周凱
摘要介紹熱泵精餾與中段換熱精餾相結(jié)合的節(jié)能流程在PM生產(chǎn)中的應(yīng)用,對塔頂汽相直接壓縮式熱泵流程給出了詳細(xì)的模擬數(shù)據(jù)。對節(jié)能流程和常規(guī)流程進行對比,通過數(shù)據(jù)反映出顯著的節(jié)能效果。
關(guān)鍵詞熱泵精餾;中間換熱器;節(jié)能技術(shù)
中圖分類號:TQ028 文獻標(biāo)識碼:A 文章編號:1671-7597(2014)12-0057-01
在化工流程中,從原料到產(chǎn)品的整個生產(chǎn)過程,始終伴隨著能量的供應(yīng)、轉(zhuǎn)換、利用、回收、生產(chǎn)、排棄等環(huán)節(jié)。對于多數(shù)企業(yè)而言,要想在日益競爭的市場中占有一席之地,除了要有優(yōu)質(zhì)的產(chǎn)品,如何最為有效、合理的利用能源,控制產(chǎn)品成本已經(jīng)成為企業(yè)面臨的新的課題和發(fā)展方向。
目前常用的節(jié)能技術(shù)有很多,如:建立冷熱流體換熱的熱集成網(wǎng)絡(luò),多效精餾技術(shù),熱泵精餾技術(shù),中段換熱精餾技術(shù)等。由于本次擬對已有裝置進行節(jié)能分析,現(xiàn)場不宜增加過多設(shè)備,且之前已對部分系統(tǒng)建立換熱網(wǎng)絡(luò),所以主要將重點確定為:通過對本公司一套年產(chǎn)5萬噸PM裝置的現(xiàn)場數(shù)據(jù)進行采集和分析,采用熱泵精餾和中段換熱精餾技術(shù),對各塔有針對性的進行節(jié)能分析。
1節(jié)能措施
1.1 現(xiàn)場數(shù)據(jù)及基本工況模擬結(jié)果
PM裝置分餾部分主要由4個塔組成。1號塔用于脫除反應(yīng)液中過量的甲醇,2號塔塔頂采出PM成品,3號塔塔頂采出PM異構(gòu)體成品,4號塔為間歇塔,塔頂采出殘余的一些輕組分。塔頂冷凝器采用循環(huán)水冷卻,再沸器采用蒸汽加熱。其中能耗主要集中在1號、2號塔。通過現(xiàn)場數(shù)據(jù)的采集,結(jié)合模擬軟件,選用NRTL方程進行模擬計算,計算結(jié)果與現(xiàn)場數(shù)據(jù)基本一致,得到1號、2號塔的能耗:
表1基本工況及能耗分析
設(shè)備位號 T1 T2
全凝器負(fù)荷 x 10^6 Kcal/hr -3.267 -3.5083
再沸器負(fù)荷 x 10^6 Kcal/hr 2.4297 3.51
塔頂壓力 KPA 101.5 101.5
頂溫 C 64.6 120.5
釜溫 C 121.5 137.1
回流比 0.23 3.66
塔頂上升氣量 kmol/hr 387.8 371.5
塔釜上升氣量 kmol/hr 256.1 352.2
1.2 熱泵精餾
熱泵精餾主要分為汽相壓縮式熱泵精餾和吸收式熱泵精餾。根據(jù)壓縮機工質(zhì)的不同,蒸汽壓縮式熱泵精餾又分為塔頂汽相直接壓縮式、塔底液體閃蒸式和間接蒸汽壓縮式三種類型。
塔頂汽相壓縮式熱泵精餾以塔頂汽相為工質(zhì),利用壓縮機使塔頂汽相的溫度提高一個能級,從而能夠給塔底物料的汽化提供能量。主要應(yīng)用于:①塔頂和塔底溫差較小的精餾塔;②回流比較大分離系統(tǒng);③低壓下精餾時塔頂產(chǎn)品需要冷凍劑冷凝的系統(tǒng)。
塔底釜液閃蒸式熱泵精餾是以釜液為工質(zhì),經(jīng)減壓閃蒸后與塔頂汽相換熱,使塔頂氣相冷凝,同時使自身汽化,然后汽相經(jīng)壓縮機壓縮后進入塔釜作為塔釜熱源。
