,,,
(浙江工業(yè)大學(xué) 藥學(xué)院,浙江 杭州 310032)
在我們以前的報道中我們發(fā)現(xiàn)Cu(Ⅱ)/N(V)/TEMPO組成的催化體系具有較高的催化活性[13],進(jìn)一步研究后,我們發(fā)現(xiàn)了CuCl2/NaNO2/TEMPO三者構(gòu)成的組合催化氧化體系,常溫下便可以高轉(zhuǎn)化率高選擇性地合成吡唑類化合物,反應(yīng)中所用催化劑、氧化劑和溶劑低毒環(huán)保,廉價易得,是一種具有潛在應(yīng)用價值的反應(yīng)體系,同時也開辟了綠色合成吡唑類化合物的新途徑.
所用試劑均為分析純.熔點(diǎn)用X-4顯微熔點(diǎn)儀測定,溫度計(jì)未校正.1H NMR由Bruker Model Avance Ⅲ 500 MHz核磁共振儀測定.有機(jī)反應(yīng)用薄層硅膠板(TLC,青島海洋化工)跟蹤,紫外燈檢測.柱層析硅膠用200—300目硅膠(青島海洋化工).
1.2.1 吡唑啉Ⅰa—Ⅰh合成
參考文獻(xiàn)[14],以Ⅰa為例.在100 mL三口燒瓶中加入10 mmol查爾酮(1,3-二苯基丙烯酮)和10 mmol苯肼,用50 mL冰醋酸溶解,回流反應(yīng)6 h后冷卻.隨后將反應(yīng)液倒入50 mL冰水中,析出固體.過濾,烘干,用乙醇重結(jié)晶后得到吡唑啉Ⅰa 2.1 g,收率為70%.
1.2.2 吡唑類化合物Ⅱa—Ⅱh的合成
以Ⅱa為例.在25 mL三口燒瓶中加入1 mmol吡唑啉Ⅰa,用10 mL乙腈溶解,依次加入0.05 mmol TEMPO,0.05 mmol CuCl2·2H2O,0.05 mmol NaNO2以及1 mL醋酸,套上氧氣球,于常溫下開啟反應(yīng),TLC(展開劑:V(石油醚)∶V(乙酸乙酯)=20∶1)跟蹤直至反應(yīng)結(jié)束.加入飽和碳酸氫鈉溶液進(jìn)行中和,乙酸乙酯萃取三次,所得有機(jī)層用飽和食鹽水洗滌一次,無水硫酸鎂干燥,過濾,旋蒸去溶劑,所得粗品通過柱層析進(jìn)行純化,得到淺黃色固體Ⅱa 0.27 g,收率為93%,mp:135~137 ℃.
以Ⅰa為反應(yīng)底物,選擇不同的催化體系及溶劑,氧氣為氧化劑,考察不同的反應(yīng)體系對Ⅰa氧化芳構(gòu)化的影響,從而篩選最優(yōu)的反應(yīng)條件,見表1.
表1 反應(yīng)條件對Ⅰa氧化芳構(gòu)化的影響1)
由表1可知(序號1,2,3,5):CuCl2是最合適的金屬鹽,不論從轉(zhuǎn)化率以及選擇性來講,CuCl2的催化活性比NiCl2,F(xiàn)eCl3和MnCl2高.比較序號4和5,其他銅鹽如Cu(NO3)2的催化活性比CuCl2小.另外,盡管乙酸乙酯也能將Ⅰa完全轉(zhuǎn)化為Ⅱa,但進(jìn)一步實(shí)驗(yàn)發(fā)現(xiàn),部分底物在乙腈中的溶解性比在乙酸乙酯中好,而且相對來講收率也更高.比較序號5,9,10,11,12,若想完全實(shí)現(xiàn)Ⅰa的轉(zhuǎn)化以及高收率地得到Ⅱa,該催化體系所有組分缺一不可,因此CuCl2/TEMPO/NaNO2/CH3CN/CH3COOH共同組成了最理想的催化體系.
以各種1,3,5-三取代吡唑啉衍生物為反應(yīng)底物,對反應(yīng)體系適應(yīng)性進(jìn)行了考察,反應(yīng)結(jié)果如表2所示.
