• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    2014-09-06 10:49:51WangChaonanLiWenquanTongXiaolongChenChen
    關(guān)鍵詞:占有率自動(dòng)識別瓶頸

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm, which is calculated by the road conditions, the level of service and the proportion of trucks. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of the occupancy rate and the variance of the occupancy rate. The other process is to identify the downstream of the bottleneck by calculating the difference of the upstream occupancy rate with that of the downstream. In addition, the algorithm evaluation standards, which are based on the time interval of the data, the detection rate and the false alarm rate, are discussed. The proposed algorithm is applied to detect the bottleneck locations in the Shanghai Inner Ring Viaduct Dabaishu-Guangzhong road section. The proposed method has a good performance in improving the accuracy and efficiency of bottleneck identification.

    bottleneck; loop detector data; occupancy rate; flow rate

    Typical bottleneck analysis methods involve congestion graphics, vehicle arrival curves and the traffic flow theory. The methods above are based on the loop detector data. They assume that traffic patterns can be determined by the functional relationship of traffic flow and occupancy. The data analysis methods include decision trees, statistical analysis and filtering. With the development of data collection and information processing technology, the fuzzy theory, expert evaluation, pattern recognition, and artificial intelligence techniques have become important methods in congestion automatic identification algorithms. ACI algorithms can be divided into discrete and continuous types[1-2]. The discrete method is based on the traffic parameter threshold. It is assumed that congestion occurs when a certain traffic parameter is greater than the threshold value. In 1997, with the vehicle arrival curves, Cassidy et al.[3]discussed the length of queues and waiting time in congestion. Based on the research findings of congestion, Bertini et al.[4]proposed an automatic bottleneck recognition algorithm in 2005, identifying and classifying bottlenecks with historical data, and taking speed as the indicator of a bottleneck. However, these algorithms have not analyzed the statistical features of a bottleneck in detail, which decrease the precision of identification algorithms. Besides, most congestion identification algorithms were about congestion points. The research target of bottleneck identification is to discover the congestion influence scope, including the upstream and downstream of bottleneck locations. Therefore, a traffic flow analysis with more integrity is necessary.

    In this research, based on loop detector data, the critical flow rate is calculated as the trigger variable, which is calculated by the road conditions, the level of service and the proportion of trucks. Occupancy is calculated as the identification parameters. In addition, algorithm evaluation standards are discussed.

    1 Description of the Algorithm

    In this algorithm, the critical flow rate is defined as the trigger variable, and it is calculated based on the road conditions, the level of service and the proportion of trucks. When the flow rate is greater than the critical value, the identification process can start[5-6].

    1.1 Trigger variable of the algorithm

    According to the traffic flow theory, when traffic demand exceeds road capacity, resulting in congestion, the flow rate decreases and congestion forms. Therefore, the flow rate can be used as the trigger variable of the algorithm. The critical flow rate is determined by the designed capacity and the level of service. User perceptions are variable at different time and in different environments. AASHTO design standards suggest that a good target level of service in an urban area is D, but in a rural area a good target level of service is C. Generally, when the level of service is C, average speeds begin to decline with increasing flow[7]. We define the situation, in which the level of service is C, as the trigger point. However, it is difficult for the bottleneck automatic identification system to calculate theV/Cratio. The trigger value should be obtained immediately. Therefore, the accumulative flow rate in 5 min as the trigger variable is chosen. Tab.1 lists the criticalV/Cratio based on the level of service and the design speed. The capacity should be multiplied by theV/Cratio when the level of service is C to obtain the trigger value.

    Tab.1 Critical V/Cratio based on LOS and FFS

    The influence of large vehicle on traffic flow is not considered when calculating the free flow speed. Therefore, the trigger value obtained from Tab.1 should be multiplied byfHV.

    1.2 Identification process

    There are two elementary values which need to be defined in the bottleneck automatic identification algorithm. One is the minimum value of the difference between the upstream and downstream occupancy rates. The other one is the minimum value of the upstream occupancy rate. To define the difference between the upstream and downstream occupancy, it must be ensured that the upstream is in a state of congestion, and the downstream is free flow[8-10].

    Before defining the critical value, we should analyze the historical data to obtain the difference between the upstream and downstream occupancy rates. Experiments show that there are some overlaps in the difference between them. As this algorithm also requires the upper occupancy rate greater than a certain critical value, it should be ensured that the critical value of the difference between the upstream and downstream occupancy rates is smaller than the occupancy rate when a bottleneck occurs.

