• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      降解組測序與剪切位點分析研究進展

      2014-09-02 22:32:40崔東亞楊美玲
      江蘇農(nóng)業(yè)科學(xué) 2014年7期
      關(guān)鍵詞:研究進展

      崔東亞 楊美玲

      摘要:動植物細胞內(nèi)都存在大量的microRNA(miRNA),miRNA的功能之一是通過互補指導(dǎo)內(nèi)切酶切割與之互補的mRNA,對該mRNA進行轉(zhuǎn)錄后調(diào)控。但miRNA與靶基因之間并不是完全互補,所以通過序列計算方式預(yù)測的靶基因中假陽性也是很高的。單獨驗證預(yù)測的靶基因不能確定是否正確且費時費力,高通量測序與計算預(yù)測結(jié)合可以很好地驗證和發(fā)現(xiàn)miRNA的靶基因。介紹了尋找miRNA靶基因的降解組測序方法,包括降解組測序的方法原理、試驗流程、miRNA靶基因?qū)ふ业戎饕h(huán)節(jié)。經(jīng)研究發(fā)現(xiàn),降解組測序已經(jīng)成為尋找miRNA靶基因的常用方法。

      關(guān)鍵詞:降解組;miRNA;靶基因;剪切位點;研究進展

      中圖分類號: Q754 文獻標(biāo)志碼: A 文章編號:1002-1302(2014)07-0056-04

      收稿日期:2013-10-26

      作者簡介:崔東亞(1978—),男,河北滿城人,碩士,講師,主要從事分子生物教學(xué)與研究。E-mail:dongyacui@163.com。microRNAs(miRNAs)是一類具有特殊功能的小RNA,約為22個核苷酸,具有抑制蛋白質(zhì)編碼基因的功能[1],一些莖環(huán)結(jié)構(gòu)的RNA在核酸酶的作用下將莖環(huán)結(jié)構(gòu)的RNA剪切加工成miRNA。成熟的miRNA與argonaute(AGO)蛋白結(jié)合形成沉默復(fù)合體,miRNA與靶基因互補,AGO蛋白則催化剪切靶基因,抑制靶基因翻譯蛋白質(zhì)[2]。

      在動物體內(nèi)RNA剪切活性來自argonaute2 (AGO2),在5′剪切片段留下3′末端羥基(3′—OH),在3′剪切片段留下5′末端單磷酸(5′—p)[3-4],但是在動物體內(nèi)已證實的miRNA的靶基因還很少[5-6]。盡管如此,人工構(gòu)建的siRNA(small interfering RNAs)同樣可以依據(jù)miRNA類似的機制,將靶基因沉默,目前已經(jīng)成為研究靶基因功能的常用試驗技術(shù)。

      動物的miRNA通常只有部分序列是可以與靶基因完美互補配對的,這段完美互補配對的序列通常是miRNA的第2個至第7個堿基,miRNA中這段與靶基因完全互補的序列為“種子序列”[7-8]。miRNA的3′非種子端序列在一定程度上有增強miRNA對靶基因識別的作用[8]。研究發(fā)現(xiàn),一些非miRNA靶基因也含有1個或多個miRNA結(jié)合區(qū)域,為了避免非miRNA靶基因也被miRNA剪切,對非miRNA靶基因的保護機制也發(fā)生了進化[9-10],但是當(dāng)導(dǎo)入1個siRNA/miRNA或敲除1個內(nèi)源miRNA仍然可以引起很多基因表達變化,這些表達變化的基因中包含miRNA剪切的靶基因[11-13]。

      植物中miRNA靶基因研究相對比較多,因為miRNA與靶基因互補的現(xiàn)象非常多,且miRNA切割位點比較固定,通常位于mRNA-miRNA互補區(qū)域,從miRNA 5′端算起,切割位點位于第10個和第11個核苷酸之間[14-15]。miRNA調(diào)控靶基因的方式也很多,1個miRNA可以調(diào)控多個靶基因,同時多個miRNA也可以調(diào)控同一靶基因??傊谘芯縨iRNA功能過程中尋找和鑒定miRNA的靶基因非常有必要。