間接蒸汽壓縮式熱泵精餾則是選擇單獨封閉循環(huán)的工質(zhì),塔頂汽相能量經(jīng)由工質(zhì)用于塔釜加熱。主要用于精餾介質(zhì)具有腐蝕性、對溫度敏感的情況。
吸收式熱泵系統(tǒng)可以利用溫度不高的熱源作為動力,但熱效率低,需要的投資高,使用壽命不長,因此多用于產(chǎn)熱量大,溫度提升要求不高,并且可以用廢熱直接驅(qū)動的情況。
1.3 中段換熱精餾
在普通精餾塔內(nèi),溫度自塔頂向塔底逐漸升高,如果塔底和塔頂溫差較大,在塔中設(shè)置冷凝器,就可以采用較高溫度的冷卻劑,降低冷公用工程費用。如果在塔的中部設(shè)置再沸器,可以代替一部分原來從塔底加入的熱量。由于中間再沸器所處的溫度比塔底溫度低,所以中間再沸器中可以用比塔底加熱劑溫度低的加熱劑來加熱,節(jié)省熱公用工程的費用。
1.4 節(jié)能措施的選擇
通過現(xiàn)場數(shù)據(jù)可以看到,2號塔塔頂、塔釜溫差較小,且回流比較大,適合采用塔頂汽相壓縮式熱泵精餾。1號塔塔頂、塔釜溫差大,壓縮機負(fù)荷高,且頂溫64.6℃,采用熱泵精餾時要使塔頂汽相冷凝需增加真空泵等設(shè)備,因此初步計算、比較后決定采用中段換熱精餾技術(shù)。采用傳統(tǒng)的塔頂汽相壓縮式熱泵時循環(huán)工質(zhì)加熱塔釜后經(jīng)節(jié)流閥進入閃蒸回流罐,而本流程中采用2號塔壓縮機出口物料加熱塔釜后余熱作為1號塔中段換熱器的熱源,相對來說控制簡單。
2計算結(jié)果
2.1 壓縮機出口壓力
塔頂汽相壓縮式熱泵精餾壓縮機的進氣量為塔頂氣體采出量。出口壓力即循環(huán)工質(zhì)需壓縮到多大壓力才能滿足熱泵系統(tǒng)的性能要求,主要由2號塔塔釜溫度和塔釜熱負(fù)荷決定。本次計算中釜溫137℃,為保證再沸器的熱交換,壓縮后氣體溫度取高于釜溫15℃。此外,塔頂氣相經(jīng)壓縮后必須能夠提供充分的熱負(fù)荷以滿足再沸器的要求。因而壓縮后溫度和循環(huán)量必須適當(dāng)匹配,本系統(tǒng)中壓縮機出口壓力取300 kPa,此時壓縮機出口溫度為154.7℃,給再沸器加熱后,循環(huán)工質(zhì)溫度為152.8℃的氣液混合相。為保證產(chǎn)品質(zhì)量,除保證回流量外,回流溫度保證在120℃左右。在循環(huán)工質(zhì)由152.8℃冷凝冷卻到120℃過程中放出熱量0.835×10^6 Kcal/hr。因為1號塔采用了中間換熱器,因此,多余熱量可用于1號塔中段換熱器的熱源,保證能源的最大化利用。
2.2 中段換熱器位置
為保證中段換熱器有足夠的推動力,取冷熱物料溫差15℃以上,并且盡量靠近塔釜位置,因此第30塊板溫度106℃,抽取第30塊塔板物料進中段換熱器加熱,物料流量3000 kg/h。
2.2 模擬計算結(jié)果
模擬流程如下:
經(jīng)過詳細(xì)的流程模擬計算,現(xiàn)對熱泵加中間換熱器的節(jié)能流程和常規(guī)流程進行比較。兩種計算分離要求相同。經(jīng)濟效益比較取以下價格:電為0.8元/度,蒸汽220元/t,蒸汽潛熱取500Kcal/kg,壓縮機絕熱效率80%,循環(huán)水溫升取8℃。
同時加中間再沸器后1號塔節(jié)能835000 Kcal,計蒸汽1.67 t,費用367元/小時。總計節(jié)約費用1561元/小時。
2.3 結(jié)果分析
從表2數(shù)據(jù)可以看出,2號塔基本工況和熱泵工況相比,兩者的冷凝器、再沸器溫度基本相同,后者的回流比較前者略大一些,因此熱負(fù)荷稍有增加。后者冷凝器對數(shù)平均溫差為11.5℃,該溫差大小恰當(dāng),滿足換熱器的傳熱要求。后者操作費用則從1182降低到424元/h,顯然節(jié)能效果是十分顯著的。1號塔采用中間換熱器后可直接節(jié)能835000kcal,節(jié)約費用367元/小時??偣补?jié)約費用1561元/小時。經(jīng)濟效益相當(dāng)可觀。
