• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation

    2014-09-06 10:49:41HuangTingtingLiuSiyangSunWeifengZhangChunwei
    關(guān)鍵詞:絕緣體雙極晶體管

    Huang Tingting Liu Siyang Sun Weifeng Zhang Chunwei

    (National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China)

    ?

    Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation

    Huang Tingting Liu Siyang Sun Weifeng Zhang Chunwei

    (National ASIC System Engineering Research Center, Southeast University, Nanjing 210096, China)

    A novel lateral insulated gate bipolar transistor on a silicon-on-insulator substrate (SOI-LIGBT) with a special low-doped P-well structure is proposed. The P-well structure is added to attach the P-body under the channel, so as to reduce the linear anode current degradation without additional process. The influence of the length and depth of the P-well on the hot-carrier (HC) reliability of the SOI-LIGBT is studied. With the increase in the length of the P-well, the perpendicular electric field peak and the impact ionization peak diminish, resulting in the reduction of the hot-carrier degradation. In addition, the impact ionization will be weakened with the increase in the depth of the P-well, which also makes the hot-carrier degradation decrease. Considering the effect of the low-doped P-well and the process windows, the length and depth of the P-well are both chosen as 2 μm.

    lateral insulated gate bipolar transistor(LIGBT); silicon-on-insulator (SOI); hot-carrier effect (HCE); optimization

    The lateral insulated gate bipolar transistor (LIGBT) is the suitable device for the power integrated circuits (ICs) due to its capability of handling high voltage and heavy current and its compatibility with the standard CMOS process. The silicon on insulator (SOI) substrate can offer true dielectric isolation for power devices, which eases the integration of power devices and low voltage logic devices in power ICs. As a result, the SOI-LIGBT begins to be a promising device for power applications.

    One typical application of the SOI-LIGBT (M1) is used as the high-voltage output stage in the plasma display panels (PDP) scan driver ICs[1-5]. During the working conditions, M1 will suffer from high voltage at “off-state” and heavy current at “on-state”. Therefore, the hot-carrier effect (HCE) becomes serious. So, the hot-carrier degradation of the SOI-LIGBT devices is one of the most important reliability issues in ICs.

    The HC reliability of the SOI-LIGBT devices is becoming more and more important, but the in-depth study on the hot-carrier degradation mechanism of the SOI-LIGBT devices is less documented due to the complexity of its two kinds of carriers. Recently, to our knowledge, no studies have been focused on the structure optimization of these devices to decrease the hot-carrier degradation[6-8].

    In this paper, to reduce the electric field and the degradation of the electrical parameters, a novel SOI-LIGBT is proposed with a low-doped p-type well (P-well) attached to the P-body under the channel region. It can be compatible with low-voltage CMOS processes completely without any additional mask. The length and depth of the P-well are varied and their effects on the degradation are investigated by using the T-CAD simulator and the charge pumping (CP) technique, which well support the experimental findings.

    1 Device Structure and Experiment

    The schematic cross section of the investigated SOI-LIGBT device in this paper is shown in Fig.1(a), and the fabrication of the device is implemented in the 0.5 μm complementary MOS technology and the SOI technology. The structural parameters are given as follows: the length of the polygate is 5 μm; the accumulation region length is 2 μm; the buried oxide thickness is 1.5 μm; the thickness of the silicon film above the buried oxide is 6.5 μm. The threshold voltage and the off-state BV are 1.1 V and 230 V, respectively. The special P-well structure is added to attach the P-body under the channel so as to reduce the hot-carrier-induced degradation. Moreover, it is noted that the concentration of the proposed P-well is much lower than that of the P-body. The concentration of the proposed P-well is 3×1012cm-2. The SEM image of the cathode region in the improved SOI-LIGBT can also be seen in Fig.1(b). The lengthLand depthDof the low-doped P-well are varied to obtain their effects on the hot-carrier degradation.

    2 Discussions and Optimization

    2.1 Experiment

    The current in the SOI-LIGBT is composed of the electron current along the surface of the device and the hole current in the body of the silicon film above the buried oxide. The hole current is collected by the P+of the cathode, so the hole carriers generated from the impact ionization will be submerged into the large operation current of the SOI-LIGBT. Hence, the hole carriers cannot be detected. Therefore, the maximum substrate current cannot reflect the degradation level of the SOI-LIGBT device[9]. In this paper, the hot-carrier stress condition ofVgc=2.5 V andVac=165 V is selected at the maximum substrate current of the SOI-LDMOS device, which fully owns the same structures except for the doping type in the anode area compared with the novel SOI-LIGBT. During the experiments,Ialin(measured atVgc=5 V andVac=1 V) is monitored continuously to analyze the physical degradation. All the measurements in our experiments are performed at room temperature.

