龐坤 朱松波 何敏等
摘要:通過試驗(yàn)飼養(yǎng)泌乳小鼠,每天測量母鼠的體質(zhì)量和采食量,在不同泌乳階段采集乳腺組織,提取RNA,反轉(zhuǎn)錄成cDNA,熒光定量PCR分析氨基酸轉(zhuǎn)運(yùn)載體Slc7a1、Slc7a5基因mRNA的表達(dá)差異。結(jié)果表明,隨著泌乳的開始,母鼠的采食量逐漸增加;Slc7a1基因mRNA的表達(dá)量在泌乳中期達(dá)到最高,為妊娠期的1.94倍(P<0.05),而在其他時期差異不顯著;Slc7a5基因mRNA的表達(dá)量在整個泌乳階段都顯著增加,與妊娠期相比,在泌乳12 d時的表達(dá)量達(dá)到最高,為妊娠期的15.93倍(P<0.01)。說明Slc7a5載體可能在乳腺氨基酸轉(zhuǎn)運(yùn)中的作用更重要。
關(guān)鍵詞:小鼠;乳腺;氨基酸轉(zhuǎn)運(yùn)載體;基因表達(dá);妊娠階段;泌乳期
中圖分類號: Q786 文獻(xiàn)標(biāo)志碼: A 文章編號:1002-1302(2014)07-0037-02
收稿日期:2013-10-24
基金項(xiàng)目:國家自然科學(xué)基金(編號:31201869);河南省重大科技攻關(guān)(編號:122101110100)。
作者簡介:龐坤(1977—),女,河南永城人,碩士,講師,主要從事動物生理生化研究。E-mail:xinyangpangkun@sina.com。
通信作者:韓立強(qiáng)(1979—),男,河南新鄉(xiāng)人,博士,副教授,主要從事泌乳生物學(xué)研究。E-mail:qlhan2001@126.com。氨基酸是構(gòu)成動物機(jī)體蛋白質(zhì)的主要成分,同時也參與細(xì)胞內(nèi)很多重要的代謝反應(yīng)。在泌乳過程中,哺乳動物乳腺需要從血液中攝取大量的氨基酸來滿足乳蛋白的合成需要,1頭奶牛1 d大約需要1 kg的氨基酸來合成乳蛋白[1-2]。氨基酸的轉(zhuǎn)運(yùn)主要是通過多種氨基酸轉(zhuǎn)運(yùn)載體從血液循環(huán)系統(tǒng)中獲得的,不同的轉(zhuǎn)運(yùn)系統(tǒng)具有不同的離子和底物特異性。這些轉(zhuǎn)運(yùn)載體主要定位在乳腺上皮細(xì)胞的基底膜上[3],根據(jù)轉(zhuǎn)運(yùn)氨基酸底物酸堿性的不同分為酸性、中性和堿性氨基酸轉(zhuǎn)運(yùn)載體[4],其中,Slc7a1(solute carrier family 7 member 1)、Slc7a5(solute carrier family 7 member 5)均屬于堿性氨基酸轉(zhuǎn)運(yùn)載體,通過細(xì)胞質(zhì)膜的化學(xué)-電偶聯(lián)、逆堿性氨基酸濃度梯度向細(xì)胞內(nèi)聚集堿性氨基酸。在大鼠的乳腺中發(fā)現(xiàn)氨基酸轉(zhuǎn)運(yùn)載體LAT-1、CAT-1在泌乳階段mRNA的表達(dá)分別升高了20、12倍[5];但是,由于氨基酸轉(zhuǎn)運(yùn)載體多,一些轉(zhuǎn)運(yùn)載體是否在妊娠泌乳階段表達(dá)依然還不清楚。因此,本試驗(yàn)采集小鼠的乳腺組織,研究在乳腺泌乳的不同時期乳腺組織氨基酸轉(zhuǎn)運(yùn)載體Slc7a1、Slc7a5的mRNA表達(dá),為生產(chǎn)實(shí)踐中針對泌乳營養(yǎng)供應(yīng)的指導(dǎo)打下基礎(chǔ)。
1材料與方法
1.1材料
Trizol、cDNA反轉(zhuǎn)錄試劑盒試劑盒等,購于寶生物工程(大連)有限公司;SYRB PCR Master mix,購于TOYOBO公司;其他試劑為分析純。試驗(yàn)用昆明小白鼠,購于河南省實(shí)驗(yàn)動物中心;商品化顆粒飼料和全價營養(yǎng)粉料,購于河南省實(shí)驗(yàn)動物中心,其基本成分為粗蛋白21.86%、粗脂肪4.11%、粗灰分4.60%、水分13.36%。儀器有NanoDrop-1000 微量核酸蛋白檢測儀(賽默飛世爾科技公司)和熒光定量PCR儀(ABI7300)。
1.2方法
1.2.1試驗(yàn)動物與樣品采集試驗(yàn)采用24只雌性和12只雄性昆明小鼠進(jìn)行同籠飼養(yǎng);同籠后,檢查雌性小鼠陰道栓,陰道栓明顯的小鼠作為妊娠鼠單獨(dú)飼養(yǎng),直至分娩;分娩后,調(diào)整每只母鼠帶8只幼鼠。在泌乳階段,每天測量母鼠的采食量和體質(zhì)量,分別在母鼠妊娠階段的18 d(P18)和泌乳的6 d(L6)、12 d(L12)、18 d(L18)斷頭處死泌乳母鼠(n=6),迅速剪取母鼠的乳腺組織,放入液氮速凍,保存于-80 ℃冰箱中。
