí)間、凈生殖率、內(nèi)稟增長(zhǎng)率和后代混交率的影響(三因素方差分析)
Table 4 Results of three-way analysis of variance (ANOVA) performed for life expectancy at hatching, average lifespan, generation time, net reproductive rate, intrinsic rate of population increase and proportion of sexual offspring of twoB.calycifloroussibling species collected from three/four batches and cultured at two temperatures and three food densities
因子Factor生命期望Lifeexpectancyathatching平均壽命Averagelifespan世代時(shí)間Generationtime凈生殖率Netreproductiverate內(nèi)稟增長(zhǎng)率Intrinsicrateofpopulationincrease后代混交率Proportionofsexualoffspring姊妹種T1SiblingspeciesT1溫度Temperature(A)------食物密度Foodlevel(B)************批次Batch(C)************A×B---****-B×C--*-****A×C**--**-A×B×C------姊妹種T2SiblingspeciesT2溫度Temperature(A)************食物密度Foodlevel(B)************批次Batch(C)--*******A×B********-B×C****-****-A×C---*--A×B×C---****-
**P<0.01,*P<0.05,-P>0.05
輪蟲姊妹種T1的后代混交率以第1批次最高,第2批次最低;其它所有生命表統(tǒng)計(jì)學(xué)參數(shù)均以第2批次較大,第1和第3批次較小。姊妹種T2的平均壽命和出生時(shí)的生命期望不受采集批次的顯著影響(P>0.05);世代時(shí)間以第2批次顯著長(zhǎng)于第3和第4批次,但三者均與第1批次間無(wú)顯著的差異;凈生殖率以第1和第3批次較高,第2和第4批次較低;種群內(nèi)稟增長(zhǎng)率以第1—3批次較高,第4批次較低;后代混交率均以第1和第2批次較高,第3和第4批次較低。
分別對(duì)前3個(gè)批次輪蟲各生命表統(tǒng)計(jì)學(xué)參數(shù)所作的三因素方差分析結(jié)果表明,姊妹種對(duì)各個(gè)批次輪蟲的平均壽命、生命期望和世代時(shí)間均有顯著的影響(P<0.05);對(duì)第2批次輪蟲的凈生殖率有顯著的影響(P<0.05),對(duì)第2和第3批次輪蟲的后代混交率均有顯著的影響(P<0.05)(表5)。
第1、2和3批次中,姊妹種T1的平均壽命、出生時(shí)的生命期望和世代時(shí)間均顯著長(zhǎng)于姊妹種T2;第2批次中,姊妹種T1的凈生殖率顯著高于姊妹種T2,后代混交率則相反;第3批次中,姊妹種T1的后代混交率顯著低于姊妹種T2。
3.1 輪蟲姊妹種的甄別
COI基因序列特別適用于輪蟲種類識(shí)別(包括形態(tài)上難以區(qū)分甚至不可能區(qū)分的、同域性分布的姊妹種)、種內(nèi)變異和系統(tǒng)地理學(xué)等研究[13, 15, 24- 25]。其它分子標(biāo)記,如16S rRNA序列和ITS序列也曾被用于單巢目輪蟲的系統(tǒng)發(fā)生分析和姊妹種識(shí)別研究[12,26- 29];但它們與COI基因序列相比,種間的序列分化程度較低。應(yīng)用ITS序列甄別同域性分布的萼花臂尾輪蟲姊妹種時(shí),無(wú)法對(duì)個(gè)別輪蟲克隆的姊妹種歸屬進(jìn)行準(zhǔn)確的判斷[13]。因此,本研究以COI基因序列為標(biāo)記,對(duì)同一水體中分布的萼花臂尾輪蟲姊妹種進(jìn)行了甄別。
表5 溫度和食物密度對(duì)3個(gè)批次萼花臂尾輪蟲2姊妹種各生命表統(tǒng)計(jì)學(xué)參數(shù)的影響(三因素方差分析)
Table 5 Results of three-way analysis of variance (ANOVA) performed for life expectancy at hatching (e0), average lifespan (LS), generation time (T), net reproductive rate (R0), intrinsic rate of population increase (rm) and proportion of sexual offspring (PS) of twoB.calycifloroussibling species collected from three batches and cultured at two temperatures and three food densities