      新一代測序可以一次性測定百萬級的序列,也可以根據(jù)不同需要測定特定類型的RNA,是研究轉(zhuǎn)錄組表達和表達調(diào)控革命性的技術(shù)革新[11]。近幾年,新一代測序技術(shù)被廣泛應(yīng)用,如尋找新的miRNA[12]。由于植物中miRNA降解靶基因的機制相對比較清晰,所以新一代測序在分析mRNA降解片段中應(yīng)用較多。借助于高通量測序分析miRNA靶基因的植物有擬南芥、玉米、棉花、草莓、番茄、葡萄、黃瓜、楊樹、紅豆杉、蝴蝶蘭和線蟲等眾多物種[13-23]。

      如何獲得miRNA及其降解位點是研究miRNA功能的前提。miRNA通過互補方式識別靶基因,并將靶基因切割。所以,傳統(tǒng)的研究方法是通過計算機預(yù)測和后續(xù)的試驗驗證[5],在驗證過程中須要獲得mRNA的5′末端序列;常規(guī)方法是通過5′-RACE技術(shù)[24-25],該技術(shù)首先利用poly(A)分離得到mRNA,去掉mRNA的帽子結(jié)構(gòu)并加1個5′接頭序列,或者直接在mRNA 5′末端加入接頭。根據(jù)接頭序列和oligo(dT)或特定序列,PCR擴增可以獲得mRNA全部或部分序列,通過Sanger測序可以獲得mRNA轉(zhuǎn)錄起始位點序列。通過 5′-RACE 技術(shù)即可以找到mRNA轉(zhuǎn)錄起始序列[26-27],也可以用于mRNA的切割序列分離[24]。通常通過miRNA預(yù)測靶基因,然后用5′-RACE對預(yù)測的mRNA開展剪切位點研究,即尋找或驗證某個特定的mRNA的5′末端序列。

      RACE方法是分析RNA末端的常用方法[24],新一代測序可以測定百萬條序列[28]。將二者結(jié)合,能一次性測得所有RNA的末端序列,輔以生物軟件分析末端序列,可以同時驗證所有預(yù)測的靶基因[29]。這樣不僅可以大大提高工作效率,而且還可以從降解片段入手尋找新的miRNA[35-36]。

      1MmeⅠ內(nèi)切酶和降解組建庫流程

      1.1MmeⅠ是降解組測序重要的酶

      降解組分析中的關(guān)鍵是如何找到miRNA-AGO復(fù)合物切割的mRNA片段,獲得mRNA切割位點序列,無非是獲得切割位點處的序列。3′切割片段是mRNA切割產(chǎn)物之一,其5′末端是單磷酸結(jié)構(gòu),3′末端具有poly(A)結(jié)構(gòu)。測定這樣的序列,可以發(fā)現(xiàn)所有被剪切的mRNA序列。但這樣的序列太長,超出了新一代測序技術(shù)的要求。通過化學(xué)方法將序列打斷,又會將切割位點序列淹沒在眾多序列之中,造成背景噪音過大。

      MmeⅠ從嗜甲基菌(Methylophilus methylotrophus)中分離得到,屬于Ⅱ型限制性內(nèi)切酶。在非回文DNA序列上,MmeⅠ識別5′-TCCRAC-3′序列 (R 表示 G或 A),在識別位點下游20 bp處將雙鏈DNA切割,并在識別序列留下2個堿基的黏性末端。MmeⅠ的識別序列為5′-TCCRAC(N)20-3′[30]。MmeⅠ可以單一地將DNA的切割序列截取下來,單一測定切割位點序列。所以,MmeⅠ是降解組測序過程中的關(guān)鍵酶。