表2節(jié)能效果比較
操作參數(shù) PM裝置2號塔熱泵節(jié)能效果
常規(guī)精餾 熱泵精餾
頂溫(℃) 120 120
釜溫(℃) 137 137
壓縮機出口溫度 153
產(chǎn)量(t/h) 7.15 7.15
熱負(fù)荷(kcal/h) 3513300 3580000
消耗蒸汽(t/h) 7.03
消耗電量(kW) 530
冷負(fù)荷(kcal/h) 3508300
循環(huán)水量(t/h)(取8℃溫差) 438.5 86.15
循環(huán)水電機電耗(KW*h) 90
蒸汽費用(元/小時) 1546
電費(元/小時) 72 424
節(jié)約費用(元/小時) 1194
參考文獻
[1]陸恩錫,羅明輝.蒸餾過程熱泵節(jié)能—熱泵系統(tǒng)模擬計算[J].
[2]包宗宏,武文良.化工計算與軟件應(yīng)用[M].2013.
endprint
摘要介紹熱泵精餾與中段換熱精餾相結(jié)合的節(jié)能流程在PM生產(chǎn)中的應(yīng)用,對塔頂汽相直接壓縮式熱泵流程給出了詳細(xì)的模擬數(shù)據(jù)。對節(jié)能流程和常規(guī)流程進行對比,通過數(shù)據(jù)反映出顯著的節(jié)能效果。
關(guān)鍵詞熱泵精餾;中間換熱器;節(jié)能技術(shù)
中圖分類號:TQ028 文獻標(biāo)識碼:A 文章編號:1671-7597(2014)12-0057-01
在化工流程中,從原料到產(chǎn)品的整個生產(chǎn)過程,始終伴隨著能量的供應(yīng)、轉(zhuǎn)換、利用、回收、生產(chǎn)、排棄等環(huán)節(jié)。對于多數(shù)企業(yè)而言,要想在日益競爭的市場中占有一席之地,除了要有優(yōu)質(zhì)的產(chǎn)品,如何最為有效、合理的利用能源,控制產(chǎn)品成本已經(jīng)成為企業(yè)面臨的新的課題和發(fā)展方向。
目前常用的節(jié)能技術(shù)有很多,如:建立冷熱流體換熱的熱集成網(wǎng)絡(luò),多效精餾技術(shù),熱泵精餾技術(shù),中段換熱精餾技術(shù)等。由于本次擬對已有裝置進行節(jié)能分析,現(xiàn)場不宜增加過多設(shè)備,且之前已對部分系統(tǒng)建立換熱網(wǎng)絡(luò),所以主要將重點確定為:通過對本公司一套年產(chǎn)5萬噸PM裝置的現(xiàn)場數(shù)據(jù)進行采集和分析,采用熱泵精餾和中段換熱精餾技術(shù),對各塔有針對性的進行節(jié)能分析。
1節(jié)能措施
1.1 現(xiàn)場數(shù)據(jù)及基本工況模擬結(jié)果
PM裝置分餾部分主要由4個塔組成。1號塔用于脫除反應(yīng)液中過量的甲醇,2號塔塔頂采出PM成品,3號塔塔頂采出PM異構(gòu)體成品,4號塔為間歇塔,塔頂采出殘余的一些輕組分。塔頂冷凝器采用循環(huán)水冷卻,再沸器采用蒸汽加熱。其中能耗主要集中在1號、2號塔。通過現(xiàn)場數(shù)據(jù)的采集,結(jié)合模擬軟件,選用NRTL方程進行模擬計算,計算結(jié)果與現(xiàn)場數(shù)據(jù)基本一致,得到1號、2號塔的能耗:
表1基本工況及能耗分析
設(shè)備位號 T1 T2