因子Factor生命期望e0平均壽命LS世代時(shí)間T凈生殖率R0內(nèi)稟增長(zhǎng)率rm后代混交率PS第1批次Thefirstbatch溫度Temperature(A)*********-食物密度Foodlevel(B)************姊妹種Siblingspecies(C)******---A×B---****B×C----**-A×C---****-A×B×C------第2批次Thesecondbatch溫度Temperature(A)--*--*食物密度Foodlevel(B)************姊妹種Siblingspecies(C)********-**A×B---****-B×C*******-**A×C********A×B×C-----*第3批次Thethirdbatch溫度Temperature(A)****--****食物密度Foodlevel(B)***********姊妹種Siblingspecies(C)******--**A×B***********B×C************A×C------A×B×C**-**--
**P< 0.01,*P< 0.05,-P> 0.05
已有研究結(jié)果表明,萼花臂尾輪蟲姊妹種之間的COI基因序列差異為7.2%—26.8%[12- 13, 15, 23],褶皺臂尾輪蟲姊妹種(B.plicatilis、B.ibericus和B.rotundiformis)之間的COI基因序列差異為22.8%—25.6%,螺形龜甲輪蟲(Keratellacochlearis)姊妹種之間的COI基因序列差異為4.4%[26]。本研究中,支系Ⅰ和支系Ⅱ間的序列差異百分比為13.9%—15.6%。根據(jù)李化炳等[13]、Xiang等[15, 23]對(duì)蕪湖市幾個(gè)水體中萼花臂尾輪蟲姊妹種間的交配實(shí)驗(yàn)和COI基因部分序列分析結(jié)果,支系Ⅰ和支系Ⅱ應(yīng)屬不同的姊妹種。
3.2 輪蟲姊妹種組成和生態(tài)特征的時(shí)間變化格局
秋季的北京西海中,萼花臂尾輪蟲姊妹種A和B僅在第1批次的采集中共存;相對(duì)豐度較低的姊妹種B在第2批次的采集中即從水體中消失[10]。冬春季(2008年12月30日—2009年4月5日)的蕪湖市鏡湖中,萼花臂尾輪蟲兩姊妹種長(zhǎng)時(shí)間共存[11]。西班牙地中海海濱池塘中,褶皺臂尾輪蟲種復(fù)合體由幾個(gè)姊妹種組成,部分姊妹種的分布在時(shí)間上重疊(共存)[3, 5]。本研究中,萼花臂尾輪蟲種復(fù)合體內(nèi)兩姊妹種的相對(duì)豐度隨著時(shí)間的推移而呈現(xiàn)快速變化的特點(diǎn)。姊妹種T1的相對(duì)豐度由第1批次向第3批次快速降低,至第4批次從水體中消失;與此相反,姊妹種T2的相對(duì)豐度卻隨著時(shí)間的推移而逐漸升高,至8月5日從水體中消失??梢姡N復(fù)合體結(jié)構(gòu)的時(shí)間變化格局可能因水體和輪蟲種類的不同而異,但同一水體中的姊妹種共存可能是一個(gè)普遍現(xiàn)象。
汀棠湖中,萼花臂尾輪蟲不僅在姊妹種組成上具有快速變化的特點(diǎn),姊妹種T1各生命表統(tǒng)計(jì)學(xué)參數(shù)以及姊妹種T2的世代時(shí)間、凈生殖率、內(nèi)稟增長(zhǎng)率和后代混交率等也均具有明顯的快速變化格局。由于輪蟲各姊妹種均由若干個(gè)基因型不同的克隆組成,各姊妹種種群遺傳結(jié)構(gòu)也隨著時(shí)間的推移而發(fā)生顯著的變化,因此,本研究所揭示的輪蟲生活史等生態(tài)特征的快速變化格局主要由遺傳因素決定。
3.3 姊妹種組成快速變化的生態(tài)學(xué)機(jī)制探討
從種群生態(tài)學(xué)和進(jìn)化生態(tài)學(xué)等的角度來(lái)看,姊妹種共存的前提是各種群至少應(yīng)在競(jìng)爭(zhēng)能力和個(gè)體適合度等方面相同,或具有明顯的生態(tài)位分化,或自然水環(huán)境的多變不足以形成穩(wěn)定的環(huán)境而導(dǎo)致種群間的競(jìng)爭(zhēng)。相反,隨著季節(jié)的變化,共存的姊妹種的相繼消失則意味著其在競(jìng)爭(zhēng)能力或個(gè)體適合度等方面可能處于劣勢(shì)。自然水體中褶皺臂尾輪蟲種復(fù)合體可在短時(shí)間內(nèi)達(dá)到較高的密度[30- 31],據(jù)此推測(cè)其姊妹種之間可能存在著資源競(jìng)爭(zhēng)[32]。