    積累數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn)是一個(gè)長期的過程,需要我們在平時(shí)的教學(xué)中不斷為學(xué)生提供活動(dòng)的機(jī)會(huì),精心設(shè)計(jì)組織好每一個(gè)數(shù)學(xué)活動(dòng),使數(shù)學(xué)學(xué)習(xí)成為一個(gè)生動(dòng)活潑、富有創(chuàng)造意義的過程,促進(jìn)學(xué)生思維的發(fā)展。

    As the maximum upstream occupancy rate is affected by the road conditions, we use the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6instead of the maximum upstream occupancy rate. The distance between the current occupancy rate and the mean value of the occupancy rate is equal to the current occupancy rate subtracting the mean value of occupancy rates fromts-1tots-6.

    Doi=O(i,ts)-E(Ots-1,…,Ots-6)

    (1)

    whereDoiis the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6;O(i,ts) is the occupancy rate atts;E(Ots-1,…,Ots-6) is the mean value of the occupancy rate fromts-1tots-6.

    IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, we assume that unitiis the upstream of the bottleneck.

    Doi=S(Ots-1,…,Ots-6)+α

    (2)

    whereS(Ots-1,…,Ots-6) is the variance of the occupancy rate fromts-1tots-6;αis the adjustment parameter.

    Based on the definition of a bottleneck, the downstream of the bottleneck is free flow, which means that there is a value difference between the upstream and downstream occupancy. Experiments show that regional differences have an impact on the critical value of the difference between the upstream and downstream occupancy. Data analysis is a common method to determine the critical value of difference, but the analysis process is very complicated. In order to make the parameter in this algorithm universal, we use an adjustment parameter. To speed up the process of bottleneck identification, we also use the mean value of occupancy rate fromts-1tots-6.

    The difference between the upstream and downstream occupancy rates equals the current occupancy rate at pointI, which subtracts the downstream occupancy rate. It should be noted that the value ofnin the following formula requires several further tests.

    P(ts)=O(i,ts)-O(i+n,ts)

    (3)

    whereP(ts) is the difference between the upstream occupancy rate and that of the downstream;O(i,ts) is the downstream occupancy rate at pointi;O(i+n,ts) is the occupancy rate,n=1, 2,…

    The critical value of difference after adjustment equals the difference between the upstream occupancy and the downstream occupancy, divided by the mean value of the occupancy rate fromts-1tots-6.

    Pr(ts)=P(ts)/E(ots-1,…,ots-6)

    (4)

    wherePr(ts) is the critical value of difference after adjustment;E(ots-1,…,ots-6) represents the mean value of the occupancy rate fromts-1tots-6.

    The parameteriin Eq.(3) is defined as the section of pavement units when identifying the location of the bottleneck. The value ofiequals the longitudinal space of loop detectors, which is 20 or 50 m on the expressway.

    The parametertis defined as the data aggregation level. The original loop detector data is collected every 20 s, which is highly volatile. Different data aggregation levels can affect the promptness and accuracy of the algorithm. So the original loop detector data should be facilitated aggregation before being used in the algorithm. Details will be discussed in the following section.

    Fig.1 shows the process of bottleneck automatic identification.

    Fig.1 The process of bottleneck automatic identification

    As shown in Fig.1, the first step of the bottleneck identification algorithm is to divide the road section into several units and to determine data aggregation level. Then, the critical rate of flow is calculated. After preprocessing,f(i,t) is compared with the critical rate. Iff(i,t) is greater, the process of bottleneck identification can start. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of occupancy rateDoiwith the variance of the occupancy rate. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of bottleneck. The other is to identify the downstream of bottleneck by calculatingPr(ts). IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of bottleneck.

    1.3 Evaluation model

    The accuracy of this automatic recognition algorithm of the bottleneck should be determined by three aspects. The first aspect is the percentage of the bottleneck points that can be recognized at all the bottleneck points; the second is the percentage of “fake bottleneck points” in the bottleneck points that are recognized; and the third is the time interval of the date which can also influence the sensitivity of the algorithm. In practice, regional differences make it difficult to balance the failure of recognizing the real bottleneck points and the mistaken recognition of “fake bottleneck points”. So the optimal choice of parameters depends on the user’s choice of a composite score function that takes the relative costs of missed bottlenecks and false alarms into account.

    The percentage of the bottleneck points recognized equals the number of the bottleneck points which have been recognized divided by the number of the total bottleneck points. While the percentage of “fake bottleneck points” equals the number of the fake bottleneck points which have been recognized, divided by the number of the total bottleneck points which have also been recognized.