全凝器負(fù)荷 x 10^6 Kcal/hr -3.267 -3.5083
再沸器負(fù)荷 x 10^6 Kcal/hr 2.4297 3.51
塔頂壓力 KPA 101.5 101.5
頂溫 C 64.6 120.5
釜溫 C 121.5 137.1
回流比 0.23 3.66
塔頂上升氣量 kmol/hr 387.8 371.5
塔釜上升氣量 kmol/hr 256.1 352.2
1.2 熱泵精餾
熱泵精餾主要分為汽相壓縮式熱泵精餾和吸收式熱泵精餾。根據(jù)壓縮機工質(zhì)的不同,蒸汽壓縮式熱泵精餾又分為塔頂汽相直接壓縮式、塔底液體閃蒸式和間接蒸汽壓縮式三種類型。
塔頂汽相壓縮式熱泵精餾以塔頂汽相為工質(zhì),利用壓縮機使塔頂汽相的溫度提高一個能級,從而能夠給塔底物料的汽化提供能量。主要應(yīng)用于:①塔頂和塔底溫差較小的精餾塔;②回流比較大分離系統(tǒng);③低壓下精餾時塔頂產(chǎn)品需要冷凍劑冷凝的系統(tǒng)。
塔底釜液閃蒸式熱泵精餾是以釜液為工質(zhì),經(jīng)減壓閃蒸后與塔頂汽相換熱,使塔頂氣相冷凝,同時使自身汽化,然后汽相經(jīng)壓縮機壓縮后進入塔釜作為塔釜熱源。
間接蒸汽壓縮式熱泵精餾則是選擇單獨封閉循環(huán)的工質(zhì),塔頂汽相能量經(jīng)由工質(zhì)用于塔釜加熱。主要用于精餾介質(zhì)具有腐蝕性、對溫度敏感的情況。
吸收式熱泵系統(tǒng)可以利用溫度不高的熱源作為動力,但熱效率低,需要的投資高,使用壽命不長,因此多用于產(chǎn)熱量大,溫度提升要求不高,并且可以用廢熱直接驅(qū)動的情況。
1.3 中段換熱精餾
在普通精餾塔內(nèi),溫度自塔頂向塔底逐漸升高,如果塔底和塔頂溫差較大,在塔中設(shè)置冷凝器,就可以采用較高溫度的冷卻劑,降低冷公用工程費用。如果在塔的中部設(shè)置再沸器,可以代替一部分原來從塔底加入的熱量。由于中間再沸器所處的溫度比塔底溫度低,所以中間再沸器中可以用比塔底加熱劑溫度低的加熱劑來加熱,節(jié)省熱公用工程的費用。
1.4 節(jié)能措施的選擇
通過現(xiàn)場數(shù)據(jù)可以看到,2號塔塔頂、塔釜溫差較小,且回流比較大,適合采用塔頂汽相壓縮式熱泵精餾。1號塔塔頂、塔釜溫差大,壓縮機負(fù)荷高,且頂溫64.6℃,采用熱泵精餾時要使塔頂汽相冷凝需增加真空泵等設(shè)備,因此初步計算、比較后決定采用中段換熱精餾技術(shù)。采用傳統(tǒng)的塔頂汽相壓縮式熱泵時循環(huán)工質(zhì)加熱塔釜后經(jīng)節(jié)流閥進入閃蒸回流罐,而本流程中采用2號塔壓縮機出口物料加熱塔釜后余熱作為1號塔中段換熱器的熱源,相對來說控制簡單。
2計算結(jié)果
2.1 壓縮機出口壓力
塔頂汽相壓縮式熱泵精餾壓縮機的進氣量為塔頂氣體采出量。出口壓力即循環(huán)工質(zhì)需壓縮到多大壓力才能滿足熱泵系統(tǒng)的性能要求,主要由2號塔塔釜溫度和塔釜熱負(fù)荷決定。本次計算中釜溫137℃,為保證再沸器的熱交換,壓縮后氣體溫度取高于釜溫15℃。此外,塔頂氣相經(jīng)壓縮后必須能夠提供充分的熱負(fù)荷以滿足再沸器的要求。因而壓縮后溫度和循環(huán)量必須適當(dāng)匹配,本系統(tǒng)中壓縮機出口壓力取300 kPa,此時壓縮機出口溫度為154.7℃,給再沸器加熱后,循環(huán)工質(zhì)溫度為152.8℃的氣液混合相。為保證產(chǎn)品質(zhì)量,除保證回流量外,回流溫度保證在120℃左右。在循環(huán)工質(zhì)由152.8℃冷凝冷卻到120℃過程中放出熱量0.835×10^6 Kcal/hr。因為1號塔采用了中間換熱器,因此,多余熱量可用于1號塔中段換熱器的熱源,保證能源的最大化利用。