盡管實(shí)驗(yàn)室研究發(fā)現(xiàn)B.plicatilis、B.ibericus和B.rotundiformis等3個(gè)個(gè)體較小但存在形態(tài)差異的姊妹種之間可產(chǎn)生資源競(jìng)爭(zhēng)[33],對(duì)溫度和鹽度的適應(yīng)性、在資源利用和防捕食能力等方面的差異也解釋了種間競(jìng)爭(zhēng)的結(jié)局[33- 35];但實(shí)驗(yàn)室研究和野外調(diào)查發(fā)現(xiàn)生態(tài)特化(姊妹種的生態(tài)位分化)是其共存的主要原因[3,5]。同樣,B.plicatilis和B.manjavacas等形態(tài)和大小高度相似的姊妹種共存的原因,在于其對(duì)升高的鹽度的不同反應(yīng)造成了它們的生態(tài)位分化,導(dǎo)致了它們的共存[36]。
汀棠湖中,萼花臂尾輪蟲種復(fù)合體的密度在7月份較低(<20 個(gè)/L)[11];如此低的密度下,兩姊妹種之間應(yīng)不會(huì)因?yàn)槭澄锘蚩臻g資源等產(chǎn)生競(jìng)爭(zhēng);兩姊妹種在種群內(nèi)稟增長(zhǎng)率等主要適合度參數(shù)之間的無(wú)顯著性差異是它們能夠共存于同一水體中的另一主要原因。而姊妹種T1和姊妹種T2在7月29日和8月5日依次從水體中消失則與它們?cè)?周前凈生殖率和種群內(nèi)稟增長(zhǎng)率顯著降低有關(guān)。消失時(shí)間上的差異可能在于姊妹種T1的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均不受溫度的顯著影響,而姊妹種T2的所有生命表統(tǒng)計(jì)學(xué)參數(shù)均隨著溫度的升高而顯著地增大。
[1] King C E, Serra M. Seasonal variation as a determinant of population structure in rotifers reproducing by cyclical parthenogenesis. Hydrobiologia, 1998, 387- 388: 361- 372.
[2] King C E, Zhao Y G. Coexistence of rotifer (Branchionusplicatilis) clones in Soda Lake, Nevada. Hydrobiologia, 1987, 147(1): 57- 64.
[3] Gómez A, Temprano M, Serra M. Ecological genetics of a cyclical parthenogen in temporary habitats. Journal of Evolutionary Biology, 1995, 8(5): 601- 622.
[4] Jiang D H, Xi Y L, Liu S G, Zhang L, Dong L L. Allozyme analysis onBrachionuscalyciflorus(Rotifera) population in Lake Jinghu and seasonal variation of their reproductive parameters. Acta Hydrobiologica Sinica, 32(6): 908- 915.
[5] Ortells R, Gómez A, Serra M. Coexistence of cryptic rotifer species: ecological and genetic characterization ofBrachionusplicatilis. Freshwater Biology, 2003, 48(12): 2194- 2202.
[6] Dong Y W, Niu C J. Sequence variability of mitochondrial COI region and population genetic structure of rotiferBrachionuscalyciflorus. Oceanologia et Limnologia Sinica, 2004, 35(5): 473- 480.
[7] Xiang X L, Xi Y L, Hu H Y. Seasonal changes in the genetic diversity ofBrachionuscalycifloruspopulation in Lake Jinghu. Acta Ecologica Sinica, 2007, 27(6): 2443- 2448.
[8] Cheng X F, Xi Y L, Li H B. Seasonal changes in the genetic structure of aBrachionuscalycifloruspopulation in Lake Liantang based on ITS sequences. Acta Zoologica Sinica, 2008, 54: 245- 255.