    (5)

    whereTis the percentage of the bottleneck points recognized;tbis the number of the bottleneck points which have been recognized;nbrepresents the number of the whole bottleneck points.

    (6)

    whereFmeans the percentage of “fake bottleneck points”;fbis the number of the fake bottleneck points which have been mistaken;ibis the number of the total bottleneck points which have been recognized.

    The accuracy of this automatic recognition algorithm of bottleneck can be calculated as

    S=β(αTT-αFF)

    (7)

    whereSis the accuracy of this automatic recognition algorithm of the bottleneck;βis the correction coefficient determined by the time interval;αTis the penalty weight of the success rate;αFis the penalty weight of the false-alarm rate.

    2 Actual Analysis

    One-week (from Sept 21 to Sept 27, 2012) loop detector data on the Shanghai Inner Ring Viaduct (5:00—11:00, 14:00—20:00) were obtained from the Shanghai Transportation Operation Department. The research scope starts from Dabaishu and runs to Guangzhong Road.

    The first step of the bottleneck identification algorithm is to divide the road sections into several units and determine the data aggregation level. In this research, the number of road units is determined by the spacing of loop detectors. If the loop detector data is aggregated into 1-min data, the algorithm should be restricted by some additional conditions. For example, a sustained bottleneck filter is added to smooth the results of the algorithm. This filter discards false positives that are isolated in the time dimension from other detections at the same location.

    It can be seen from Fig.1 that when loop detector data is aggregated into 3-min data sets, the upstream occupancy remains greater than the downstream occupancy but the difference in values fluctuates greatly. To obtain higher recognition rate, the difference between the upstream and downstream occupancy should be set to be small, which will increase the possibility of false alarm bottlenecks. Then we facilitate further aggregation into 5-min and 10-min data sets. As Figs.2(b) and (c) show, the occupancy rates in bottlenecks (Oi) remain stable.

    (a)

    (b)

    (c)

    Based on the above analysis, we conclude that the smaller time interval leads to higher sensitivity. Experiments show that 5-min aggregation data fits the algorithm best.

    In Tab.1, criticalV/Cratio is 0.83 when the level of service is C and the design speed is 80 km/h. Then,fHVis 0.9. The design capacity of the Shanghai Inner Ring Viaduct is 1 800 (pcu·h-1)/lane. Thus, the final critical flow rate in 5 min is 108 pcu.

    Then we input the 5-min data sets to Matlab. When the flow rate is greater than 108 pcu, the algorithm starts. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of the bottleneck. IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of the bottleneck.

    The session is identified by Matlab in a space-time distribution airstrip, as shown in Fig.3.

    Fig.3 Bottleneck identified with the algorithm

    Fig.3 presents the bottleneck locations identified which are marked with the triangles. In this analysis, three severe bottleneck locations were found.

    The point where No.56 loop detector is located becomes congested at 6:55, giving rise to congestion and vehicle delays between the No.55 loop detector and No.56 loop detector. The occupancy rate starts to decrease at 9:20, which means that the congestion has started to be relieved. The road section between the No.56 loop detector and No.58 loop detector is free flow between 6:00 and 6:35. Then the occupancy rate begins to increase and the point where the No.58 loop detector is located becomes congested at 7:10. The occupancy rate begins to decrease at 8:40. Finally, the road section has free flow at 9:45.

    3 Evaluation

    In section 2, we analyze the distribution of the bottleneck in time and space through identifying bottleneck locations and their activation and deactivation periods. On the other hand, we are informed of the real distribution of bottlenecks through video data. Based on this, the accuracy of the proposed algorithm is confirmed. The evaluation consists of a series of indices, including the detection rateTand the false alarm rateF.

    It can be seen from Tab.2 that the proposed algorithm has a reasonable detection performance compared to other methods. Otherwise, the percentage of fake bottleneck points is 0.1. The critical flow rate and the occupancy threshold value are decreased to increaseT. The parameter values can be optimized to decreaseFin application.

    Tab.2 Evaluation results of the proposed algorithm

    The proposed algorithm also outperforms previous cumulative curve methods in terms of precision and identification efficiency. In the cumulative curve method, each identification process is subject to interference by earlier data. In the proposed algorithm, the identifying process is only determined by the current data.

    4 Conclusion

    1) The statistical analysis of loop detector data shows that the flow rate and occupancy are more reliable parameters than speed for bottleneck identification, excluding affection by speed limits.

    2) Loop detector data should be aggregated before the identification process. Experiments show that a 5-min aggregation data fits the algorithm best.