2.2 中段換熱器位置
為保證中段換熱器有足夠的推動力,取冷熱物料溫差15℃以上,并且盡量靠近塔釜位置,因此第30塊板溫度106℃,抽取第30塊塔板物料進中段換熱器加熱,物料流量3000 kg/h。
2.2 模擬計算結(jié)果
模擬流程如下:
經(jīng)過詳細(xì)的流程模擬計算,現(xiàn)對熱泵加中間換熱器的節(jié)能流程和常規(guī)流程進行比較。兩種計算分離要求相同。經(jīng)濟效益比較取以下價格:電為0.8元/度,蒸汽220元/t,蒸汽潛熱取500Kcal/kg,壓縮機絕熱效率80%,循環(huán)水溫升取8℃。
同時加中間再沸器后1號塔節(jié)能835000 Kcal,計蒸汽1.67 t,費用367元/小時??傆嫻?jié)約費用1561元/小時。
2.3 結(jié)果分析
從表2數(shù)據(jù)可以看出,2號塔基本工況和熱泵工況相比,兩者的冷凝器、再沸器溫度基本相同,后者的回流比較前者略大一些,因此熱負(fù)荷稍有增加。后者冷凝器對數(shù)平均溫差為11.5℃,該溫差大小恰當(dāng),滿足換熱器的傳熱要求。后者操作費用則從1182降低到424元/h,顯然節(jié)能效果是十分顯著的。1號塔采用中間換熱器后可直接節(jié)能835000kcal,節(jié)約費用367元/小時??偣补?jié)約費用1561元/小時。經(jīng)濟效益相當(dāng)可觀。
表2節(jié)能效果比較
操作參數(shù) PM裝置2號塔熱泵節(jié)能效果
常規(guī)精餾 熱泵精餾
頂溫(℃) 120 120
釜溫(℃) 137 137
壓縮機出口溫度 153
產(chǎn)量(t/h) 7.15 7.15
熱負(fù)荷(kcal/h) 3513300 3580000
消耗蒸汽(t/h) 7.03
消耗電量(kW) 530
冷負(fù)荷(kcal/h) 3508300
循環(huán)水量(t/h)(取8℃溫差) 438.5 86.15
循環(huán)水電機電耗(KW*h) 90
蒸汽費用(元/小時) 1546
電費(元/小時) 72 424
節(jié)約費用(元/小時) 1194
參考文獻
[1]陸恩錫,羅明輝.蒸餾過程熱泵節(jié)能—熱泵系統(tǒng)模擬計算[J].
[2]包宗宏,武文良.化工計算與軟件應(yīng)用[M].2013.
endprint
摘要介紹熱泵精餾與中段換熱精餾相結(jié)合的節(jié)能流程在PM生產(chǎn)中的應(yīng)用,對塔頂汽相直接壓縮式熱泵流程給出了詳細(xì)的模擬數(shù)據(jù)。對節(jié)能流程和常規(guī)流程進行對比,通過數(shù)據(jù)反映出顯著的節(jié)能效果。
關(guān)鍵詞熱泵精餾;中間換熱器;節(jié)能技術(shù)
中圖分類號:TQ028 文獻標(biāo)識碼:A 文章編號:1671-7597(2014)12-0057-01
在化工流程中,從原料到產(chǎn)品的整個生產(chǎn)過程,始終伴隨著能量的供應(yīng)、轉(zhuǎn)換、利用、回收、生產(chǎn)、排棄等環(huán)節(jié)。對于多數(shù)企業(yè)而言,要想在日益競爭的市場中占有一席之地,除了要有優(yōu)質(zhì)的產(chǎn)品,如何最為有效、合理的利用能源,控制產(chǎn)品成本已經(jīng)成為企業(yè)面臨的新的課題和發(fā)展方向。
