• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical chiral symmetry breaking in QED3

    2014-09-06 10:49:51ZhouYuqing
    關(guān)鍵詞:費(fèi)米子費(fèi)米數(shù)值

    Zhou Yuqing

    (Department of Physics, Southeast University, Nanjing 211189, China)

    ?

    Dynamical chiral symmetry breaking in QED3

    Zhou Yuqing

    (Department of Physics, Southeast University, Nanjing 211189, China)

    In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge, a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics(QED), and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it. By using the propagators in the Nambu and Wigner phases under various gauges, it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters. These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.

    propagator; covariant gauge; 3D quantum electrodynamics(QED); equivalent pressure difference; fermion condensation; chiral phase transition

    Gauge fields play a basic role in particle physics. According to theoretical physics, all the physical results should be independent of the gauge parameter. The results show this to be true at every level of approximation in perturbation theory, while this has not been successfully demonstrated in general in the non-perturbative case. Within the framework of strong correlation, the system shows dynamical chiral symmetry breaking (DCSB), where the massless fermion gains a nonzero mass. In addition, all of the information about the system can be obtained from the propagators. Therefore, it is necessary to study the idiographic behavior of propagators and the influence of the covariant gauge on behavior in a non-perturbative theory.

    To understand the propagators, we invoke the Dyson-Schwinger (DS) equations for fermion and boson propagators. As is well known, there are two solutions for the DS equations for the fermion propagator, namely, the Nambu and Wigner solutions. In the chiral limit, the Nambu solution corresponds to the chirally broken phase while the Wigner solution corresponds to the chirally symmetric phase. We believe that the Nambu solution is the solution that is realized in the real world. Several studies[1-3]have shown that the Nambu solution occurs only with fermion flavorsNless than a critical valueNc, but none of them has shown the Wigner solution atN

    (1)

    whereξis the covariant gauge parameter. We use four-component spinors for the fermions, and accordingly, a four-dimensional representation for theγmatrices. QED3has many features similar to QCD in 3+1 dimensions. QED3is known to have a phase where the initial chiral symmetry of the theory is spontaneously broken, and it is also known that the fermions are confined to this phase. Moreover, QED3is super-renormalizable, and we can, therefore, avoid the ultraviolet divergences that are present in QED4. These are the basic reasons why QED3is regarded as an ideal toy model for non-perturbative theory. QED3is a possible candidate for the study of DCSB[1-13]and confinement[14-16]within a theory that is structurally much simpler than QCD, while sharing the same basic non-perturbative phenomena. Since the Dyson-Schwinger (DS) equations provide a powerful tool for resolving the propagators in non-perturbative theory, these coupled equations in QED3can be used to investigate our problem.

    1 Truncated Dyson-Schwinger Equations for Propagators

    From the Lagrangian (1) and DS equations for the fermion propagator, we derive

    (2)

    S-1(p)=iγ·pA(p2)+B(p2)

    (3)

    and obtain a function for wave-renormalizationA(p2),

    (4)

    and the fermion self-energyB(p2),

    (5)

    In addition, the DS equation satisfied by the polarization tensor for a photon is given by

    (6)

    The corresponding full photon propagator in a covariant gauge is

    (7)

    with the vacuum polarizationΠ(q2) defined by

    Πρν(q2)=(q2δρν-qρqν)Π(q2)

    (8)

    This vacuum polarization tensor has an ultraviolet divergence which is present only in the longitudinal component and can be removed by applying the projection operator

    (9)

    to project a finite value of vacuum polarization for it,Π(q2)[17].

    In principle, we can obtain the fermion and boson propagators from these coupled equations. Nevertheless, it is too complex to solve the DS equations because the necessary full fermion-photon vertexΓν(p,k) is unknown. Although several studies have attempted to resolve this problem, none are completely satisfactory[4,7-10,18-22].

    1.1 The rainbow approximation

    The simplest scheme for truncating the DS equation is the rainbow approximation. This structure plays the most dominant role in the full vertex in the high energy region and the full fermion-boson vertex reduces to it in a large momentum limit. Due to the complexity of QCD, many works on hadron physics have adopted this ansatz to analyze low energy behavior. We make use of it, although the tensor destroys the Ward-Takahashi identity (WTI). The pivotal functions for the propagators can then be written as

    (10)

    (11)

    (12)

    wherep=q+kandξ′(q2)=ξ[1+Π(q2)].