      1.2降解組測序技術(shù)路線

      降解組分析主要分成RNA建庫測序與數(shù)據(jù)分析2個部分。其中,RNA建庫是RNA測序前的RNA處理過程。RNA建庫很關(guān)鍵,測序目的不同,RNA建庫方法也不同[31-32]。根據(jù)目的RNA特點,設(shè)計特征的RNA建庫路線,富集獲得感興趣的RNA,即富集目的RNA過程中同時也在去除污染RNA。降解組測序RNA處理過程有別于其他類型的RNA處理,降解組測序RNA處理過程的實質(zhì)是獲得被miRNA切割的 mRNA 產(chǎn)物[33-34]。通常mRNA 5′ 末端具有帽子結(jié)構(gòu),3′ 端具有poly(A)結(jié)構(gòu),mRNA被剪切后,形成2種剪切產(chǎn)物,即5′ 剪切片段和3′ 剪切片段。降解組測序就是要提取3′ 剪切片段,3′ 剪切片段的5′ 具單磷酸結(jié)構(gòu),3′ 末端具有poly(A)結(jié)構(gòu)[34]。根據(jù)3′ 剪切片段特定設(shè)計RNA建庫流程(圖1)。

      1.2.1降解組測序基本設(shè)計思路第一,根據(jù)poly(A)尾巴可將所有帶有poly(A)尾巴的RNA分離得到,帶有polyA尾巴的RNA主要有完整的mRNA和3′ 剪切片段2種。第二,在3′ 剪切片段5′ 末端加入RNA接頭。完整的mRNA 5′ 末端為帽子結(jié)構(gòu),3′ 剪切片段的5′ 末端為單磷酸。只有單磷酸結(jié)構(gòu)的RNA可以與5′ 接頭相連接[35]。5′ 接頭序列帶有MmeⅠ識別位點,如擬南芥降解組分中5′ RNA接頭:5′-GUUCAGAGUUCUACAGUCCGAC-3′,粗體標(biāo)記為MmeⅠ內(nèi)切酶識別序列[33]。第三,反轉(zhuǎn)錄RNA為DNA。即根據(jù)接頭序列和oligo(dT)將3′ 剪切片段反轉(zhuǎn)錄為雙鏈DNA序列。第四,酶切獲得3′ 剪切片段的5′ 末端序列(即切割位點序列)。因為在接頭序列中預(yù)先引入MmeⅠ識別位點,帶有接頭的序列會被MmeⅠ切割生成40 bp左右的序列(含接頭序列)。第五,在MmeⅠ酶切位點加入DNA接頭。MmeⅠ酶切后,分離酶切序列,在MmeⅠ切割位點處連接雙鏈DNA接頭,如擬南芥雙鏈DNA接頭為5′-TCGTATGCCGTCTTCTGCTTG-3′和其互補鏈3′-NNAGCATACGGCAGAAGACGAAC-5′[33]。第六,純化帶有雙鏈DNA接頭的序列,按照新一代測序流程進行測序。

      1.2.2降解組測序設(shè)計原理通過mRNA的結(jié)構(gòu)特征、miRNA調(diào)控靶基因特征以及結(jié)合新一代測序技術(shù)來實現(xiàn)。將測序數(shù)據(jù)回帖轉(zhuǎn)錄組,深入比對分析,如果在mRNA序列的某個位點發(fā)現(xiàn)1個回帖比對峰值,該峰值就是候選的 miRNA 剪切位點,于是從試驗中找到了miRNA的作用靶基因。

      1.3降解組數(shù)據(jù)分析基本流程

      高通量建庫和測序可以交由測序公司負責(zé)處理,因為建庫、測序所需要的試劑和設(shè)備非常昂貴,有公司負責(zé)建庫和測序相對比較便宜,而且現(xiàn)在的降解組測序技術(shù)已經(jīng)非常成熟,國內(nèi)也涌現(xiàn)出多家測序公司,甚至一些大型的科研單位自己就可以直接開展測序服務(wù)。但降解組數(shù)據(jù)分析過程則要求科研人員要熟悉miRNA調(diào)控切割靶基因的基本過程,尤其是具備一定的數(shù)據(jù)處理分析能力。

      通過降解組分析可以很輕松地發(fā)現(xiàn)miRNA的降解片段,而且也可以根據(jù)降解片段發(fā)現(xiàn)新的miRNA。降解組數(shù)據(jù)分析基本分為以下幾個過程(圖2)。