目前常用的節(jié)能技術(shù)有很多,如:建立冷熱流體換熱的熱集成網(wǎng)絡(luò),多效精餾技術(shù),熱泵精餾技術(shù),中段換熱精餾技術(shù)等。由于本次擬對已有裝置進行節(jié)能分析,現(xiàn)場不宜增加過多設(shè)備,且之前已對部分系統(tǒng)建立換熱網(wǎng)絡(luò),所以主要將重點確定為:通過對本公司一套年產(chǎn)5萬噸PM裝置的現(xiàn)場數(shù)據(jù)進行采集和分析,采用熱泵精餾和中段換熱精餾技術(shù),對各塔有針對性的進行節(jié)能分析。
1節(jié)能措施
1.1 現(xiàn)場數(shù)據(jù)及基本工況模擬結(jié)果
PM裝置分餾部分主要由4個塔組成。1號塔用于脫除反應(yīng)液中過量的甲醇,2號塔塔頂采出PM成品,3號塔塔頂采出PM異構(gòu)體成品,4號塔為間歇塔,塔頂采出殘余的一些輕組分。塔頂冷凝器采用循環(huán)水冷卻,再沸器采用蒸汽加熱。其中能耗主要集中在1號、2號塔。通過現(xiàn)場數(shù)據(jù)的采集,結(jié)合模擬軟件,選用NRTL方程進行模擬計算,計算結(jié)果與現(xiàn)場數(shù)據(jù)基本一致,得到1號、2號塔的能耗:
表1基本工況及能耗分析
設(shè)備位號 T1 T2
全凝器負(fù)荷 x 10^6 Kcal/hr -3.267 -3.5083
再沸器負(fù)荷 x 10^6 Kcal/hr 2.4297 3.51
塔頂壓力 KPA 101.5 101.5
頂溫 C 64.6 120.5
釜溫 C 121.5 137.1
回流比 0.23 3.66
塔頂上升氣量 kmol/hr 387.8 371.5
塔釜上升氣量 kmol/hr 256.1 352.2
1.2 熱泵精餾
熱泵精餾主要分為汽相壓縮式熱泵精餾和吸收式熱泵精餾。根據(jù)壓縮機工質(zhì)的不同,蒸汽壓縮式熱泵精餾又分為塔頂汽相直接壓縮式、塔底液體閃蒸式和間接蒸汽壓縮式三種類型。
塔頂汽相壓縮式熱泵精餾以塔頂汽相為工質(zhì),利用壓縮機使塔頂汽相的溫度提高一個能級,從而能夠給塔底物料的汽化提供能量。主要應(yīng)用于:①塔頂和塔底溫差較小的精餾塔;②回流比較大分離系統(tǒng);③低壓下精餾時塔頂產(chǎn)品需要冷凍劑冷凝的系統(tǒng)。
塔底釜液閃蒸式熱泵精餾是以釜液為工質(zhì),經(jīng)減壓閃蒸后與塔頂汽相換熱,使塔頂氣相冷凝,同時使自身汽化,然后汽相經(jīng)壓縮機壓縮后進入塔釜作為塔釜熱源。
間接蒸汽壓縮式熱泵精餾則是選擇單獨封閉循環(huán)的工質(zhì),塔頂汽相能量經(jīng)由工質(zhì)用于塔釜加熱。主要用于精餾介質(zhì)具有腐蝕性、對溫度敏感的情況。
吸收式熱泵系統(tǒng)可以利用溫度不高的熱源作為動力,但熱效率低,需要的投資高,使用壽命不長,因此多用于產(chǎn)熱量大,溫度提升要求不高,并且可以用廢熱直接驅(qū)動的情況。
1.3 中段換熱精餾
在普通精餾塔內(nèi),溫度自塔頂向塔底逐漸升高,如果塔底和塔頂溫差較大,在塔中設(shè)置冷凝器,就可以采用較高溫度的冷卻劑,降低冷公用工程費用。如果在塔的中部設(shè)置再沸器,可以代替一部分原來從塔底加入的熱量。由于中間再沸器所處的溫度比塔底溫度低,所以中間再沸器中可以用比塔底加熱劑溫度低的加熱劑來加熱,節(jié)省熱公用工程的費用。
1.4 節(jié)能措施的選擇
通過現(xiàn)場數(shù)據(jù)可以看到,2號塔塔頂、塔釜溫差較小,且回流比較大,適合采用塔頂汽相壓縮式熱泵精餾。1號塔塔頂、塔釜溫差大,壓縮機負(fù)荷高,且頂溫64.6℃,采用熱泵精餾時要使塔頂汽相冷凝需增加真空泵等設(shè)備,因此初步計算、比較后決定采用中段換熱精餾技術(shù)。采用傳統(tǒng)的塔頂汽相壓縮式熱泵時循環(huán)工質(zhì)加熱塔釜后經(jīng)節(jié)流閥進入閃蒸回流罐,而本流程中采用2號塔壓縮機出口物料加熱塔釜后余熱作為1號塔中段換熱器的熱源,相對來說控制簡單。