    3) A bottleneck identification algorithm based on the flow rate and occupancy is proposed. The proposed algorithm includes the trigger variable, the identification process and the evaluation model. The algorithm reduces the influence of road conditions and data error by parameter optimization. The results show that the proposed algorithm has a good performance in improving the accuracy of bottleneck identification.

    4) Although the results are encouraging, a number of extensions to the algorithm need to be studied. Further research should be carried out to validate this algorithm on other types of roads. Note also that the original loop detectors data should be aggregated before analysis and that we need toseek a better method of data aggregation to increase the speed of the algorithm.

    [1]Chung K, Rudjanakanoknad J, Cassidy M J. Relation between traffic density and capacity drop at three freeway bottlenecks[J].TransportationResearchPartB:Methodological, 2007, 41(1): 82-95.

    [2]Banks J H. Review of empirical research on congested freeway flow[J].TransportationResearchRecord, 2002, 1802: 225-232.

    [3]Cassidy M J, Windover J R. Methodology for assessing dynamics of freeway traffic flow[J].TransportationResearchRecord, 1995(1484): 73-79.

    [4]Bertini R L, Myton A. Using PeMS data to empirically diagnose freeway bottleneck locations in Orange County, California[J].TransportationResearchRecord, 1925, 2005: 48-57.

    [5]Shoraka M, Puan O C. Review of evaluating existing capacity of weaving segments[J].InternationalJournalofCivilandStructuralEngineering, 2010, 1(3): 683-694.

    [6]Coifman B, Mishalani R, Wang C, et al. Impact of lane-change maneuvers on congested freeway segment delays: pilot study [J].TransportationResearchRecord, 2006, 1965: 152-159.

    [7]Cassidy M J, Mauch M. An observed traffic pattern in long freeway queues[J].TransportationResearchPartA:PolicyandPractice, 2001, 35(2): 143-156.

    [8]Kumar R, Wolenetz M, Agarwalla B, et al. DFuse:a framework for distributed data fusion[C]//Proceedingsofthe1stInternationalConferenceonEmbeddedNetworkedSensorSystems. Los Angeles, CA, USA, 2003:114-125.

    [9]Newell G F. A simplified car-following theory: a lower order model[J].TransportationResearchPartB:Methodological, 2002, 36(3): 195-205.

    [10]Cassidy M J. Bivariate relations in nearly stationary highway traffic[J].TransportationResearchPartB:Methodological,1998, 32(1): 49-59.

    基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法

    王超楠 李文權(quán) 童小龍 陳 晨

    (東南大學(xué)交通學(xué)院, 南京 210096)

    提出了一種基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法.算法以臨界流量作為算法的觸發(fā)變量,根據(jù)道路條件、服務(wù)水平和大型車比例計(jì)算臨界流量.算法的識別程序包括2部分:首先通過計(jì)算當(dāng)前占有率與前時(shí)刻占有率的相對差值來判定瓶頸點(diǎn)上游位置;然后通過計(jì)算上游占有率與下游占有率的相對差值確定瓶頸點(diǎn)下游的位置.此外,提出了基于數(shù)據(jù)集計(jì)周期、瓶頸點(diǎn)識別率和誤判率的算法性能評價(jià)方法.利用上海市內(nèi)環(huán)高架大柏樹-廣中路段的線圈數(shù)據(jù)進(jìn)行試驗(yàn),結(jié)果表明,瓶頸點(diǎn)自動(dòng)識別算法在準(zhǔn)確率和效率上有顯著提高.

    瓶頸點(diǎn);線圈數(shù)據(jù);占有率;流量

    U491.2

    Received 2014-02-22.

    Biographies:Wang Chaonan (1990—), female, graduate; Li Wenquan(corresponding author), male, doctor, professor, wenqli@seu.edu.cn.

    :Wang Chaonan, Li Wenquan, Tong Xiaolong, et al. An automatic identification algorithm for freeway bottleneck based on loop detector data[J].Journal of Southeast University (English Edition),2014,30(4):495-499.