      1.3.1獲得clean 數(shù)據(jù)所謂clean數(shù)據(jù)是指去除測序接頭序列和低質(zhì)量序列。如果是由公司測序,一般可以直接從測序公司獲得clean數(shù)據(jù),將clean數(shù)據(jù)直接用于下一步分析。但NCBI上下載的數(shù)據(jù)中有時也有測序的原始數(shù)據(jù),利用這

      些數(shù)據(jù)分析之前則須要進行數(shù)據(jù)預(yù)處理,基本過程包括:去除測序接頭序列、去除簡單重復(fù)序列、去除帶有不確定堿基的序列、測序質(zhì)量分析等。結(jié)合軟件操作可以輕松實現(xiàn)數(shù)據(jù)處理,如FASTQ/A Clipper、cutadapt等。

      1.3.2序列比對從miRNA數(shù)據(jù)庫中找到miRNA的序列,與clean數(shù)據(jù)分別與參考基因匹配,分析每種序列和miRNA的匹配位點。編寫腳本程序,找到miRNA匹配位點附近的降解片段。因為降解片段來自mRNA降解,miRNA與mRNA互補,根據(jù)這個特征找到降解片段剪切位置周圍是否有互補miRNA存在。如果存在miRNA,計算miRNA周圍降解片段數(shù)量。序列匹配軟件很多,常用的有BOWTIE[36]、SOAP2[37]、BWA[38]等。

      1.3.3獲得靶基因如果miRNA互補區(qū)域內(nèi)存在一個明顯的降解片段峰值,則說明該基因很有可能是與之互補的 miRNA 靶基因,通過與周圍噪音相比,確定該基因為miRNA的疑似靶基因。

      1.3.4圖片展示將找到的候選靶基因、miRNA和降解片段位置和數(shù)量,通過圖展示出來,如常用t-plot展示,t-plot展示可采用R語言繪制;也可以用一般作圖軟件實現(xiàn)如 Excel (圖3)。

      2結(jié)論與討論

      miRNA是一類非常重要的調(diào)控小RNA,通過剪切mRNA來調(diào)控靶基因的功能,達到調(diào)節(jié)生理代謝或發(fā)育的目的。miRNA及其調(diào)控序列的發(fā)現(xiàn),有助于深入了解miRNA的功能。然而,miRNA調(diào)控網(wǎng)絡(luò)極其復(fù)雜,miRNA僅僅通過種子的區(qū)域序列就可以達到調(diào)控靶基因的功能,所有mRNA可同時受到多種小RNA的調(diào)控,或同一種小RNA在同一mRNA上有多個的靶位點,這會給降解組分析帶來一定的困難。同時,近年來涌現(xiàn)出來其他類型的小RNA,如22G-RNA、26G-RNA、piRNA等小RNA[39]。這些小RNA是否直接參與mRNA的調(diào)控還不清楚,但果蠅piRNA可以通過與轉(zhuǎn)座子RNA序列互補,指導(dǎo)內(nèi)切酶將轉(zhuǎn)座子RNA切割,阻止轉(zhuǎn)座子轉(zhuǎn)座。但在線蟲中,piRNA并不直接參與靶基因的沉默,而是誘導(dǎo)次級小RNA 22G-RNA生成,這些次級22G-RNA調(diào)控互補序列沉默,22G-RNA是否直接參與靶基因的切割還不清楚。但有研究發(fā)現(xiàn),一些次級siRNA也可以切割靶基因[40]。小RNA如何調(diào)控靶基因一直是研究的熱點之一,其中小RNA參與靶基因的切割是研究的一個方向?,F(xiàn)在有多個網(wǎng)站提供miRNA靶基因的預(yù)測服務(wù)[5,41-43],但預(yù)測的結(jié)果需要試驗驗證。理論上降解組測序幾乎可以一次性驗證所有預(yù)測的靶基因,可以將預(yù)測的靶基因從試驗角度加以證實。降解組測序?qū)嵸|(zhì)是測定具有一定特征的RNA 5′ 末端序列,這類RNA特征是5′ 末端具有單磷酸且3′末端具有 poly(A)[34]。這類RNA可以是來自miRNA指導(dǎo)的mRNA切割產(chǎn)物,也可以是來自mRNA的分解產(chǎn)物[44]。當(dāng)miRNA的靶基因表達量不高或mRNA分解產(chǎn)物過高時,非特異性的 mRNA 降解片段容易檢測到,背景噪音過高,會對miRNA靶基因分析帶來困難。但測序技術(shù)也在不斷提高,相應(yīng)分析方法也在升級,高通量測序與數(shù)據(jù)分析技術(shù)已經(jīng)成為生物試驗中的常規(guī)試驗檢測分析方法。