[9] King C E. Genetics of reproduction, variation and adaptation in rotifers. Archiv für Hydrobiologie Beiheft, 1977, 8: 187- 201.
[10] Li L, Niu C J, Ma R. Rapid temporal succession identified by COI of the rotiferBrachionuscalyciflorusPallas in Xihai Pond, Beijing, China, in relation to ecological traits. Journal of Plankton Research, 2010, 32(6): 951- 959.
[11] Wen X L. Population Dynamics and Regulation Mechanisms ofBrachionuscalyciflorusandBrachionusangularis(Rotifera) in Two Shallow Eutrophic Lakes [D]. Anhui: Anhui Normal University, 2011.
[12] Gilbert J J, Walsh E J.Brachionuscalyciflorusis a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia, 2005, 546(1): 257- 265.
[13] Li H B, Xi Y L, Cheng X F, Xiang X L, Hu C B, Tao L X. Sympatric speciation in rotifers: evidence from molecular phylogenetic relationships and reproductive isolation amongBrachionuscalyciflorusclones. Acta Zoologica Sinica, 2008, 54(2): 256- 264.
[14] Xiang X L, Xi Y L, Wen X L, Zhang J Y, Ma Q. Spatial patterns of genetic differentiation inBrachionuscalyciflorusspecies complex. Zoological Research, 2010, 31(3): 205- 220.
[15] Xiang X L, Xi Y L, Wen X L, Zhang G, Wang J X, Hu K. Genetic differentiation and phylogeographical structure of theBrachionuscalycifloruscomplex in eastern China. Molecular Ecology, 2011, 20(14): 3027- 3044.
[16] Xiang X L, Xi Y L, Wen X L, Zhang G, Wang J X, Hu K. Patterns and processes in the genetic differentiation of theBrachionuscalycifloruscomplex, a passively dispersing freshwater zooplankton. Molecular Phylogenetics and Evolution, 2011, 59(2): 386- 398.
[17] Wen X L, Xi Y L, Qian F P, Zhang G, Xiang X L. Comparative analysis of rotifer community structure in five subtropical shallow lakes in east China: role of physical and chemical conditions. Hydrobiologia, 2011, 661(1): 303- 316.
[18] Gilbert J J. Mictic female production in the rotiferBrachionuscalyciflorus. Journal of Experimental Zoology, 1963, 153(2): 113- 124.
[19] Zhang Z S, Huang X F. Methods for Studying on Freshwater Plankton. Beijing: Science Press, 1991: 410- 411.
[20] Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochromecoxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 1994, 3(5): 294- 299.
[21] Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analyses tools. Nucleic Acids Research, 1997, 25(24): 4876- 4882.
[22] Liu N, Xi Y L, Shen P, Yang S, Song X, Sun T B. Effects of lead concentration and algal density on life table demography ofMoinamacrocopa. Acta Ecologica Sinica, 2010, 30(18): 4866- 4874.
[23] Xiang X L, Xi Y L, Wen X L, Zhang J Y, Ma Q. Spatial patterns of genetic differentiation inBrachionuscalyciflorusspecies complex collected from East China in summer. Hydrobiologia, 2010, 638(1): 67- 83.
[24] Birky C W Jr, Wolf C, Maughan H, Herbertson L, Henry E. Speciation and selection without sex. Hydrobiologia, 2005, 546(1): 29- 45.
[25] Gómez A. Molecular ecology of rotifers: from population differentiation to speciation. Hydrobiology, 2005, 546(1): 83- 99.
[26] Derry A M, Hebert P D N, Prepas E E. Evolution of rotifers in saline and subsaline lakes: a molecular phylogenetic approach. Limnology and Oceanography, 2003, 48(2): 675- 685.
[27] Papakostas S, Triantafyllidis A, Kappas I, Abatzopoulos T J. The utility of the 16S gene in investigating cryptic speciation within theBrachionusplicatilisspecies complex. Marine Biology, 2005, 147(5): 1129- 1139.
[28] Gómez A, Serra M, Carvalho G R, Lunt D H. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny ofBrachionusplicatilis(Rotifera). Evolution, 2002, 56(7): 1431- 1444.
[29] Suatoni E, Vicario S, Rice S, Snell T, Caccone A. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotiferBrachionusplicatilis. Molecular Phylogenetics and Evolution, 2006, 41(1): 86- 98.