    Fig.1 Schematic diagram of the proposed SOI-LIGBT device. (a) Schematic cross section; (b) SEM image of the cathode region in the proposed device

    Before the hot-carrier degradation of the novel SOI-LIGBT is discussed, the influence of the added P-well on the electrical parameters of the SOI-LIGBT, such as the on-resistance, must be considered carefully. Actually, when the high gate operation voltage (7.8 V) is applied, the resistance of the P-well region will be much smaller than that of the added P-body region due to much more induced electron. Furthermore, it is the resistance of the HVN-well that will dominate the whole resistance of the device due to the long distance and the low doping. Therefore, the resistance of the added P-well region can be ignored compared with that of the P-body region and the HVN-well region. That is to say, the added P-well will not obviously impact the whole resistance of the device. The measuredI-Vcharacteristics of the novel SOI-LIGBT and the conventional one underVgc=7.8 V are shown in Fig.2. There is a little difference between them. And the key parameters of the two devices are shown in Tab.1.

    Fig.2 I-Vcharacteristics of novel SOI-LIGBT and conventional one

    DeviceIdsat/mARon/ΩVth/VVb/VDegradationafter1000s/%ConventionalSOI-LIGBT45.712951.12154.55NovelSOI-LIGBT44.312971.12301.66

    Fig.3 shows the parameter variations of the SOI-LIGBT devices under the stress ofVgc=2.5 V andVac=165 V. It is noted that there is almost noVthshift, implying that no hot carriers inject into the channel region. TheIalinincreases with the increase in the stress time, which reveals that there are many hot holes injecting into the bird’s beak[10]and the degradation is serious. It can also be found that the low-doped P-well can relax the increasing tendency of theIalinand the hot carrier degradation. The longer and deeper the low doped P-well, the smaller theIalindegradation will be.

    Fig.3 IalinandVthdegradation of the SOI-LIGBT devices with differentLandD

    2.2 Influence ofL

    In order to understand the above experimental results, The T-CAD simulations about the perpendicular electric field and the impact ionization are performed. Fig.4 and Fig.5 show the perpendicular electric field and the impact ionization along the Si/SiO2interface for the SOI-LIGBT with differentLandD=1 μm atVgc=2.5 V andVac=165 V. The first perpendicular electric field peak in the bird’s beak is negative (pointing to the oxide), which is helpful for the hot-hole injection, and the second perpendicular electric field peak in the channel region is positive, which is beneficial for the hot-electron injection. However, the impact ionization is mainly located in the bird’s beak and no obvious impact ionization can be observed in the channel region. As a result, a great amount of hot holes will be injected and trapped into the bird’s beak, resulting in the increase ofIalindue to the mirror induced negative charges. LessVthshift can be discovered due to no hot-electron injection in the channel region. In addition, according to Figs.4 and 5, it is observed that the increase of the length of the low-doped P-well will decrease the perpendicular electric field and the impact ionization in the bird’s beak. As a result, the hot-hole injection into the bird’s beak is diminished, and theIalindegradation turns much smaller.

    Fig.4 Surface perpendicular fields with differentLandD=1 μm atVgc=2.5 V andVac=165 V

    According to the influence ofLon the electric field and the impact ionization, one can know that the hot-hole injection and trapping into the bird’s beak can be reduced effectively by adjusting the dimension ofL. Although it is useful to increaseLfor hot carrier reliability, the dimension ofLcannot be greater than 2 μm in this case. Otherwise, it will exceed the accumulation region and lead to the abnormal threshold voltage, making the operation of the SOI-LIGBT abnormal. Considering the effect of the low-doped P-well and the process windows, we chooseLas 2 μm here. In this way, the hot carrier degradation of the SOI-LIGBT can be relaxed and its reliability can be optimized.