      參考文獻:

      [1]Bartel D P. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.

      [2]Filipowicz W,Bhattacharyya S N,Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight[J]. Nature Reviews Genetics,2008,9(2):102-114.

      [3]Meister G,Landthaler M,Patkaniowska A,et al. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs[J]. Molecular Cell,2004,15(2):185-197.

      [4]Schwarz D S,Tomari Y,Zamore P D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease[J]. Current Biology,2004,14(9):787-791.

      [5]Xiao F F,Zuo Z X,Cai G S,et al. MiRecords:an integrated resource for microRNA-target interactions[J]. Nucleic Acids Research,2009,37(Database issue):D105-D110.

      [6]Jones-Rhoades M W,Bartel D P,Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu Rev Plant Biol,2006,57:19-53.

      [7]Lewis B P,D P Bartel C S. Often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120(1):15-20.

      [8]Bartel D P. MicroRNAs:target recognition and regulatory functions[J]. Cell,2009,136(2):215-233.

      [9]Farh K K,Grimson A,Jan C,et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution[J]. Science,2005,310(5755):1817-1821.

      [10]Friedman R C,F(xiàn)arh K K,Burge C B,et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Research,2009,19(1):92-105.

      [11]Reis-Filho J S. Next-generation sequencing[J]. Breast Cancer Res,2009,11(增刊):12-19.

      [12]Moxon S,Jing R C,Szittya G,et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening[J]. Genome Research,2008,18(10):1602-1609.

      [13]Karlova R,van Haarst J C,Maliepaard C,et al. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis[J]. Journal of Experimental Botany,2013,64(7):1863-1878.

      [14]Zhao Y P,Xu Z H,Mo Q C,et al. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize[J]. Annals of Botany,2013,112(3):633-642.

      [15]Yang X Y,Wang L C,Yuan D J,et al. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis[J]. Journal of Experimental Botany,2013,64(6):1521-1536.

      [16]Xu X B,Yin L L,Ying Q C,et al. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa[J]. PLoS One,2013,8(8):e70959.

      [17]Shuai P,Liang D,Zhang Z J,et al. Identification of drought-responsive and novel populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics,2013,14(6):233.

      [18]Mao W H,Li Z Y,Xia X J,et al. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber[J]. PLoS One,2012,7(3):e33040.

      [19]Hao D C,Yang L,Xiao P G,et al. Identification of taxus microRNAs and their targets with high-throughput sequencing and degradome analysis[J]. Physiologia Plantarum,2012,146(4):388-403.

      [20]An F M,Chan M T. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana[J]. Plant & Cell Physiology,2012,53(10):1737-1750.

      [21]Pantaleo V,Szittya G,Moxon S,et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(6):960-976.

      [22]Addo-Quaye C,Eshoo T W,Bartel D P,et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Current Biology,2008,18(10):758-762.

      [23]Park J H,Ahn S,Kim S,et al. Degradome sequencing reveals an endogenous microRNA target in Caenorhabditis elegans[J]. FEBS Letters,2013,587(7):964-969.

      [24]Yekta S,Shih I H,Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science,2004,304(5670):594-596.

      [25]Sambrook J,Russell D W. Rapid amplification of 5′ cDNA ends (5′-RACE)[J]. CSH Protocols,2006(1):3989-3993.