表2 CuCl2/TEMPO/NaNO2催化氧化體系氧化芳構(gòu)化1,3,5-三取代吡唑啉1)
由表2可知:該反應(yīng)體系適用于多種1,3,5-三取代吡唑啉衍生物的氧化芳構(gòu)化,且收到了較好的反應(yīng)效果.所有的反應(yīng)都在常溫下進(jìn)行,均能在2~4 h內(nèi)反應(yīng)完全,同時,該催化體系反應(yīng)溫和,收率高,操作簡便安全,對吡唑類化合物的快速合成有一定的應(yīng)用價值.
1,3,5-三苯基吡唑(Ⅱa): 淺黃色固體, mp: 135~137 ℃ (lit.[15]137~139 ℃),1H NMR (500 MHz, CDCl3):δ 7.97~7.95 (m, 2H), 7.46~7.30(m,13H),6.86(s,1H).1,3-二苯基-5-(4-氯苯基)吡唑(Ⅱb),淺黃色固體,mp:109~110 ℃(lit.[15]110~112 ℃),1H NMR(500 MHz, CDCl3):δ 7.95~7.93(m,2H), 7.47~7.22(m,12H),6.84(s, 1H).1,3-二苯基-5-(4-氟苯基)吡唑(Ⅱc),淺黃色固體,mp:138~139 ℃(lit.[16]141~143 ℃),1H NMR(500 MHz, CDCl3):δ 7.95~9.93(m,2H), 7.47~7.26(m,10H), 7.04(t,J=8.7 Hz, 2H),6.82(s,1H).1,3-二苯基-5-(2-呋喃基)吡唑(Ⅱd),淺棕色固體,mp:64~66 ℃(lit.[17]64~65 ℃),1H NMR(500 MHz,CDCl3):δ 7.95~7.30(m,2H),7.5~7.36(m,9H),7.02(s,1H),6.37(dd,J=3.3,1.8 Hz,1H),6.01(d,J=3.3 Hz,1H).1-(4-氯苯基)-3,5-二苯基吡唑(Ⅱe)[18],白色固體,mp:119~120 ℃,1H NMR(500 MHz,CDCl3):δ 7.94~7.93(m,2H),7.46(t,J=7.6 Hz,2H),7.39~7.37(m,4H),7.34(s,4H),7.31~7.29(m,2H),6.84(s,1H).1,5-二(4-氯苯基)-3-苯基吡唑(Ⅱf),白色固體,mp:135~136 ℃(lit.[19]135~136 ℃),1H NMR(500 MHz,CDCl3):δ 7.92(m,2H),7.47~7.22(m,11H),6.83(s,1H).1-(4-氯苯基)-3-苯基-5-(4-氟苯基)吡唑(Ⅱg)[20],白色固體,mp:125~127 ℃,1H NMR(500 MHz,CDCl3):δ 7.93~7.91(m,2H),7.46(t,J=7.6 Hz,2H),7.39~7.25(m,7H),7.07(t,J=8.6 Hz,2H),6.81(s,1H).1-苯基-3,5-二(4-氟苯基)吡唑(Ⅱh),白色固體,mp:102~104 ℃(lit.[21]92~94 ℃),1H NMR (500 MHz, CDCl3): δ 7.92~7.88 (m, 2H), 7.40~7.32 (m, 5H), 7.28~7.24 (m, 2H), 7.14 (t,J= 8.7 Hz, 2H), 7.04 (t,J= 8.7 Hz, 2H), 6.76 (s, 1H).
以CuCl2,TEMPO和NaNO2為催化劑,CH3CN/CH3COOH為溶劑,氧氣為氧化劑,將1,3,5-三取代吡唑啉氧化成相應(yīng)的吡唑類衍生物,該催化氧化的方法具有選擇性高,操作安全簡便等優(yōu)點(diǎn),與其他方法相比,反應(yīng)中使用的組合催化劑CuCl2/TEMPO/NaNO2是一種高效的催化體系;反應(yīng)中所用的催化劑、氧化劑和溶劑廉價易得,低毒環(huán)保;同時該工藝具有潛在的工業(yè)化應(yīng)用價值.因此,發(fā)現(xiàn)了一種更為綠色環(huán)保,高效合成1,3,5-三取代吡唑類化合物的方法.
參考文獻(xiàn):
[1]HUANG Y R, KATZENELLENBOGEN J A. Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: novel ligands for the estrogen receptor[J]. Organic Letters,2000,2(18):2833-2836.
[2]XIAO Li, LU Xiang-yi, RUDEN D M. Effectiveness of Hsp90 inhibitors as anti-cancer drugs[J]. Mini-Reviews in Medicinal Chemistry,2006,6(10):1137-1143.