    Fig.5 Surface impact ionization with differentLandD=1 μm atVgc=2.5 V andVac=165 V

    2.3 Influence ofD

    The influence of the depth of the low doped P-well on the impact ionization, which reveals the hot carrier degradation, is also simulated and compared in this paper. Fig.6 shows the 2D impact ionization of the proposed SOI-LIGBT with differentDand anLof 2 μm atVgc=2.5 V andVac=165 V. It is clear that the increase of the depth of the low doped P-well will decrease the impact ionization of the device, leading to the reduction of the hot carrier degradation. However, for the sameL, the value ofDcannot be too large. The reason is that during the production processes, the longtime annealing is used to obtain deepD, but at the same time it affects the value ofL. The longer the annealing time, the largerLandDwill be. The value ofLcannot be too large since the depth of the low doped P-well is limited. In this paper, the value ofDis chosen as 2 μm.

    Fig.6 2D impact ionization of the proposed SOI-LIGBT with differentDatVgc=2.5 V andVac=165 V.(a)D=1μm andL=2μm;(b)D=1.5μm andL=2μm;(c)D=2μm andL=2μm

    2.4 Charge pumping

    In order to have a further understanding of the hot-carrier degradation of the SOI-LIGBT, the charge pumping (CP) technique is performed. The CP measurements are performed with the constant gate voltage pulse, whose amplitude and frequency are 10 V and 1 MHz, respectively. The base voltageVbaseof the pulse is varied from -15 to 5V. The rising and falling time of the pulse are both 100 ns. The anode and cathode are grounded. The CP currentIcpis measured from the substrate to reveal the hot-carrier trapping and the interface state generation. At the same time, theVgeandVgh(defined as the gate voltage to induce 1×1014cm-3electrons and holes, respectively) profiles of the SOI-LIGBT are shown in Fig.7 by using the T-CAD simulations. According to Fig.7,Icpcan be divided into three regions: the channel region (correspondingVbasefrom -5.5 (Vge-Vamplitude) to 0 V (Vgh) for the unstressed device), the accumulation region (correspondingVbasefrom -7.5 to -5 V for the unstressed device) and the field oxide region (correspondingVbasefrom -10 to -7.5 V for the unstressed device)[11-12]. TheIcpcurves of the conventional and proposed SOI-LIGBT (L=2 μm andD=2 μm) are measured and shown in Fig.8. The stress condition isVgc=2.5 V andVac=165 V for 2000 s. Comparing theIcpbefore and after the stress of the conventional device, it is clear that theIcpcurves shift left (change A), reflecting the hot hole injection into the bird’s beak. And the change of the value ofIcp(change B) indicates the interface state generation in the channel region, the accumulation region and the field oxide region. Moreover, it is also noted that the change A and change B of the proposed device are smaller than those of the conventional device after stress. That is to say, the hot-hole injection is restrained and the interface state generation is decreased in the proposed device. So the hot-carrier degradation for the SOI-LIGBT with the low-doped P-well is reduced.

    Fig.7 VgeandVghprofiles of the SOI-LIGBT

    Fig.8 CP curves of the conventional and proposed devices before and after stress

    3 Conclusion

    A special P-well structure is added to attach the P-body under the channel in the SOI-LIGBT devices to reduce theIalindegradation without any additional mask. The special P-well is shown completely compatible with the low-voltage CMOS processes and does not impact the key parameters of the device. The influence of the length and depth of low doped P-well is studied in detail for the high-voltage SOI-LIGBT. With the increase ofL, the perpendicular electric field peak and the impact ionization peak diminish, resulting in the reduction of the hot carrier degradation. In addition, the impact ionization will be weakened with the increase in the depth of the low-doped P-well, which also makes the hot-carrier degradation decrease. Therefore, considering the effect of the low-doped P-well and the process windows, 2 μm is chosen for the length and depth of the P-well.

    [1]Chen W S, Xie G, Zhang B, et al. New lateral IGBT with controlled anode on SOI substrate for PDP scan driver IC [C]//InternationalConferenceonCommunications,CircuitsandSystems. Milpitas, CA, USA, 2009: 628-630.

    [2]Sumida H, Hirabayashi A, Kobayashi H. A high-voltage lateral IGBT with significantly improved ON-state characteristics on SOI for an advanced PDP scan driver IC [C]//IEEEInternationalSOIConferenceProceedings. Williamsburg, VA, USA, 2002: 64-65.

    [3]Qiao M, Zhang B, Xiao Z Q, et al. High-voltage technology based on thin layer SOI for driving plasma display panels [C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Orlando, FL, USA, 2008: 52-55.

    [4]Sun W F, Shi L X, Sun Z L, et al. High-voltage power IC technology with nVDMOS, RESURF pLDMOS, and novel level-shift circuit for PDP scan-driver IC [J].IEEETransactionsonElectronDevices, 2006, 53(4): 891-896.