[30] Carmona M J, Gómez A, Serra M. Mictic patterns of the rotiferBrachionusplicatilisMüller in small ponds. Hydrobiology, 1995, 109: 365- 371.
[31] Carmona M J, Dimas-Flores N, Garcia-Roger E M, Serra M. Selection of low investment in sex in a cyclically parthenogenetic rotifer. Journal of Evolutionary Biology, 2009, 22(10): 1975- 1983.
[32] Cordova S E, Giffin J, Kirk K L. Food limitation of planktonic rotifers: field experiments in two mountain ponds. Freshwater Biology, 2001, 46(11): 1519- 1527.
[33] Ciros-Pérez J, Carmona M J, Lapesa S, Serra M. Predation as a factor mediating resource competition among rotifer sibling species. Limnology and Oceanography, 2004, 49(1): 40- 50.
[34] Gómez A, Carmona M J, Serra M. Ecological factors affecting gene flow in theBrachionusplicatiliscomplex (Rotifera). Oecologia, 1997, 111(3): 350- 356.
[35] Ciros-Pérez J, Carmona M J, Serra M. Resource competition between sympatric sibling rotifer species. Limnology and Oceanography, 2001, 46(6): 1511- 1523.
[36] Montero-Pau J, Ramos-Rodríguez E, Serra M, Gómez A, Steinke D. Long-term coexistence of rotifer cryptic species. PLoS ONE, 2011, 6(6): e21530.
參考文獻(xiàn):
[4] 江東海, 席貽龍, 劉勝國(guó), 張雷, 董麗麗. 鏡湖萼花臂尾輪蟲種群等位酶分析和生殖參數(shù)的季節(jié)變化. 水生生物學(xué)報(bào), 32(6): 908- 915.
[6] 董云偉, 牛翠娟. 萼花臂尾輪蟲 (Brachionuscalyciflorus) COI 基因序列變異及種群遺傳結(jié)構(gòu)分析. 海洋與湖沼, 2004, 35(5): 473- 480.
[7] 項(xiàng)賢領(lǐng), 席貽龍, 胡好遠(yuǎn). 鏡湖萼花臂尾輪蟲種群遺傳多樣性的季節(jié)變化. 生態(tài)學(xué)報(bào), 2007, 27(6): 2443- 2448.
[8] 程新峰, 席貽龍, 李化炳. 基于rDNA ITS序列分析蓮塘湖萼花臂尾輪蟲種群遺傳結(jié)構(gòu)的季節(jié)變化. 動(dòng)物學(xué)報(bào), 2008, 54(2): 245- 255.
[11] 溫新利. 淺水富營(yíng)養(yǎng)湖泊中兩種臂尾輪蟲的種群變動(dòng)和機(jī)制研究 [D]. 安徽: 安徽師范大學(xué), 2011.
[13] 李化炳, 席貽龍, 程新峰, 項(xiàng)賢領(lǐng), 胡存兵, 陶李祥. 輪蟲同域性物種形成: 來(lái)自萼花臂尾輪蟲克隆間的分子系統(tǒng)發(fā)育關(guān)系和生殖隔離證據(jù). 動(dòng)物學(xué)報(bào), 2008, 54(2): 256- 264.
[14] 項(xiàng)賢領(lǐng), 席貽龍, 溫新利, 張晉艷, 馬芹. 萼花臂尾輪蟲種復(fù)合體遺傳分化的空間格局. 動(dòng)物學(xué)研究, 2010, 31(3): 205- 220.
[19] 章宗涉, 黃祥飛. 淡水浮游生物研究方法. 北京: 科學(xué)出版社, 1991: 410- 411.
[22] 劉寧, 席貽龍, 沈鵬, 楊勝, 宋鑫, 孫天寶. Pb2+濃度和藻類食物密度對(duì)多刺裸腹溞生命表統(tǒng)計(jì)學(xué)參數(shù)的影響. 生態(tài)學(xué)報(bào), 2010, 30(18): 4866- 4874.