    1.2 Beyond the bare vertex

    Therefore, we write the truncated DS equations for propagators in a covariant gauge as follows:

    (13)

    (14)

    (15)

    2 Numerical Results

    First, we work within the Landau gauge. From the above DS equations for the fermion propagator, we find that the self-energy function has one trivial solution, i.e., the Wigner solution (B(p2)≡0). In the corresponding phase, the fermion remains massless and chiral symmetry is restored. Setting the original value ofB(p2)=0 andA(p2)=1,Π(q2)=1 in the rainbow approximation, we iterate the coupled functions to find stable results, and show these in Fig.1.

    (a)

    (b)

    The line in Fig.1 shows that the vector function of the inverse fermion propagator diminishes asp2→0, while the polarization of the boson reaches infinity asq2→0. Nevertheless, settingA(p2)=1 andΠ(q2)=1 reduces the single-iteration results at large momenta. This is because QED3is asymptotically free andS(p)→S0(p) in the high energy region.

    In addition to the Landau gauge, we also give the behavior of the propagators at several values ofξin Fig.1. It is shown that the behaviors of both the fermion and boson propagators here are different from those in the Landau gauge, whereA(p2) is divergent in the infrared limit. Asξis increased,A(p2) increases more and more rapidly whenp2decreases. Correspondingly,Π(q2) gives the opposite trend forξand, for a particular value ofξ, is not divergent and remains almost constant in the infrared region.

    Moving beyond the rainbow approximation and following the above method, we obtainA(p2),Π(q2) and show them in Fig.2. It is shown that, compared with the bare approximation, the truncated scheme changes the value of solutions at a fixedp2in the infrared region, but apparently does not change the gauge dependence of the fermion or boson propagator behavior.

    (a)

    (b)

    We next consider the Nambu phase. Eqs.(11) and (14) have nontrivial solutions whenB(p2)≠0. The original fermion acquires dynamical mass through the non-perturbative effect. We solve the coupled equations numerically for Eqs.(10) to (15) at several values ofξ.

    Starting withA(p2)≡1,B(p2)≡1, andΠ(q2)≡1, we iterate the three coupled equations until all three functions converge to a stable solution. The typical behavior of the three functionsA,B, andΠin the Nambu phase are plotted in Fig.3 in the rainbow approximation and Fig.4 by application of theBC1vertex. For a value ofξ, it is apparent that all three functions are almost constant in the low energy region.

    (a)

    (b)

    (c)

    Within a range of values ofξ, the infrared value ofA(p2) increases with the increase inξ. Correspondingly, the numerical results show a reversed trend for the infrared value of fermion self-energy and boson polarization withξin each truncated scheme for the DS equation. Nevertheless, the behavior ofA(p2) orΠ(q2) is independent ofξin the high energy region. However, compared with the rainbow approximation,B(p2), which is given beyond the rainbow approximation, appears to depend onξ. Certainly, for any value ofξ, a different truncated scheme has similar behavior but dissimilar numerical values for the three functions in the infrared region.

    (a)

    (b)

    (c)

    Comparing the two phases, we also find thatA(0)<1 in the Nambu phase corresponds to its infrared zero value in the Wigner phase, whileA(0) diverges in the Wigner phase whenΠ(0) reaches a finite value in this covariant gauge theory.

    3 Physical Phase

    The fermion condensate is defined trivially as

    (16)

    In principle, this physical value is independent of the gauge parameter[25-27]. Adopting the above Nambu phase results for the rainbow approximation, we obtain the fermion condensate values and plot them in Fig.5. We find that the value appears to depend on the gauge parameter consequently.

    Fig.5 Gauge dependence of the condensate in the rainbow approximation

    It is easily proved that the rainbow approximation destroys the Ward-Takahashi identity. However, although the value in this figure depends onξ, we see that this condensate is always larger than zero and we learn that the chiral symmetry is broken.

    On the other hand, the Wigner solution gives zero fermion condensate and the chiral symmetry is restored. For anyξ, the Nambu and Wigner solutions are obtained from the same DS equations. The solution that is realized in the real world should be determined. We should compare the effective pressurePbetween the two phases, and the physical one will correspond to the largerPvalue. The effective pressure is given by[28]

    (17)

    Since theΓ2is known only in the rainbow approximation andΓ2=0, we adopt the first term in the last equation to study the phase transition. To indicate the real phase, we define the order parameterΔ=PN-PW.

    It is found that with the increase inξ,Δdecreases and becomes less than 0 whenξreaches the valueξp=9.8(see Fig.6).

    4 Conclusion

    Based on the truncated DS equations applied to the fermion propagator, we have found solutions for both the fermion and boson propagators for several covariant gauges in the Nambu and Wigner phases. Numerical results show that the gauge parameter appears to affect the behavior of the fermion and boson propagators in the low energy region. Apart from the fermion self-energy, the other two functions are minimally affected in the high energy regions for both phases.