    [5]Tokumitsu S, Nitta T, Shiromoto T, et al. Enhancement of current drivability in field PMOS by optimized field plate [C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Hiroshima, Japan, 2010: 253-256.

    [6]Wu H, Sun W F, Yi Y B, et al. Study and optimization of hot-carrier degradation in high voltage pledmos transistor with thick gate oxide [C]//InternationalSymposiumonthePhysicalandFailureAnalysisofIntegratedCircuits. Suzhou, China, 2009: 83-86.

    [7]Bakeroot B, Doutreloigne J, Moens P. A new substrate current free nLIGBT for junction isolated technologies [C]//EuropeanSolid-StateDeviceResearchConference. Leuven, Belgium, 2004: 461-464.

    [8]Lu D H, Mizushima T, Kitamura A, et al. Retrograded channel SOI LIGBTs with enhanced safe operating area[C]//InternationalSymposiumonPowerSemiconductorDevicesandICs. Orlando, FL, USA, 2008:32-35.

    [9]Liu Siyang, Sun Weifeng, Qian Qinsong, et al. Comparisons of hot-carrier degradation behavior in SOI-LIGBT and SOI-LDMOS with different stress conditions [J].Solid-StateElectronics, 2010, 54(12): 1598-1601.

    [10]Qian Q S, Sun W F, Liu S Y, et al. Novel hot-carrier degradation mechanisms in the lateral insulated-gate bipolar transistor on SOI substrate [J].IEEETransactionsonElectronDevices, 2011, 58(4):1158-1163.

    [11]Moens P, Van Den Bosch G, Wojciechowski D, et al. Charge trapping effects and interface state generation in a 40 V lateral resurf pDMOS transistor [C]//EuropeanSolid-StateDeviceResearchConference. Grenoble, France, 2005:407-410.

    [12]Heremans P, Witters J, Groeseneken G, et al. Analysis of the charge pumping technique and its applications for the evaluation of MOSFET degradation [J].IEEETransactionsonElectronDevices, 1989, 36(7): 1318-1335.

    一種新型優(yōu)化熱載流子退化效應(yīng)的SOI-LIGBT

    黃婷婷 劉斯揚(yáng) 孫偉鋒 張春偉

    (東南大學(xué)國(guó)家ASIC系統(tǒng)工程技術(shù)研究中心, 南京 210096)

    提出了一種新型絕緣體上硅橫向絕緣柵雙極型晶體管(SOI-LIGBT),該晶體管在溝道下方的P型體區(qū)旁增加了一個(gè)特殊的低摻雜P型阱區(qū),在不增加額外工藝的基礎(chǔ)上減小了器件線性區(qū)電流的退化.分析了低摻雜P阱的寬度和深度對(duì)SOI-LIGBT器件熱載流子可靠性的影響.通過(guò)增加低摻雜P型阱區(qū)的寬度,可以減小器件的縱向電場(chǎng)峰值和碰撞電離峰值,從而優(yōu)化器件的熱載流子效應(yīng).另外,增加低摻雜P型阱區(qū)的深度,也會(huì)減小器件內(nèi)部的碰撞電離率,從而減弱器件的熱載流子退化.結(jié)合低摻雜P型阱區(qū)的作用和工藝窗口大小的影響,確定低摻雜P型阱區(qū)的寬度和深度都為2 μm.

    絕緣柵雙極型晶體管;絕緣體上硅;熱載流子效應(yīng);優(yōu)化

    TN432

    s:The National Natural Science Foundation of China (No.61204083), the Natural Science Foundation of Jiangsu Province (No.BK2011059), the Program for New Century Excellent Talents in University (No.NCET-10-0331).

    :Huang Tingting, Liu Siyang, Sun Weifeng, et al.Novel lateral insulated gate bipolar transistor on SOI substrate for optimizing hot-carrier degradation[J].Journal of Southeast University (English Edition),2014,30(1):17-21.

    10.3969/j.issn.1003-7985.2014.01.004

    10.3969/j.issn.1003-7985.2014.01.004

    Received 2013-08-06.

    Biographies:Huang Tingting (1988—), female, graduate; Sun Weifeng (corresponding author), male, doctor, professor, swffrog@seu.edu.cn.