      [26]Pinto F L,Lindblad P. A guide for in-house design of template-switch-based 5′ rapid amplification of cDNA ends systems[J]. Analytical Biochemistry,2010,397(2):227-232.

      [27]Dallmeier K,Neyts J. Simple and inexpensive three-step rapid amplification of cDNA 5′ ends using 5′ phosphorylated primers[J]. Analytical Biochemistry,2013,434(1):1-3.

      [28]Metzker,L M. Sequencing technologies-the next generation[J]. Nature Reviews Genetics,2010,11(1):31-46.

      [29]Cheng L,Quek C Y,Sun Xin,et al. The detection of microRNA associated with Alzheimers disease in biological fluids using next-generation sequencing technologies[J]. Frontiers in Genetics,2013,4(1):150.

      [30]Boyd A C,Charles I G,Keyte J W,et al. Isolation and computer-aided characterization of MmeI,a type Ⅱ restriction endonuclease from Methylophilus methylotrophus[J]. Nucleic Acids Research,1986,14(13):5255-5274.

      [31]Malone C,Brennecke J,Czech B,et al. Preparation of small RNA libraries for high-throughput sequencing[J]. Cold Spring Harbor Protocols,2012(10):1067-1077.

      [32]Christodoulou D C,Gorham J M,Herman D S,et al. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease[M]. New York:John Wiley & Sons Inc,2011:12-16.

      [33]German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.

      [34]German M A,Luo S J,Schroth G,et al. Construction of parallel analysis of RNA ends(PARE) libraries for the study of cleaved miRNA targets and the RNA degradome[J]. Nature Protocols,2009,4(3):356-362.

      [35]Zhuang F L,F(xiàn)uchs R T,Sun Z Y,et al. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation[J]. Nucleic Acids Research,2012,40(7):e54.

      [36]Langmead B,Trapnell C,Pop M,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology,2009,10(3):R25.

      [37]Li R Q,Yu C,Li Y R,et al. SOAP2:an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25(15):1966-1967.

      [38]Li Heng,Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics,2009,25(14):1754-1760.

      [39]Bagijn M P,Goldstein L D,Sapetschnig A,et al. Function,targets,and evolution of Caenorhabditis elegans piRNAs[J]. Science,2012,337(694):574-578.

      [40]Vaucheret H. MicroRNA-dependent trans-acting siRNA production[J]. Sciences STKE,2005(30):pe43.

      [41]Hammell M,Long D,Zhang L,et al. MirWIP:microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts[J]. Nature Methods,2008,5(9):813-819.

      [42]Betel D,Koppal A,Agius P,et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites[J]. Genome Biology,2010,11(8):R90.

      [43]Bu D C,Yu K T,Sun S L,et al. Noncode v3.0:integrative annotation of long noncoding RNAs[J]. Nucleic Acids Research,2012,40:D210-D215.

      [44]Deana A C,Belasco J G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal[J]. Nature,2008,451(7176):355-358.

      [31]Malone C,Brennecke J,Czech B,et al. Preparation of small RNA libraries for high-throughput sequencing[J]. Cold Spring Harbor Protocols,2012(10):1067-1077.

      [32]Christodoulou D C,Gorham J M,Herman D S,et al. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease[M]. New York:John Wiley & Sons Inc,2011:12-16.

      [33]German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.

      [34]German M A,Luo S J,Schroth G,et al. Construction of parallel analysis of RNA ends(PARE) libraries for the study of cleaved miRNA targets and the RNA degradome[J]. Nature Protocols,2009,4(3):356-362.

      [35]Zhuang F L,F(xiàn)uchs R T,Sun Z Y,et al. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation[J]. Nucleic Acids Research,2012,40(7):e54.

      [36]Langmead B,Trapnell C,Pop M,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology,2009,10(3):R25.

      [37]Li R Q,Yu C,Li Y R,et al. SOAP2:an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25(15):1966-1967.

      [38]Li Heng,Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics,2009,25(14):1754-1760.