    10.3969/j.issn.1003-7985.2014.04.016

    10.3969/j.issn.1003-7985.2014.04.016

    猜你喜歡
    占有率自動(dòng)識別瓶頸
    數(shù)據(jù)參考
    自動(dòng)識別系統(tǒng)
    特別健康(2018年3期)2018-07-04 00:40:18
    微軟領(lǐng)跑PC操作系統(tǒng)市場 Win10占有率突破25%
    突破霧霾治理的瓶頸
    金屬垃圾自動(dòng)識別回收箱
    基于IEC61850的配網(wǎng)終端自動(dòng)識別技術(shù)
    電測與儀表(2016年6期)2016-04-11 12:06:38
    突破瓶頸 實(shí)現(xiàn)多贏
    滁州市中小學(xué)田徑場地現(xiàn)狀調(diào)查與分析
    9月服裝銷售疲軟
    中國服飾(2014年11期)2015-04-17 06:48:50
    如何渡過初創(chuàng)瓶頸期
    国产高清视频在线观看网站| 九九爱精品视频在线观看| 久久精品国产鲁丝片午夜精品| 日日摸夜夜添夜夜添av毛片| 欧美一区二区精品小视频在线| 国产精品一及| 一边摸一边抽搐一进一小说| 亚洲国产精品国产精品| .国产精品久久| 91av网一区二区| 久久久久久国产a免费观看| 99riav亚洲国产免费| 久久草成人影院| 18+在线观看网站| 一进一出抽搐gif免费好疼| www.色视频.com| 嫩草影院新地址| 久久99热6这里只有精品| 免费人成在线观看视频色| 国产精品一区二区在线观看99 | 内射极品少妇av片p| 99久久久亚洲精品蜜臀av| 久久久久久久久久黄片| 国内精品宾馆在线| 免费观看精品视频网站| 日韩人妻高清精品专区| 日韩强制内射视频| 青春草国产在线视频 | 免费不卡的大黄色大毛片视频在线观看 | 最好的美女福利视频网| 欧美日韩乱码在线| 亚洲av不卡在线观看| 自拍偷自拍亚洲精品老妇| 成年女人永久免费观看视频| 韩国av在线不卡| 国产伦精品一区二区三区四那| 国产精品一区二区性色av| 免费不卡的大黄色大毛片视频在线观看 | 久久精品国产亚洲av香蕉五月| 亚洲七黄色美女视频| 亚洲精品456在线播放app| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说 | 国产成人a∨麻豆精品| 99久国产av精品| 内射极品少妇av片p| 国产一区二区三区av在线 | 女同久久另类99精品国产91| 国产一区亚洲一区在线观看| 能在线免费观看的黄片| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 美女黄网站色视频| 成人av在线播放网站| 啦啦啦观看免费观看视频高清| 午夜福利在线观看免费完整高清在 | 亚洲精品456在线播放app| 成人永久免费在线观看视频| avwww免费| 一个人观看的视频www高清免费观看| 老司机福利观看| 婷婷亚洲欧美| 在线免费观看的www视频| 一本久久中文字幕| 亚洲三级黄色毛片| 午夜福利在线在线| av视频在线观看入口| 成人亚洲精品av一区二区| 岛国毛片在线播放| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 中文资源天堂在线| 男女下面进入的视频免费午夜| 日韩av在线大香蕉| 久久久a久久爽久久v久久| 亚洲人成网站在线播放欧美日韩| 又粗又硬又长又爽又黄的视频 | 夫妻性生交免费视频一级片| 国产精品一区二区三区四区久久| 秋霞在线观看毛片| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看| 听说在线观看完整版免费高清| 欧美色欧美亚洲另类二区| 久久亚洲国产成人精品v| 欧美日本亚洲视频在线播放| 一个人观看的视频www高清免费观看| 亚洲不卡免费看| 欧美最新免费一区二区三区| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 免费av观看视频| 久久99精品国语久久久| 性插视频无遮挡在线免费观看| 蜜桃久久精品国产亚洲av| .国产精品久久| 丰满人妻一区二区三区视频av| 午夜福利视频1000在线观看| 中文字幕av在线有码专区| 亚洲精品久久久久久婷婷小说 | 日本一二三区视频观看| 欧美最黄视频在线播放免费| 国产亚洲5aaaaa淫片| 我要搜黄色片| 亚洲天堂国产精品一区在线| 国产女主播在线喷水免费视频网站 | 亚洲成人久久性| 有码 亚洲区| 国产黄色视频一区二区在线观看 | 2021天堂中文幕一二区在线观| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 午夜福利在线观看免费完整高清在 | 亚洲图色成人| av在线蜜桃| a级毛片a级免费在线| 国产69精品久久久久777片| 亚洲最大成人中文| 日韩制服骚丝袜av| av女优亚洲男人天堂| 看黄色毛片网站| 欧美日韩在线观看h| 99国产精品一区二区蜜桃av| 