1.2.2設(shè)計引物根據(jù)小鼠轉(zhuǎn)運(yùn)載體Slc7a1、Slc7a5的核苷酸序列設(shè)計引物跨越內(nèi)含子,由寶生物工程(大連)有限公司合成(PAGE級),同時,采用3個管家基因作為內(nèi)參。引物及基因具體注釋見表1。
1.2.3合成cDNA取0.3~0.5 mg乳腺組織,使用Trizol進(jìn)行RNA提取,溶解于30 μL DEPC水中備用。反轉(zhuǎn)錄體系為DEPC水6.5 μL、dNTP 4 μL、50 pmol/L 5×AMV Buffer 4 μL、oligo d(T)18 1 μL、40 U/mL Ribonuclease Inhibitor 0.5 μL、Total RNA 2 μL、5 U/mL AMV Reverse Transcriptase XL 2 μL。反應(yīng)程序?yàn)椋?5 ℃ 10 min,42 ℃ 60 min,72 ℃ 15 min 后冰浴2 min得到cDNA,以此為模板進(jìn)行熒光定量PCR擴(kuò)增目的基因。
1.2.4熒光定量PCR分別取妊娠期和泌乳期樣本cDNA稀釋10倍,進(jìn)行定量PCR,反應(yīng)體系為:cDNA 2 μL,上下游引物(20 pmol/L)各0.25 μL,2×SYRB PCR Master mix 10 μL,nuclease-free water 7.5 μL,總體積20 μL,在熒光定量PCR儀上進(jìn)行反應(yīng)。反應(yīng)條件為:95 ℃預(yù)變性2 min;95 ℃ 變性15 s,60 ℃退火15 s,72 ℃延伸45 s,共40個循環(huán)。根據(jù)溶解曲線判斷產(chǎn)物特異性,用軟件計算標(biāo)準(zhǔn)曲線斜率(k)和相關(guān)系數(shù),并計算擴(kuò)增效率E=10-1/k(表1)。
3小結(jié)
哺乳動物在泌乳階段為養(yǎng)育下一代,乳腺需要大量的氨基酸來合成乳蛋白。因此,隨著泌乳的開始,乳腺需要從血液中攝取大量的氨基酸,泌乳母鼠的采食量就會逐漸增加,這也符合母鼠的泌乳需要。母鼠的體質(zhì)量在泌乳期間增加并不是很明顯,在泌乳后期基本上保持恒定(47~48 g)。相關(guān)研究發(fā)現(xiàn),動物機(jī)體流經(jīng)乳腺血液的動靜脈氨基酸具有一定的濃度差[7],在轉(zhuǎn)運(yùn)過程中,轉(zhuǎn)運(yùn)載體基因的表達(dá)對氨基酸的轉(zhuǎn)運(yùn)起到關(guān)鍵性作用。研究表明,在泌乳期,大鼠乳腺中SLCA2等載體的基因表達(dá)呈現(xiàn)有規(guī)律的變化[8-9];一些氨基酸轉(zhuǎn)運(yùn)載體如谷氨酰胺轉(zhuǎn)運(yùn)載體在乳腺中的表達(dá)受到日糧的調(diào)控[10]。本試驗(yàn)發(fā)現(xiàn),Slc7a1、Slc7a5作為2種氨基酸轉(zhuǎn)運(yùn)載體,在不同的泌乳階段基因表達(dá)具有很大的差異,其中,Slc7a1基因mRNA的表達(dá)量除了泌乳中期(L12)有顯著增加,其他時期與妊娠期(P18)相比并沒有顯著差異,Slc7a5基因mRNA的表達(dá)量在整個泌乳階段都有顯著增加,最高時達(dá)到妊娠期(P18)基因mRNA表達(dá)的15倍。這一結(jié)果說明在泌乳階段,各種氨基酸轉(zhuǎn)運(yùn)載體的基因表達(dá)規(guī)律并不相同,Slc7a5轉(zhuǎn)運(yùn)載體可能在乳腺轉(zhuǎn)運(yùn)氨基酸方面的作用更加重要。
參考文獻(xiàn):
[1]Shennan D B,Peaker M. Transport of milk constituents by the mammary gland[J]. Physiological Reviews,2000,80(3):925-951.
[2]Tovar A R,Becerril E,Hernández-Pando R,et al. Localization and expression of BCAT during pregnancy and lactation in the rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2001,280(3):E480-E488.
[3]Millar I D,Shennan D B. The regulation of Na+-dependent anionic amino acid transport by the rat mammary gland[J]. Biochimica et Biophysica Acta,1999,1421(2):340-346.