    Fig.6 Order parameter at different ξvalues

    In addition to the Landau gauge, the DS equations also provide the monotonic functions forA(p2) andΠ(q2) at several values ofξ. To the best of current knowledge, beyond the Landau gauge, the solutions for the fermion and boson propagators in the Wigner phase are presented in this paper for the first time. With the increase inξ, the infrared value ofAchanges from being zero to a divergent function, while the infrared value ofΠreduces to a constant that decreases withξbut does not completely diminish. We argue that there may be a value ofξfor which the infrared value ofAlies between zero and infinity. However, this value ofξhas not been found in the familiar gauge selected.

    In addition, the effective potential gives a different result around the chiral phase transition from the condensate, which implies that the two order parameters for the chiral phase transition might be self-inconsistent.

    [1]Appelquis T, Nash D, Wijewardhana L C R. Critical-behavior in (2+1)-dimensional QED[J].PhysicalReviewLetters, 1988, 60(25): 2575-2578.

    [2]Nash D. Higher-order corrections in (2+1)-dimensional QED[J].PhysicalReviewLetters, 1989, 62(26): 3024-3026.

    [3]Maris P. Influence of the full vertex and vacuum polarization on the fermion propagator in (2+1)-dimensional QED[J].PhysicalReviewD, 1996, 54(6): 4049-4058.

    [4]Burden C J, Roberts C D. Light-cone regular vertex in 3-dimensional quenched QED [J].PhysicalReviewD, 1991, 44(2): 540-550.

    [5]Pisarski R D. Chiral-symmetry breaking in 3-dimensional electrodynamics[J].PhysicalReviewD, 1984, 29(10): 2423-2426.

    [6]Appelquist T W, Bowick M, Karabali D, et al. Spontaneous chiral-symmetry breaking in 3-dimensional QED[J].PhysicalReviewD, 1986, 33(12): 3704-3713.

    [7]Atkinson D, Johnson P W, Maris P. Dynamic mass generation in 3-dimensional QED-improved vertex function[J].PhysicalReviewD, 1990, 42S(2): 602-609.

    [8]Curtis D C, Pennington M, Walsh D. Dynamics mass generation in QED3and the 1/Nexpansion[J].PhysicsLettersB, 1992, 295(3/4):313-319.

    [9]Kondo K, Nakatani H. Cutoff dependence of self-consistent solutions in unquenched QED3[J].ProgressofTheoreticalPhysics, 1992, 87(1):193-206.

    [10]Bashir A, Raya A. Landau-Khalatnikov-Fradkin transformations and the fermion propagator in quantum electrodynamics[J].PhysicalReviewD, 2002, 66(10):105005.

    [11]Bashir A. Non-perturbative fermion propagator for the massless quenched QED3[J].PhysicsLettersB, 2000, 491(3/4):280-284.

    [12]Liu G Z, Cheng G. Effect of gauge boson mass on chiral symmetry breaking in three-dimensional QED[J].PhysicalReviewD, 2003, 67(6), 065010.

    [13]Feng H T, Sun W M, Hu F, et al. The influence of the gauge boson mass on the critical number of the fermion flavors in QED(3)[J].InternationalJournalofModernPhysicsA, 2005, 20(13):2753-2762.

    [14]Burden C J, Praschifka J, Roberts C D. Photon polarization tensor and gauge dependence in 3-dimensional quantum electrodynamics[J].PhysicalReviewD, 1992, 46(6):2695-2702.

    [15]Maris P. Confinement and complex singularities in 3-dimensional QED[J].PhysicalReviewD, 1995, 52(10): 6087-6097.

    [16]Herbut I F, Seradjeh B H. Permanent confinement in the compact QED3with fermionic matter[J].PhysicalReviewLetters, 2003, 91(17):171601.

    [17]Burden C J, Praschifka J, Roberts C D. Photon polarization tensor and gauge dependence in 3-dimensional quantum electrodynamics[J].PhysicalReviewD, 1992, 46(6): 2695-2702.

    [18]Fischer C S, Alkofer R, Dahm T, et al. Dynamical chiral symmetry breaking in unquenched QED3[J].PhysicalReviewD, 2004, 70(7):073007.

    [19]Simmons E H. Useful gauges for studying dynamic fermion mass generation in arbitrary space-time dimension[J].PhysicalReviewD, 1990, 42(8): 2933-2935.

    [20]Kondo K I, Maris P. First-order phase-transition in 3-dimensional QFD with chern-simons term[J].PhysicalReviewLetters, 1995, 74(1):18-21.