联通29元200g的流量卡| eeuss影院久久| 亚洲婷婷狠狠爱综合网| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 久久午夜福利片| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 欧美激情在线99| 老师上课跳d突然被开到最大视频| 麻豆久久精品国产亚洲av| 综合色av麻豆| 亚洲国产精品国产精品| 国产av在哪里看| 69av精品久久久久久| 老女人水多毛片| 国产高潮美女av| 一级毛片久久久久久久久女| 久久久久久久亚洲中文字幕| av在线观看视频网站免费| 欧美zozozo另类| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 一级二级三级毛片免费看| 成熟少妇高潮喷水视频| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 国产一级毛片在线| 国产高潮美女av| 我要搜黄色片| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验 | 国产成人精品一,二区 | 老师上课跳d突然被开到最大视频| 国产精品综合久久久久久久免费| 免费观看人在逋| 啦啦啦啦在线视频资源| 中文亚洲av片在线观看爽| 成年女人永久免费观看视频| 亚洲国产精品久久男人天堂| 国产极品天堂在线| 一夜夜www| 又爽又黄a免费视频| 22中文网久久字幕| 天美传媒精品一区二区| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久 | 欧美一级a爱片免费观看看| 天天躁夜夜躁狠狠久久av| а√天堂www在线а√下载| 亚洲天堂国产精品一区在线| 免费观看a级毛片全部| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 一区福利在线观看| 一级黄片播放器| 国产精品一区二区在线观看99 | 亚洲精品日韩在线中文字幕 | 一区二区三区高清视频在线| 日本免费a在线| 级片在线观看| 精品人妻视频免费看| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 日韩中字成人| 韩国av在线不卡| 三级男女做爰猛烈吃奶摸视频| 亚洲精品粉嫩美女一区| 精品久久久久久成人av| 国产极品天堂在线| 久久久久九九精品影院| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| 夜夜看夜夜爽夜夜摸| 激情 狠狠 欧美| 在线播放国产精品三级| av免费观看日本| 国产亚洲精品久久久com| 在线播放无遮挡| 久久精品国产清高在天天线| 日韩一区二区三区影片| 亚洲中文字幕一区二区三区有码在线看| 偷拍熟女少妇极品色| 99久久成人亚洲精品观看| 男女啪啪激烈高潮av片| 午夜免费激情av| 成人永久免费在线观看视频| 男女边吃奶边做爰视频| 国产高清三级在线| 国产精品av视频在线免费观看| 狂野欧美白嫩少妇大欣赏| .国产精品久久| 亚洲最大成人av| 午夜久久久久精精品| 久久99精品国语久久久| 能在线免费观看的黄片| 亚洲中文字幕日韩| 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 亚州av有码| 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 成人永久免费在线观看视频| 97在线视频观看| 亚洲图色成人| eeuss影院久久| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 麻豆国产97在线/欧美| 99热这里只有精品一区| 亚洲av中文av极速乱| 最后的刺客免费高清国语| 亚洲性久久影院| 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 一级黄色大片毛片| av视频在线观看入口| 天堂av国产一区二区熟女人妻| 国产成人91sexporn| 啦啦啦啦在线视频资源| 国产精品久久久久久亚洲av鲁大| 欧美色视频一区免费| 三级经典国产精品| 69人妻影院| 国产在线男女| 九色成人免费人妻av| 色尼玛亚洲综合影院| 只有这里有精品99| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 中国美女看黄片| 国产免费男女视频| av在线天堂中文字幕| 国产成人a区在线观看| 欧美bdsm另类| 99久国产av精品| 久久精品人妻少妇| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放 | 51国产日韩欧美| 熟女电影av网| av卡一久久| 国产伦理片在线播放av一区 | 国产大屁股一区二区在线视频| 国产真实伦视频高清在线观看| 人妻少妇偷人精品九色| 成人毛片60女人毛片免费| videossex国产| 欧美+日韩+精品| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 精品国产三级普通话版| 精品日产1卡2卡| 日韩精品青青久久久久久| 日本欧美国产在线视频| 欧美三级亚洲精品| 一本久久精品| 亚洲人成网站在线播放欧美日韩| 亚洲精品久久国产高清桃花| 亚洲av二区三区四区| 免费观看人在逋| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 啦啦啦观看免费观看视频高清| www.