    猜你喜歡
    絕緣體雙極晶體管
    基于雙極化解耦超表面的線轉(zhuǎn)圓極化反射陣列天線設(shè)計(jì)
    雙極直覺(jué)模糊超圖*
    多孔位插頭絕緣體注塑模具設(shè)計(jì)分析
    玩具世界(2022年1期)2022-06-05 07:42:20
    2.6萬(wàn)億個(gè)晶體管
    大自然探索(2021年7期)2021-09-26 01:28:42
    發(fā)電廠直流系統(tǒng)接地故障分析與處理策略解析
    鼻內(nèi)鏡下雙極電凝治療嚴(yán)重鼻出血的療效
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    碳納米管晶體管邁出商用關(guān)鍵一步
    強(qiáng)生ENSEAL? G2 高級(jí)雙極電刀
    意法半導(dǎo)體(ST)新款100V晶體管提高汽車應(yīng)用能
    欧美xxⅹ黑人| 国产成人精品福利久久| 亚洲av欧美aⅴ国产| 少妇被粗大猛烈的视频| 亚洲 欧美一区二区三区| 国产亚洲精品久久久com| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 国产在线视频一区二区| 蜜臀久久99精品久久宅男| 国产成人精品婷婷| 日本欧美国产在线视频| 男女午夜视频在线观看 | 亚洲美女黄色视频免费看| 午夜激情久久久久久久| 99九九在线精品视频| 精品第一国产精品| 亚洲欧美一区二区三区国产| 欧美3d第一页| 国产av一区二区精品久久| 欧美日韩一区二区视频在线观看视频在线| 日韩大片免费观看网站| 一本大道久久a久久精品| 欧美亚洲日本最大视频资源| 97超碰精品成人国产| 精品国产露脸久久av麻豆| 亚洲精品乱码久久久久久按摩| 亚洲综合色惰| 日本av手机在线免费观看| 美女国产高潮福利片在线看| 少妇精品久久久久久久| 人人妻人人澡人人爽人人夜夜| 丝袜人妻中文字幕| 国产成人91sexporn| 天美传媒精品一区二区| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 欧美激情国产日韩精品一区| 蜜臀久久99精品久久宅男| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品av麻豆狂野| 国产 精品1| 国产日韩欧美亚洲二区| 国产精品一区二区在线观看99| av在线观看视频网站免费| 在线观看三级黄色| 毛片一级片免费看久久久久| 国产无遮挡羞羞视频在线观看| 久久狼人影院| 成人毛片60女人毛片免费| 亚洲国产av新网站| 国产综合精华液| 99久国产av精品国产电影| 天天躁夜夜躁狠狠躁躁| 成年人免费黄色播放视频| 国产永久视频网站| 国产男女内射视频| 亚洲四区av| av线在线观看网站| 久久国产精品大桥未久av| 如日韩欧美国产精品一区二区三区| 精品久久蜜臀av无| 亚洲av免费高清在线观看| 十八禁高潮呻吟视频| 99国产精品免费福利视频| 国产成人精品久久久久久| 国产精品秋霞免费鲁丝片| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 免费人成在线观看视频色| 最近中文字幕2019免费版| 99香蕉大伊视频| 青春草亚洲视频在线观看| 亚洲四区av| 极品少妇高潮喷水抽搐| 黑丝袜美女国产一区| 精品人妻偷拍中文字幕| 多毛熟女@视频| 2021少妇久久久久久久久久久| 日韩一区二区三区影片| 欧美老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 人体艺术视频欧美日本| 久久国产精品大桥未久av| av有码第一页| 看十八女毛片水多多多| 国产有黄有色有爽视频| 母亲3免费完整高清在线观看 | 国产日韩欧美在线精品| 少妇被粗大的猛进出69影院 | 日韩不卡一区二区三区视频在线| 国产男女内射视频| 91精品国产国语对白视频| 国产亚洲精品久久久com| 国产亚洲欧美精品永久| 国产成人免费观看mmmm| 在线 av 中文字幕| 午夜免费观看性视频| 一级片免费观看大全| 午夜久久久在线观看| 熟女人妻精品中文字幕| 人妻一区二区av| 国产精品无大码| 亚洲精品久久午夜乱码| av在线app专区| 国产av码专区亚洲av| 99久久中文字幕三级久久日本| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 99热全是精品| 亚洲成色77777| 日日撸夜夜添| 97人妻天天添夜夜摸| 成人午夜精彩视频在线观看| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 国产精品一国产av| 久久青草综合色| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 日韩制服骚丝袜av| 丝袜脚勾引网站| 少妇被粗大的猛进出69影院 | av电影中文网址| 国产成人精品一,二区| 