    [21]Gusynin V P, Hams A H, Reenders M. (2+1)-dimensional QED with dynamically massive fermions in vacuum polarization[J].PhysicalReviewD, 1996, 53(4):2227-2235.

    [22]King J E. Transverse vertex and gauge technique in quantum electrodynamics[J].PhysicalReviewD, 1983, 27(8):1821-1829.

    [23]Curtis D C, Pennington M R. Truncating the Schwinger-Dyson equations: how multiplicative renormalizability and the ward identity restrict the 3-point vertex in QED[J].PhysicalReviewD, 1990, 42(12): 4165-4169.

    [24]Ball J S, Chiu T W. Analytic properties of the vertex function in gauge-theories.I [J].PhysicalReviewD, 1980, 22(10): 2542-2549.

    [25]Haymaker R W. Variational-methods for composite-operators[J].RivistadelNuovoCimento,1991, 14(8):1-89.

    [26]Burden C J, Roberts C D. Gauge covariance and the fermion-photon vertex in 3-dimensional and 4-dimensional, massless quantum electrodynamics[J].PhysicalReviewD, 1993, 47(12):5581-5588.

    [27]Stam K. Dynamical chiral symmetry-breaking[J].PhysicsLettersB, 1985, 152(3/4): 238-240.

    [28]Cornwall J M, Jackiw R, Tomboulis E. Effective action for composite operators[J].PhysicalReviewD, 1974, 10(8):2428-2445.

    三維QED中的動(dòng)力學(xué)手征對稱破缺

    周雨青

    (東南大學(xué)物理系, 南京 211189)

    為了研究非微擾理論中的傳播子行為,以及協(xié)變規(guī)范對其行為的影響,以常用的截?cái)喾桨赶碌腄yson-Schwinger方程為基礎(chǔ),采用數(shù)值聯(lián)立求解的方法研究了三維量子電動(dòng)力學(xué)(QED)中的費(fèi)米子和玻色子的行為,并獲得了一系列不同規(guī)范下費(fèi)米傳播子在Nambu和Wigner相中的自洽解.對這些數(shù)值解的分析表明,遠(yuǎn)離Landau規(guī)范的紅外區(qū)處,傳播子行為明顯不同于Landau規(guī)范中的行為.基于Nambu和Wigner相中的不同規(guī)范下的傳播子,進(jìn)一步對等效壓力差和費(fèi)米凝聚隨規(guī)范參數(shù)的變化做了比較,結(jié)果表明,采用CJT等效勢描述的相變與手征凝聚描述的手征相變兩者之間不完全自洽.

    傳播子; 協(xié)變規(guī)范; 三維QED; 等效壓力差; 費(fèi)米凝聚; 手征相變

    O572.24;O413.2

    Received 2014-06-21.

    Biography:Zhou Yuqing (1961—), male, doctor,professor,zhou-yuqing@263.net.

    s:The National Natural Science Foundation of China (No.10947127), the Science Foundation of Southeast University(No.11047005),

    :Zhou Yuqing.Dynamical chiral symmetry breaking in QED3[J].Journal of Southeast University (English Edition),2014,30(4):544-549.