色视频.com| 中文字幕制服av| 国产亚洲5aaaaa淫片| 成人性生交大片免费视频hd| 精品午夜福利在线看| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 色视频www国产| 欧美一区二区精品小视频在线| 亚洲va在线va天堂va国产| 久久久久国产网址| 狠狠狠狠99中文字幕| 国产亚洲精品av在线| 99在线人妻在线中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 最新中文字幕久久久久| 欧美成人免费av一区二区三区| 日日啪夜夜撸| 99热全是精品| 此物有八面人人有两片| 51国产日韩欧美| 身体一侧抽搐| 精品欧美国产一区二区三| 国产精品1区2区在线观看.| 嫩草影院新地址| 国产亚洲精品av在线| 精品久久国产蜜桃| 免费观看精品视频网站| 国产国拍精品亚洲av在线观看| 日韩欧美国产在线观看| 久久精品国产清高在天天线| av黄色大香蕉| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧洲日产国产| 亚洲av中文字字幕乱码综合| 床上黄色一级片| 亚洲av成人精品一区久久| 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 国产极品天堂在线| 国产精品一二三区在线看| 欧美精品一区二区大全| 久久国内精品自在自线图片| 亚洲欧美精品自产自拍| 一本一本综合久久| 欧美精品一区二区大全| 最近的中文字幕免费完整| 12—13女人毛片做爰片一| 午夜精品在线福利| 悠悠久久av| 国产片特级美女逼逼视频| av.在线天堂| 午夜老司机福利剧场| av福利片在线观看| 最近手机中文字幕大全| 身体一侧抽搐| 一进一出抽搐动态| 日本五十路高清| 国产中年淑女户外野战色| 欧美一区二区精品小视频在线| 99在线视频只有这里精品首页| 寂寞人妻少妇视频99o| 国内精品宾馆在线| 亚洲成人久久性| av女优亚洲男人天堂| 国产女主播在线喷水免费视频网站 | 国产成年人精品一区二区| 免费看日本二区| 永久网站在线| 在现免费观看毛片| 成人特级黄色片久久久久久久| 久久综合国产亚洲精品| 国产在线男女| 偷拍熟女少妇极品色| 91狼人影院| 我要搜黄色片| 99久久九九国产精品国产免费| 日韩av在线大香蕉| 国产老妇女一区| 亚洲va在线va天堂va国产| 全区人妻精品视频| 1024手机看黄色片| 22中文网久久字幕| 夜夜夜夜夜久久久久| 中文欧美无线码| 一级av片app| 哪个播放器可以免费观看大片| 又爽又黄无遮挡网站| 日本色播在线视频| 亚洲图色成人| 国产成年人精品一区二区| 日韩视频在线欧美| 国产视频首页在线观看| 特级一级黄色大片| 色播亚洲综合网| 国产精品一区二区在线观看99 | 美女黄网站色视频| 联通29元200g的流量卡| 噜噜噜噜噜久久久久久91| 91精品一卡2卡3卡4卡| 听说在线观看完整版免费高清| av在线亚洲专区| 国产黄色小视频在线观看| 国内精品一区二区在线观看| 美女内射精品一级片tv| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 又粗又爽又猛毛片免费看| 国产视频内射| 国产一区二区在线观看日韩| 精品久久久久久久久久久久久| 国产私拍福利视频在线观看| 国产成人精品一,二区 | 亚洲av二区三区四区| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇av免费看| 乱系列少妇在线播放| 亚洲精品日韩在线中文字幕 | 久久精品国产清高在天天线| 免费观看精品视频网站| 舔av片在线| 免费看光身美女| 99久久无色码亚洲精品果冻| 亚洲电影在线观看av| 在线免费十八禁| 日韩精品青青久久久久久| 成年免费大片在线观看| 最新中文字幕久久久久| 亚洲人成网站高清观看| 91久久精品国产一区二区三区| 日日摸夜夜添夜夜添av毛片| 丝袜美腿在线中文| 欧美三级亚洲精品| 美女 人体艺术 gogo| 国产三级中文精品| 如何舔出高潮| 色吧在线观看| 国产激情偷乱视频一区二区| 在线观看美女被高潮喷水网站| 黄色一级大片看看| 国产亚洲精品久久久com| 久久热精品热| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 国产在视频线在精品| 亚洲国产欧洲综合997久久,| 国产黄色视频一区二区在线观看 | 深爱激情五月婷婷| 国语自产精品视频在线第100页| 一本久久精品| 日韩av不卡免费在线播放| 啦啦啦啦在线视频资源| 菩萨蛮人人尽说江南好唐韦庄 | 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 