[4]魏宗友,徐柏林,郝志敏,等. 動物細(xì)胞堿性氨基酸轉(zhuǎn)運(yùn)載體的研究進(jìn)展[J]. 飼料工業(yè),2010,31(21):12-16.
[5]Alemán G,López A,Ordaz G,et al. Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy,lactation,and weaning[J]. Metabolism-Clinical and Experimental,2009,58(5):594-601.
[6]Han L Q,Yang G Y,Zhu H S,et al. Selection and use of reference genes in mouse mammary glands[J]. Genetics and Molecular Research,2010,9(1):449-456.
[7]Guan X,Pettigrew J E,Ku P K,et al. Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland[J]. Journal of Animal Science,2004,82(10):2953-2963.
[8]Tovar A R,Avila E,Desantiago S,et al. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland[J]. Metabolism,2000,49(7):873-879.
[9]López A,Torres N,Ortiz V,et al. Characterization and regulation of the gene expression of amino acid transport system A(SNAT2)in rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2006,291(5):E1059-E1066.
[10]Martínez-López I,García C,Barber T,et al. The L-glutamate transporters GLAST(EAAT1)and GLT-1(EAAT2):expression and regulation in rat lactating mammary gland[J]. Molecular Membrane Biology,1999,15(4):237-242.
參考文獻(xiàn):
[1]Shennan D B,Peaker M. Transport of milk constituents by the mammary gland[J]. Physiological Reviews,2000,80(3):925-951.
[2]Tovar A R,Becerril E,Hernández-Pando R,et al. Localization and expression of BCAT during pregnancy and lactation in the rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2001,280(3):E480-E488.
[3]Millar I D,Shennan D B. The regulation of Na+-dependent anionic amino acid transport by the rat mammary gland[J]. Biochimica et Biophysica Acta,1999,1421(2):340-346.
[4]魏宗友,徐柏林,郝志敏,等. 動物細(xì)胞堿性氨基酸轉(zhuǎn)運(yùn)載體的研究進(jìn)展[J]. 飼料工業(yè),2010,31(21):12-16.
[5]Alemán G,López A,Ordaz G,et al. Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy,lactation,and weaning[J]. Metabolism-Clinical and Experimental,2009,58(5):594-601.
[6]Han L Q,Yang G Y,Zhu H S,et al. Selection and use of reference genes in mouse mammary glands[J]. Genetics and Molecular Research,2010,9(1):449-456.
[7]Guan X,Pettigrew J E,Ku P K,et al. Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland[J]. Journal of Animal Science,2004,82(10):2953-2963.
[8]Tovar A R,Avila E,Desantiago S,et al. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland[J]. Metabolism,2000,49(7):873-879.
[9]López A,Torres N,Ortiz V,et al. Characterization and regulation of the gene expression of amino acid transport system A(SNAT2)in rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2006,291(5):E1059-E1066.
[10]Martínez-López I,García C,Barber T,et al. The L-glutamate transporters GLAST(EAAT1)and GLT-1(EAAT2):expression and regulation in rat lactating mammary gland[J]. Molecular Membrane Biology,1999,15(4):237-242.
參考文獻(xiàn):
[1]Shennan D B,Peaker M. Transport of milk constituents by the mammary gland[J]. Physiological Reviews,2000,80(3):925-951.
[2]Tovar A R,Becerril E,Hernández-Pando R,et al. Localization and expression of BCAT during pregnancy and lactation in the rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2001,280(3):E480-E488.
[3]Millar I D,Shennan D B. The regulation of Na+-dependent anionic amino acid transport by the rat mammary gland[J]. Biochimica et Biophysica Acta,1999,1421(2):340-346.
[4]魏宗友,徐柏林,郝志敏,等. 動物細(xì)胞堿性氨基酸轉(zhuǎn)運(yùn)載體的研究進(jìn)展[J]. 飼料工業(yè),2010,31(21):12-16.
[5]Alemán G,López A,Ordaz G,et al. Changes in messenger RNA abundance of amino acid transporters in rat mammary gland during pregnancy,lactation,and weaning[J]. Metabolism-Clinical and Experimental,2009,58(5):594-601.
[6]Han L Q,Yang G Y,Zhu H S,et al. Selection and use of reference genes in mouse mammary glands[J]. Genetics and Molecular Research,2010,9(1):449-456.
[7]Guan X,Pettigrew J E,Ku P K,et al. Dietary protein concentration affects plasma arteriovenous difference of amino acids across the porcine mammary gland[J]. Journal of Animal Science,2004,82(10):2953-2963.
[8]Tovar A R,Avila E,Desantiago S,et al. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland[J]. Metabolism,2000,49(7):873-879.
[9]López A,Torres N,Ortiz V,et al. Characterization and regulation of the gene expression of amino acid transport system A(SNAT2)in rat mammary gland[J]. American Journal of Physiology-Endocrinology and Metabolism,2006,291(5):E1059-E1066.
[10]Martínez-López I,García C,Barber T,et al. The L-glutamate transporters GLAST(EAAT1)and GLT-1(EAAT2):expression and regulation in rat lactating mammary gland[J]. Molecular Membrane Biology,1999,15(4):237-242.