      [39]Bagijn M P,Goldstein L D,Sapetschnig A,et al. Function,targets,and evolution of Caenorhabditis elegans piRNAs[J]. Science,2012,337(694):574-578.

      [40]Vaucheret H. MicroRNA-dependent trans-acting siRNA production[J]. Sciences STKE,2005(30):pe43.

      [41]Hammell M,Long D,Zhang L,et al. MirWIP:microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts[J]. Nature Methods,2008,5(9):813-819.

      [42]Betel D,Koppal A,Agius P,et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites[J]. Genome Biology,2010,11(8):R90.

      [43]Bu D C,Yu K T,Sun S L,et al. Noncode v3.0:integrative annotation of long noncoding RNAs[J]. Nucleic Acids Research,2012,40:D210-D215.

      [44]Deana A C,Belasco J G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal[J]. Nature,2008,451(7176):355-358.

      [31]Malone C,Brennecke J,Czech B,et al. Preparation of small RNA libraries for high-throughput sequencing[J]. Cold Spring Harbor Protocols,2012(10):1067-1077.

      [32]Christodoulou D C,Gorham J M,Herman D S,et al. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease[M]. New York:John Wiley & Sons Inc,2011:12-16.

      [33]German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.

      [34]German M A,Luo S J,Schroth G,et al. Construction of parallel analysis of RNA ends(PARE) libraries for the study of cleaved miRNA targets and the RNA degradome[J]. Nature Protocols,2009,4(3):356-362.

      [35]Zhuang F L,F(xiàn)uchs R T,Sun Z Y,et al. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation[J]. Nucleic Acids Research,2012,40(7):e54.

      [36]Langmead B,Trapnell C,Pop M,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology,2009,10(3):R25.

      [37]Li R Q,Yu C,Li Y R,et al. SOAP2:an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25(15):1966-1967.

      [38]Li Heng,Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics,2009,25(14):1754-1760.

      [39]Bagijn M P,Goldstein L D,Sapetschnig A,et al. Function,targets,and evolution of Caenorhabditis elegans piRNAs[J]. Science,2012,337(694):574-578.

      [40]Vaucheret H. MicroRNA-dependent trans-acting siRNA production[J]. Sciences STKE,2005(30):pe43.

      [41]Hammell M,Long D,Zhang L,et al. MirWIP:microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts[J]. Nature Methods,2008,5(9):813-819.

      [42]Betel D,Koppal A,Agius P,et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites[J]. Genome Biology,2010,11(8):R90.

      [43]Bu D C,Yu K T,Sun S L,et al. Noncode v3.0:integrative annotation of long noncoding RNAs[J]. Nucleic Acids Research,2012,40:D210-D215.

      [44]Deana A C,Belasco J G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal[J]. Nature,2008,451(7176):355-358.

      猜你喜歡
      研究進展
      豬δ冠狀病毒的研究進展
      MiRNA-145在消化系統(tǒng)惡性腫瘤中的研究進展
      冠狀動脈介入治療慢性完全閉塞的研究進展
      離子束拋光研究進展
      獨腳金的研究進展
      中成藥(2017年9期)2017-12-19 13:34:44
      自噬與衰老的研究進展
      EVA的阻燃研究進展
      中國塑料(2016年4期)2016-06-27 06:33:22
      肝衰竭的研究進展
      氫在治療燒傷中的研究進展
      Marchiafava-Bignami病研究進展
      巴南区| 阳春市| 九龙坡区| 吐鲁番市| 桃园县| 太湖县| 湘乡市| 遂昌县| 田阳县| 察哈| 衡水市| 海兴县| 金塔县| 宜川县| 涟水县| 政和县| 灌云县| 常山县| 文安县| 武强县| 达州市| 巨鹿县| 奉节县| 吉木乃县| 西和县| 日照市| 紫阳县| 石景山区| 田东县| 蒲江县| 揭东县| 顺平县| 凉山| 文山县| 太仓市| 梧州市| 河津市| 怀集县| 曲周县| 七台河市| 武定县|