99在线视频只有这里精品首页| 99国产极品粉嫩在线观看| 极品教师在线视频| 久久久久久久久久黄片| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区成人| 一级黄色大片毛片| 国产成人aa在线观看| 深夜a级毛片| 亚洲国产精品国产精品| 国产精品三级大全| 日韩视频在线欧美| 国产成年人精品一区二区| 国产色爽女视频免费观看| av免费观看日本| 久久九九热精品免费| 看免费成人av毛片| 国产黄色小视频在线观看| 特级一级黄色大片| 在线观看美女被高潮喷水网站| 一级毛片aaaaaa免费看小| 中文精品一卡2卡3卡4更新| 亚洲久久久久久中文字幕| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 亚洲一级一片aⅴ在线观看| 免费一级毛片在线播放高清视频| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| 能在线免费观看的黄片| 国产一区二区在线观看日韩| 成人美女网站在线观看视频| 久久综合国产亚洲精品| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 成人漫画全彩无遮挡| 国产精品1区2区在线观看.| 成人av在线播放网站| 哪个播放器可以免费观看大片| 国产大屁股一区二区在线视频| 成人特级av手机在线观看| 国产精品国产高清国产av| 国产精品嫩草影院av在线观看| 午夜福利在线在线| 高清在线视频一区二区三区 | 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 亚洲国产精品成人久久小说 | 最近最新中文字幕大全电影3| 久久久久久国产a免费观看| 亚洲欧美日韩东京热| 美女cb高潮喷水在线观看| 国产精品久久久久久亚洲av鲁大| 免费黄网站久久成人精品| 国产亚洲91精品色在线| 亚洲在久久综合| 午夜免费激情av| 神马国产精品三级电影在线观看| 亚洲久久久久久中文字幕| 又粗又硬又长又爽又黄的视频 | 久久久精品94久久精品| 欧美不卡视频在线免费观看| 麻豆国产av国片精品| 深夜a级毛片| 久久久a久久爽久久v久久| 激情 狠狠 欧美| .国产精品久久| 熟女人妻精品中文字幕| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 极品教师在线视频| 麻豆国产97在线/欧美| 国产精品乱码一区二三区的特点| 亚洲最大成人手机在线| 91aial.com中文字幕在线观看| 国产综合懂色| 我要搜黄色片| 亚洲一区二区三区色噜噜| 嘟嘟电影网在线观看| 波多野结衣高清作品| 在线国产一区二区在线| 午夜福利在线观看吧| 日韩一本色道免费dvd| 亚洲不卡免费看| 亚洲无线在线观看| 欧美日韩综合久久久久久| 狂野欧美白嫩少妇大欣赏| 99久久精品热视频| 国产精品不卡视频一区二区| 国产成人影院久久av| 亚洲欧美精品专区久久| 久久久精品大字幕| 亚洲av第一区精品v没综合| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影 | 丝袜喷水一区| 日本av手机在线免费观看| 人妻夜夜爽99麻豆av| 午夜精品国产一区二区电影 | 亚洲欧美日韩高清在线视频| av视频在线观看入口| 午夜福利高清视频| 亚洲美女搞黄在线观看| 国产一区二区三区在线臀色熟女| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 国产成人精品婷婷| 国产精品.久久久| 午夜激情欧美在线| av免费在线看不卡| 熟妇人妻久久中文字幕3abv| 国产精品嫩草影院av在线观看| eeuss影院久久| 亚洲av中文字字幕乱码综合| 成人无遮挡网站| 久久99蜜桃精品久久| 久久久精品大字幕| 免费人成视频x8x8入口观看| 国产精品久久久久久亚洲av鲁大| 国产 一区 欧美 日韩| 精品免费久久久久久久清纯| 国产精品综合久久久久久久免费| 99久久人妻综合| 听说在线观看完整版免费高清| 精品熟女少妇av免费看| 中文字幕制服av| 欧美性猛交黑人性爽| 熟女电影av网| 晚上一个人看的免费电影| 欧美一区二区国产精品久久精品| 亚洲人成网站在线播放欧美日韩| 男人狂女人下面高潮的视频| 亚洲精品粉嫩美女一区| 在线a可以看的网站| 女人被狂操c到高潮| 国产黄a三级三级三级人| av天堂中文字幕网| 又爽又黄无遮挡网站| 有码 亚洲区| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 精品久久国产蜜桃| 九九在线视频观看精品| 欧美成人精品欧美一级黄| 一级毛片电影观看 | 国产亚洲5aaaaa淫片| 精品久久久噜噜| 一个人观看的视频www高清免费观看| 2022亚洲国产成人精品| 国产成人a区在线观看| 毛片一级片免费看久久久久| 国产极品天堂在线| 国内精品久久久久精免费| 亚洲五月天丁香| 亚洲国产精品sss在线观看| 麻豆一二三区av精品| 男人的好看免费观看在线视频| 久久精品久久久久久噜噜老黄 |