国产女主播在线喷水免费视频网站| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 久久久精品区二区三区| 成人免费观看视频高清| 啦啦啦在线观看免费高清www| 老司机影院成人| 午夜视频国产福利| 日韩伦理黄色片| 成人无遮挡网站| 国产精品久久久av美女十八| 大香蕉久久成人网| 精品久久久精品久久久| 日韩精品免费视频一区二区三区 | 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 久久av网站| 欧美bdsm另类| av女优亚洲男人天堂| 国产精品人妻久久久久久| 国产精品一国产av| 国内精品宾馆在线| 久久久久精品人妻al黑| 国产成人精品婷婷| 日韩一区二区三区影片| 大陆偷拍与自拍| 亚洲国产欧美在线一区| 国产一级毛片在线| 国产精品久久久久久久电影| 国产亚洲欧美精品永久| 少妇人妻精品综合一区二区| 免费看光身美女| 26uuu在线亚洲综合色| 18禁在线无遮挡免费观看视频| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆| 亚洲成国产人片在线观看| 欧美国产精品va在线观看不卡| 日韩电影二区| 91aial.com中文字幕在线观看| 观看美女的网站| 人妻系列 视频| 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 好男人视频免费观看在线| av黄色大香蕉| 欧美精品人与动牲交sv欧美| 狂野欧美激情性xxxx在线观看| 超碰97精品在线观看| 久久鲁丝午夜福利片| 精品国产一区二区久久| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 99热6这里只有精品| 精品人妻熟女毛片av久久网站| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 18+在线观看网站| 日韩精品有码人妻一区| 国产精品一区www在线观看| 人妻一区二区av| 国产成人91sexporn| 九色亚洲精品在线播放| 国产一区二区三区综合在线观看 | av视频免费观看在线观看| 制服诱惑二区| 成年人午夜在线观看视频| 国产成人一区二区在线| 亚洲综合色网址| 国产乱来视频区| 看十八女毛片水多多多| 国产精品三级大全| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 国产av国产精品国产| 亚洲欧美色中文字幕在线| 免费高清在线观看视频在线观看| av国产精品久久久久影院| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| av电影中文网址| 18禁国产床啪视频网站| 成人国产麻豆网| 日日爽夜夜爽网站| 亚洲精品成人av观看孕妇| 久久久a久久爽久久v久久| 在线天堂中文资源库| 精品国产露脸久久av麻豆| 日本色播在线视频| 精品少妇久久久久久888优播| 亚洲精品第二区| 久久久欧美国产精品| 久久久亚洲精品成人影院| 免费久久久久久久精品成人欧美视频 | 成人手机av| 久久午夜综合久久蜜桃| 在线免费观看不下载黄p国产| 午夜福利乱码中文字幕| 久久久久视频综合| 国产1区2区3区精品| 婷婷色av中文字幕| www.av在线官网国产| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 亚洲欧美色中文字幕在线| 亚洲美女黄色视频免费看| 国产亚洲精品久久久com| 亚洲精品美女久久久久99蜜臀 | 久久久欧美国产精品| 精品国产一区二区久久| 国产成人欧美| 亚洲av欧美aⅴ国产| 毛片一级片免费看久久久久| 国产毛片在线视频| 精品午夜福利在线看| 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品| www日本在线高清视频| 捣出白浆h1v1| 成人影院久久| 国产淫语在线视频| 桃花免费在线播放| 午夜精品国产一区二区电影| 日本与韩国留学比较| 午夜福利影视在线免费观看| 亚洲中文av在线| 黑人猛操日本美女一级片| 久久精品国产亚洲av天美| 亚洲精品日韩在线中文字幕| 在线 av 中文字幕| 你懂的网址亚洲精品在线观看| 人人澡人人妻人| 日本欧美视频一区| 久久久久久伊人网av| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 成人亚洲精品一区在线观看| 久久久久久久精品精品| 宅男免费午夜| 久久久精品94久久精品| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 永久网站在线| 人妻人人澡人人爽人人| www.av在线官网国产| 国产视频首页在线观看| h视频一区二区三区| 久久久久久伊人网av| 亚洲精品456在线播放app| 一级片免费观看大全| 在线观看美女被高潮喷水网站| 美女视频免费永久观看网站| 一区二区三区精品91| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 