周 麗
(安徽農(nóng)業(yè)大學(xué) 數(shù)學(xué)系, 安徽 合肥 230031)
Kuramato-Tsuzuki方程的有限差分法
周 麗
(安徽農(nóng)業(yè)大學(xué) 數(shù)學(xué)系, 安徽 合肥 230031)
對(duì)二維Kuramoto-Tsuzuki方程混合初邊值問題建立了線性化Grank-Nicolson格式,證明了差分格式解存在的唯一性、收斂性,并證明了收斂階為O(τ+h2)。
Kuramoto-Tsuzuki方程; 差分格式; 收斂性
Kuramoto-Tsuzuki方程描述了在歧點(diǎn)附近兩個(gè)分支的行為狀況[1],文中討論混合初邊值問題的Kuramoto-Tsuzuki方程[2]的數(shù)值解
(1)
(2)
(3)
對(duì)方程(1)-方程(3)建立如下線性化Grank-Nicolson格式:
(4)
(5)
首先引入下面的Brouwer不動(dòng)點(diǎn)定理[8-9]:引理1 設(shè)(H,(·,·)H)是有限維內(nèi)積空間,‖·‖H是其上定義的范數(shù),映射g:H→H是連續(xù)的,若存在α>0,使得對(duì)任意z∈H,‖z‖H=α,有Re(g(z),z)H≥0成立,則存在z*∈H,使得‖z*‖≤α?xí)rg(z*)=0。
證明 將方程(4)改寫成:
做映射G:CM+1→CM+1
對(duì)上式兩邊同時(shí)取實(shí)部得
解的唯一性用數(shù)學(xué)歸納法可證,證明略。
證明 由于
其中
(6)
(7)
假設(shè)u(x,t)在Ω×(0,T]上有界,則
由引理3知
由引理3
兩邊同時(shí)取實(shí)部得
當(dāng)τ充分小時(shí),由離散Gronwall不等式得到
命題得證。
[1]YKuramoto,TTsuzuki.Ontheformationofdissipativestructiveinreaction-diffusionsystems[J].ProgrTheorPhys.,1975,54:689-699.
[2] Tingchun Wang, Boling Guo. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation [J]. J.Compu-tational and Applied Mathematics,2009,233:878-888.
[3] Z Z Sun. A linearized difference for the Kuramato-Tsuzuki equation [J]. Comput Math.,1996,14:1-7.
[4] Z Z Sun. OnL∞convergence of a linearized difference scheme for the Kuramato-Tsuzuki equation [J]. Nanjing Univ. J.Math. Biquarterly.,1997,14(1):5-9.
[5] Z Z Sun. A generalized Box scheme for the Kuramato-Tsuzuki equation[J]. J.Southeast Univ.,1996,26(1):87-92.
[6] G Z Tsertsvadze. On tne convergence of a linearized difference scheme for the Kuramato-Tsuzuki equation and for systems of reaction-diffusion type[J]. Zh Vychisl Mat. Fiz.,1991,31:698-707.
[7] Z Z Sun, Q D Zhu. On tsertsvadze’s difference scheme for the Kuramato-Tsuzuki equation[J]. J.Comp., Appl., Math.,1998,98:289-304.
[8] G D Akrivis. Finite difference discretization of the cubic schrodinger equation[J]. IMA J.Numer Anal.,1993,13:115-124.
[9] G D Akrivis, V A Dougalis, O A Karakashian. On fully discrete galerkin methods of second-order temporal accu-racy for the nonlinear schrodinger equation[J]. Numer Math.,1991,59:31-53.
A finite difference scheme for Kuramoto-Tsuzuk equation
ZHOU Li
(Department of Mathematics, Anhui Agricultural University, Hefei 230031, China)
A linearized Crank-Nicolson finite difference scheme is studied for the mixed initial boundary of two-dimensional Kuramoto-Tsuzuki equations. Existence, uniqueness of the solutions are proved and the convergence order isO(τ+h2).
Kuramoto-Tsuzuki equation; difference scheme; convergence.
2014-06-02
安徽農(nóng)業(yè)大學(xué)青年科學(xué)基金資助項(xiàng)目(2011zr007)
周 麗(1981-),女,漢族,安徽蚌埠人,安徽農(nóng)業(yè)大學(xué)講師,碩士,主要從事偏微分方程的數(shù)值解方向研究,E-mail:lizhou@ahau.edu.cn.
O 241.82
A
1674-1374(2014)05-0585-04