[3]DUNN J P, HOGG J H, MIRZADEGAN T, et al.Non-nucleoside reverse transcriptase inhibitors:US, WO 2004074257 A1[P].2004-09-02.
[4]BARSOUM F F, HOSNI H M, GiIRGIS A S. Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties[J]. Bioorganic & Medicinal Chemistry,2006,14(11):3929-3937.
[5]STAUFFER S R, COLETTA C J, TEDESCO R, et al. Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists[J]. Journal of Medicinal Chemistry,2000,43(26):4934-4937.
[6]PRASANNA S, MANIVANNAN E, CHATURVEDI S C. Quantitative structure-activity relationship analysis of 2,3-diaryl indoles as selective cyclooxygenase-2 inhibitors[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2005,20(5):455-461.
[7]SABITHA G, KUMAR-REDDY G S K, REDDY C S, et al. Zr(NO3)4: a versatile oxidizing agent for aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines[J]. Synthesis,2003,8:1267-1271.
[8]GLADSTONE W A F, NORMAN R O C. Reactions of lead tetraacetate. Part VII. Some reactions leading to pyrazoles[J]. Journal of the Chemical Society (c),1966,17:1536-1540.
[9]BHATNAGAR I, GEORGE M V. Oxidation with metal oxides-II☆: oxidation of chalcone phenylhydrazones, pyrazolines, o-aminobenzylidine anils and o-hydroxy benzylidine anils with manganese dioxide[J]. Tetrahedron,1968,24(3):1293-1298.
[10]SMITH L I, HOWARD K L. The action of aliphatic diazo compounds upon α,β-unsaturated ketones. II. cis-and trans-dibenzoylethylene[J]. Journal of the American Chemistry Society,1943,65(2):159-164.
[11]NAKAMICHI N, KAWASHITA Y, HAYASHI M. Activated carbon-promoted oxidative aromatization of Hantzsch 1,4-dihydropyridines and 1,3,5-trisubstituted pyrazolines using Molecular Oxygen[J]. Synthesis,2004,7:1015-1020.
[12]LIU Yun-kui, MAO Da-jie, LOU Shao-jie, et al. Oxidative aromatization of 1,3,5-trisubstituted pyrazolines using hydrogen tetrachloroaurate as catalyst under an oxygen atmosphere[J]. Organic Preparations and Procedures International,2009,41:237-242.
[13]徐偉,張蔓,李景華.水相中氧氣氧化芳香醇制備羰基化合物的研究[J].浙江工業(yè)大學(xué)學(xué)報,2013,41(1):65-67.
[14]SAMSHUDDIN S, NARAYANA B, SAROJINI B K, et al. Antimicrobial, analgesic, DPPH scavenging activities and molecular docking study of some 1,3,5-triaryl-2-pyrazolines[J]. Medical Chemistry Research,2012,21(8):2012-2022.
[15]AZARIFAR D, KHOSRAVI K, VEISI R A. An efficient oxidation of 2-pyrazolines and isoxazolines by bis-bromine-1,4-diazabicyclo[2.2.2]octane complex (DABCO-Br2)[J]. ARKIVOC,2010(ix):178-184.
[16]LIU Pei, PAN Ying-ming, XU Yan-li, et al. PTSA-catalyzed Mannich-type-cyclization-oxidation tandem reactions: one-pot synthesis of 1,3,5-substituted pyrazoles from aldehydes, hydrazines and alkynes[J]. Organic & Biomolecular Chemistry,2012,10(24):4696-4698.
[17]伍文韜,李銳,劉強(qiáng),等.一氧化氮氧化芳構(gòu)化1,3,5-三取代吡唑啉[J].有機(jī)化學(xué),2009,29(2):283-288.
[18]PRAGST F. Anodische oxydation von N-aryl-Δ2-pyrazolinen zu pyrazolen[J]. Zeitschrift Fuer Chemie,1974,14(6):236-237.
[19]RAIFORD L C, MANLEY R H. Formation of pyrazolines from unsymmetrically substituted dibenzalacetones[J]. Journal of Organic Chemistry,1940,5(6):590-597.
[20]MISHRIKY N, ASAAD F M, IBRAHIM Y A, et al. New 2-pyrazolines of anticipated molluscicidal activity[J]. Pharmazie,1996,51(8):544-548.
[21]LANDGE M, SCHMIDT A, OUTERBRIDGE V, et al. Synthesis of pyrazoles by a one-pot tandem cyclization-dehydrogenation approach on Pd/C/K-10 catalyst[J]. Synlett,2007,10:1600-1604.