亚洲欧美一区二区三区黑人 | 久久久久久久国产电影| 一区在线观看完整版| 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 丰满少妇做爰视频| 波野结衣二区三区在线| 观看美女的网站| 考比视频在线观看| 亚洲内射少妇av| 午夜福利视频在线观看免费| 亚洲av.av天堂| 飞空精品影院首页| 日本av免费视频播放| 最近的中文字幕免费完整| 插逼视频在线观看| av卡一久久| 午夜福利,免费看| 色哟哟·www| 午夜福利视频在线观看免费| 美女国产视频在线观看| 老熟女久久久| 亚洲美女视频黄频| 黑人巨大精品欧美一区二区蜜桃 | 纯流量卡能插随身wifi吗| 丝袜人妻中文字幕| 亚洲精品成人av观看孕妇| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 国产免费现黄频在线看| 久久 成人 亚洲| 人妻一区二区av| 男女国产视频网站| 午夜免费男女啪啪视频观看| av一本久久久久| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 久久久久久人人人人人| 亚洲精品视频女| 亚洲精品日本国产第一区| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 久久久久网色| 欧美精品一区二区大全| 亚洲欧美中文字幕日韩二区| 中文天堂在线官网| 欧美国产精品va在线观看不卡| 成人亚洲欧美一区二区av| xxxhd国产人妻xxx| 99国产精品免费福利视频| 青春草亚洲视频在线观看| 一区二区日韩欧美中文字幕 | 18禁动态无遮挡网站| 欧美精品一区二区免费开放| 蜜桃国产av成人99| 日本午夜av视频| 妹子高潮喷水视频| 欧美精品一区二区免费开放| 蜜桃国产av成人99| 日本色播在线视频| 国产欧美日韩一区二区三区在线| 看非洲黑人一级黄片| 国产成人欧美| 中文字幕人妻熟女乱码| 中文字幕制服av| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 国产极品天堂在线| 99热这里只有是精品在线观看| 丝袜人妻中文字幕| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 在线观看www视频免费| 这个男人来自地球电影免费观看 | 久久午夜福利片| videosex国产| 久久精品国产综合久久久 | 久久久久精品性色| 一级片免费观看大全| 9热在线视频观看99| 国产免费一级a男人的天堂| 色婷婷久久久亚洲欧美| 国产免费福利视频在线观看| 青青草视频在线视频观看| 新久久久久国产一级毛片| 日本-黄色视频高清免费观看| 夫妻午夜视频| 中文字幕制服av| 永久网站在线| 国产av国产精品国产| 免费人成在线观看视频色| 精品国产乱码久久久久久小说| 91精品三级在线观看| 国产精品久久久久久久电影| www.色视频.com| 老司机亚洲免费影院| 亚洲人成网站在线观看播放| 久久精品国产自在天天线| 9热在线视频观看99| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av天美| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 日韩av在线免费看完整版不卡| 国产精品久久久久久av不卡| 午夜视频国产福利| 久久久久久伊人网av| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 99视频精品全部免费 在线| 一本久久精品| 人成视频在线观看免费观看| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 久久99热6这里只有精品| 香蕉国产在线看| 久热久热在线精品观看| 少妇人妻 视频| 乱人伦中国视频| 国产成人免费观看mmmm| 日韩电影二区| 中文字幕最新亚洲高清| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 精品熟女少妇av免费看| 欧美xxxx性猛交bbbb| 超色免费av| 另类精品久久| 国产麻豆69| 丝袜喷水一区| 免费av中文字幕在线| 中国美白少妇内射xxxbb| 午夜免费鲁丝| 国产精品一区二区在线观看99| 美国免费a级毛片| 久久99一区二区三区| 亚洲人与动物交配视频| 亚洲色图 男人天堂 中文字幕 | 久久久久精品人妻al黑| 好男人视频免费观看在线| 中文字幕人妻丝袜制服| 熟女人妻精品中文字幕| 国产精品无大码| 天天躁夜夜躁狠狠躁躁| 爱豆传媒免费全集在线观看| 少妇的逼水好多| 久久热在线av| 五月开心婷婷网| 丰满少妇做爰视频| 中文天堂在线官网| 另类精品久久| 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 欧美性感艳星| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件 | 女的被弄到高潮叫床怎么办| 女人精品久久久久毛片| 欧美97在线视频| www.