2計算結(jié)果
2.1 壓縮機出口壓力
塔頂汽相壓縮式熱泵精餾壓縮機的進氣量為塔頂氣體采出量。出口壓力即循環(huán)工質(zhì)需壓縮到多大壓力才能滿足熱泵系統(tǒng)的性能要求,主要由2號塔塔釜溫度和塔釜熱負(fù)荷決定。本次計算中釜溫137℃,為保證再沸器的熱交換,壓縮后氣體溫度取高于釜溫15℃。此外,塔頂氣相經(jīng)壓縮后必須能夠提供充分的熱負(fù)荷以滿足再沸器的要求。因而壓縮后溫度和循環(huán)量必須適當(dāng)匹配,本系統(tǒng)中壓縮機出口壓力取300 kPa,此時壓縮機出口溫度為154.7℃,給再沸器加熱后,循環(huán)工質(zhì)溫度為152.8℃的氣液混合相。為保證產(chǎn)品質(zhì)量,除保證回流量外,回流溫度保證在120℃左右。在循環(huán)工質(zhì)由152.8℃冷凝冷卻到120℃過程中放出熱量0.835×10^6 Kcal/hr。因為1號塔采用了中間換熱器,因此,多余熱量可用于1號塔中段換熱器的熱源,保證能源的最大化利用。
2.2 中段換熱器位置
為保證中段換熱器有足夠的推動力,取冷熱物料溫差15℃以上,并且盡量靠近塔釜位置,因此第30塊板溫度106℃,抽取第30塊塔板物料進中段換熱器加熱,物料流量3000 kg/h。
2.2 模擬計算結(jié)果
模擬流程如下:
經(jīng)過詳細(xì)的流程模擬計算,現(xiàn)對熱泵加中間換熱器的節(jié)能流程和常規(guī)流程進行比較。兩種計算分離要求相同。經(jīng)濟效益比較取以下價格:電為0.8元/度,蒸汽220元/t,蒸汽潛熱取500Kcal/kg,壓縮機絕熱效率80%,循環(huán)水溫升取8℃。
同時加中間再沸器后1號塔節(jié)能835000 Kcal,計蒸汽1.67 t,費用367元/小時??傆嫻?jié)約費用1561元/小時。
2.3 結(jié)果分析
從表2數(shù)據(jù)可以看出,2號塔基本工況和熱泵工況相比,兩者的冷凝器、再沸器溫度基本相同,后者的回流比較前者略大一些,因此熱負(fù)荷稍有增加。后者冷凝器對數(shù)平均溫差為11.5℃,該溫差大小恰當(dāng),滿足換熱器的傳熱要求。后者操作費用則從1182降低到424元/h,顯然節(jié)能效果是十分顯著的。1號塔采用中間換熱器后可直接節(jié)能835000kcal,節(jié)約費用367元/小時??偣补?jié)約費用1561元/小時。經(jīng)濟效益相當(dāng)可觀。
表2節(jié)能效果比較
操作參數(shù) PM裝置2號塔熱泵節(jié)能效果
常規(guī)精餾 熱泵精餾
頂溫(℃) 120 120
釜溫(℃) 137 137
壓縮機出口溫度 153
產(chǎn)量(t/h) 7.15 7.15
熱負(fù)荷(kcal/h) 3513300 3580000
消耗蒸汽(t/h) 7.03
消耗電量(kW) 530
冷負(fù)荷(kcal/h) 3508300
循環(huán)水量(t/h)(取8℃溫差) 438.5 86.15
循環(huán)水電機電耗(KW*h) 90
蒸汽費用(元/小時) 1546
電費(元/小時) 72 424
節(jié)約費用(元/小時) 1194
參考文獻
[1]陸恩錫,羅明輝.蒸餾過程熱泵節(jié)能—熱泵系統(tǒng)模擬計算[J].
[2]包宗宏,武文良.化工計算與軟件應(yīng)用[M].2013.
endprint