Temporal variation in composition ofBrachionuscalycifloruscomplex and life history traits of sibling species in Lake Tingtang
LI Yao, XI Yilong*, WANG Aiming, NIU Xiangxiang, WEN Xinlin, LIU Guiyun
ProvincialKeyLaboratoryofBioticEnvironmentandEcologicalSafety,CollegeofLifeSciences,AnhuiNormalUniversity,Wuhu241000,China
Despite their high morphological similarity, sibling species often coexist in aquatic habitats presenting a challenge in the framework of niche differentiation theory and coexistence mechanisms. HereBrachionuscalyciorusspecies complex inhabiting Lake Tingtang, a shallow eutrophic lake, was used to gain insights into the mechanisms involved in coexistence in sibling species. The animals were collected once a week from Lake Tingtang in July 2011, when the water temperature increased from 28℃ to 32℃. Then the animals were clonally cultured in lab, and their COI genes were sequenced and analyzed to reconstruct the coexistence dynamics of sibling species. Forty-seven rotifer clones from four collections and two sibling species were used to calculate their life table demographic parameters including life expectancy at hatching, average lifespan, generation time, net reproduction rate, intrinsic rate of population increase and the proportion of sexual offspring at 28℃ and 32℃, and with 1.0×106, 3.0×106and 5.0×106cells/ml ofScenedesmusobliquusas their food, and the responses in the life table demographic parameters to water temperature, algal density and collection batch were analyzed to explore the coexistence mechanisms. In total of 59 samples, 38 haplotypes were defined, among which 2 distinct lineages (Lineages Ⅰ and Ⅱ) were revealed by phylogenetic analysis. Sequence divergence was 13.9%—15.6% between the two lineages, indicating the occurrence of two sibling species (sibling species T1 and sibling species T2). The relative abundance of sibling species T1 in the density of the species complex decreased rapidly from the first collection to the third collection; and in the fourth collection, the sibling species disappeared from the water body. However, the relative abundance of sibling species T2 increased from the first collection to the fourth collection; and after a week, the sibling species also disappeared from the water body. All the life table demographic parameters of sibling species T1, and the generation time, the net reproduction rate, the intrinsic rate of population increase and the proportion of sexual offspring of sibling species T2 significantly varied with increasing collection data. In the first, second and third collection, the average lifespan, the life expectancy at hatching and the generation time of sibling species T1 were markedly longer than those of sibling T2. In the second collection, the net reproduction rate of sibling species T1 was higher than that of sibling T2, but the reverse was also true for the proportion of sexual offspring. In the third collection, the proportion of sexual offspring of sibling species T1 was significantly lower than that of sibling species T2. The low density (< 20 ind./L) of the species complex could not lead to compete with each other for food and space resources. Meanwhile, the similar intrinsic rate of population increase (P>0.05) might contribute to the coexistence of the two sibling species. The disappearance of sibling species T1 on 29 July and sibling species T2 on 5 August from the water body might be attributed to their decreasing net reproduction rate and intrinsic rate of population increase on 22 July and 29 July, respectively. The main reason for the difference in the time of disappearance between the two sibling species might be that all the life table demographic parameters of sibling species T1 were not significantly affected by temperature (P>0.05), but those of sibling species T2 increased with increasing temperature (P<0.05).
Brachionuscalyciflorus; sibling species; temperature; algal density; life history characteristics; temporal variation
國(guó)家自然科學(xué)基金(31170395); 教育部博士點(diǎn)基金(20093424110002); 安徽省高校生物環(huán)境與生態(tài)安全省級(jí)重點(diǎn)實(shí)驗(yàn)室專項(xiàng)基金; 重要生物資源保護(hù)和利用研究安徽省重點(diǎn)實(shí)驗(yàn)室專項(xiàng)基金
2013- 01- 28; 網(wǎng)絡(luò)出版日期:2014- 03- 13
10.5846/stxb201301280179
*通訊作者Corresponding author.E-mail: ylxi1965@126.com
李瑤,席貽龍,王愛民,牛翔翔,溫新利,劉桂云.汀棠湖萼花臂尾輪蟲姊妹種組成和生活史特征的時(shí)間變化.生態(tài)學(xué)報(bào),2014,34(21):6172- 6181.
Li Y, Xi Y L, Wang A M, Niu X X, Wen X L, Liu G Y.Temporal variation in composition ofBrachionuscalycifloruscomplex and life history traits of sibling species in Lake Tingtang.Acta Ecologica Sinica,2014,34(21):6172- 6181.