熟女人妻精品国产 | 亚洲精品国产av成人精品| 国产成人精品无人区| 99热6这里只有精品| av免费观看日本| 国产在线一区二区三区精| 精品久久蜜臀av无| 国产精品不卡视频一区二区| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品99久久99久久久不卡 | 不卡视频在线观看欧美| 欧美性感艳星| 久久久久久久久久人人人人人人| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 国产乱人偷精品视频| 又粗又硬又长又爽又黄的视频| 欧美老熟妇乱子伦牲交| av卡一久久| 高清黄色对白视频在线免费看| 韩国av在线不卡| 最新中文字幕久久久久| 日韩电影二区| 精品少妇久久久久久888优播| 国产高清不卡午夜福利| 亚洲人与动物交配视频| 精品国产乱码久久久久久小说| 亚洲国产毛片av蜜桃av| 成人18禁高潮啪啪吃奶动态图| 性高湖久久久久久久久免费观看| 久久久久网色| 波多野结衣一区麻豆| 91成人精品电影| 久久人人爽人人爽人人片va| 在线精品无人区一区二区三| 欧美日韩国产mv在线观看视频| 纵有疾风起免费观看全集完整版| 欧美3d第一页| 一本色道久久久久久精品综合| 国产精品国产av在线观看| 最近中文字幕高清免费大全6| 一级毛片黄色毛片免费观看视频| 国产日韩欧美视频二区| 国产一区二区在线观看av| h视频一区二区三区| 日本爱情动作片www.在线观看| 国产精品久久久久久久电影| 人妻系列 视频| 一区二区av电影网| 亚洲第一av免费看| 亚洲情色 制服丝袜| 欧美日韩综合久久久久久| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久小说| 国产日韩欧美在线精品| 日韩成人av中文字幕在线观看| 熟女电影av网| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 成人午夜精彩视频在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲一码二码三码区别大吗| 欧美成人精品欧美一级黄| 精品久久蜜臀av无| 久久久久久久久久成人| 最近手机中文字幕大全| 免费人妻精品一区二区三区视频| 高清在线视频一区二区三区| 亚洲精品国产色婷婷电影| 色94色欧美一区二区| 欧美日韩av久久| 精品国产乱码久久久久久小说| 精品国产一区二区三区四区第35| 日本av手机在线免费观看| 成年美女黄网站色视频大全免费| 亚洲av综合色区一区| 久久久久视频综合| 99国产精品免费福利视频| 夜夜骑夜夜射夜夜干| 日本与韩国留学比较| 在线观看人妻少妇| 天堂8中文在线网| videosex国产| 亚洲精品第二区| 99热国产这里只有精品6| h视频一区二区三区| 一二三四中文在线观看免费高清| 天天操日日干夜夜撸| 欧美亚洲日本最大视频资源| 亚洲综合色网址| 看免费成人av毛片| 国产精品一区www在线观看| 免费播放大片免费观看视频在线观看| 成年动漫av网址| 午夜福利视频精品| 日韩av不卡免费在线播放| 内地一区二区视频在线| 夫妻午夜视频| 久久国产精品大桥未久av| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 一区在线观看完整版| 男女无遮挡免费网站观看| 国产1区2区3区精品| 一级,二级,三级黄色视频| 亚洲av在线观看美女高潮| av天堂久久9| 插逼视频在线观看| 99久国产av精品国产电影| 伊人亚洲综合成人网| 午夜福利影视在线免费观看| a级毛色黄片| 丝袜人妻中文字幕| 少妇 在线观看| 亚洲精品自拍成人| 99热6这里只有精品| 在线观看免费日韩欧美大片| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 日韩av免费高清视频| 日韩一区二区视频免费看| 少妇的丰满在线观看| 日韩精品免费视频一区二区三区 | 观看美女的网站| www.av在线官网国产| 精品国产国语对白av| 肉色欧美久久久久久久蜜桃| a 毛片基地| 国产一区二区三区av在线| 男人舔女人的私密视频| 成人国产av品久久久| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 免费日韩欧美在线观看| 日韩一本色道免费dvd| 久久99热6这里只有精品| 99热国产这里只有精品6| 在线观看人妻少妇| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久 | 18+在线观看网站| 最近中文字幕高清免费大全6| 国产av码专区亚洲av| 久久久久网色| 久久免费观看电影| 一边摸一边做爽爽视频免费| 久久99精品国语久久久| 妹子高潮喷水视频| 五月伊人婷婷丁香| 内地一区二区视频在线| 亚洲国产精品专区欧美| videos熟女内射| 精品午夜福利在线看|