    10.3969/j.issn.1003-7985.2014.04.024

    10.3969/j.issn.1003-7985.2014.04.024

    猜你喜歡
    費(fèi)米子費(fèi)米數(shù)值
    費(fèi)米能區(qū)重離子反應(yīng)中對稱能系數(shù)的提取
    用固定數(shù)值計(jì)算
    用旋轉(zhuǎn)引力場分辨中微子的費(fèi)米子類型
    數(shù)值大小比較“招招鮮”
    費(fèi)米氣體光晶格模型的漸近軌線
    費(fèi)米:假裝是司機(jī)
    “三重簡并費(fèi)米子”的特點(diǎn)和發(fā)現(xiàn)的意義
    巧妙的實(shí)驗(yàn)設(shè)計(jì)“捕獲”馬約拉納費(fèi)米子(三)
    ——記上海交大領(lǐng)銜的科研團(tuán)隊(duì)成功捕獲馬約拉納費(fèi)米子的重大成果
    基于Fluent的GTAW數(shù)值模擬
    焊接(2016年2期)2016-02-27 13:01:02
    梯狀光晶格中自旋軌道耦合的排斥費(fèi)米氣體
    日本在线视频免费播放| 日本黄色视频三级网站网址| 村上凉子中文字幕在线| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 男女午夜视频在线观看| 露出奶头的视频| 大香蕉久久成人网| 亚洲人成网站高清观看| 夜夜看夜夜爽夜夜摸| 国产男靠女视频免费网站| 此物有八面人人有两片| 成人av一区二区三区在线看| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久男人| 国产精品美女特级片免费视频播放器 | 日本熟妇午夜| 国产又爽黄色视频| 国产高清有码在线观看视频 | 91麻豆av在线| 老司机在亚洲福利影院| 一级a爱片免费观看的视频| 亚洲狠狠婷婷综合久久图片| 久久久久久亚洲精品国产蜜桃av| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 亚洲中文av在线| 久9热在线精品视频| 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看 | 色老头精品视频在线观看| 91字幕亚洲| 哪里可以看免费的av片| 久9热在线精品视频| 我的亚洲天堂| 亚洲全国av大片| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 一级毛片精品| 精品高清国产在线一区| 黄网站色视频无遮挡免费观看| 亚洲片人在线观看| 国产成人影院久久av| 久久伊人香网站| 色老头精品视频在线观看| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全免费视频| 欧美另类亚洲清纯唯美| 国产乱人伦免费视频| 美女午夜性视频免费| 免费观看人在逋| 欧美丝袜亚洲另类 | 天堂影院成人在线观看| 国产精品亚洲一级av第二区| av中文乱码字幕在线| 色在线成人网| 麻豆国产av国片精品| 亚洲男人的天堂狠狠| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 精品国产乱码久久久久久男人| 三级毛片av免费| www.精华液| 日韩一卡2卡3卡4卡2021年| 女人被狂操c到高潮| 精品国内亚洲2022精品成人| 国产伦在线观看视频一区| 夜夜看夜夜爽夜夜摸| 岛国视频午夜一区免费看| 国产成人影院久久av| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 亚洲av成人av| 免费在线观看亚洲国产| 岛国在线观看网站| 免费av毛片视频| 一边摸一边抽搐一进一小说| 50天的宝宝边吃奶边哭怎么回事| 无限看片的www在线观看| 亚洲专区国产一区二区| 黄网站色视频无遮挡免费观看| 国产精品综合久久久久久久免费| 国产三级黄色录像| 在线av久久热| 超碰成人久久| 久久精品人妻少妇| 88av欧美| 亚洲欧美一区二区三区黑人| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 国产精品爽爽va在线观看网站 | 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 免费在线观看黄色视频的| 在线国产一区二区在线| 欧美av亚洲av综合av国产av| 午夜福利在线观看吧| 天堂影院成人在线观看| 999久久久国产精品视频| 色综合站精品国产| 久久草成人影院| 国产精品乱码一区二三区的特点| 嫩草影视91久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产av不卡久久| 亚洲性夜色夜夜综合| 禁无遮挡网站| 看片在线看免费视频| 男人舔奶头视频| 精品国产乱码久久久久久男人| xxxwww97欧美| 日韩欧美国产在线观看| 香蕉久久夜色| 国产一区二区三区视频了| 波多野结衣av一区二区av| 久久精品影院6| 久久天躁狠狠躁夜夜2o2o| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 亚洲精品色激情综合| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱码精品一区二区三区| 国产高清激情床上av| 十八禁人妻一区二区| 人人澡人人妻人| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 亚洲欧美精品综合久久99| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 国产成人一区二区三区免费视频网站| 亚洲国产精品合色在线| 中文字幕人妻丝袜一区二区| 午夜老司机福利片| 岛国在线观看网站| 黄色视频不卡| 亚洲国产精品久久男人天堂| 18禁观看日本| 免费搜索国产男女视频| 国内精品久久久久精免费| 好男人电影高清在线观看| 久久中文字幕人妻熟女| 国产成人啪精品午夜网站| 中文亚洲av片在线观看爽| 久久精品影院6| 夜夜夜夜夜久久久久| 欧美日韩瑟瑟在线播放| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 亚洲色图av天堂| 国产精品二区激情视频| 首页视频小说图片口味搜索| 少妇 在线观看| 在线天堂中文资源库| 欧美色欧美亚洲另类二区| 欧美国产精品va在线观看不卡| 男女做爰动态图高潮gif福利片| tocl精华| 欧美国产精品va在线观看不卡| 午夜免费观看网址| 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点| 亚洲成av片中文字幕在线观看| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 变态另类丝袜制服| www.精华液| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 久久这里只有精品19| 熟妇人妻久久中文字幕3abv| 久久精品国产清高在天天线| 两人在一起打扑克的视频| 国产精品98久久久久久宅男小说| 久久久水蜜桃国产精品网| av片东京热男人的天堂| 黄网站色视频无遮挡免费观看| 久久久久久久午夜电影| 99热这里只有精品一区 | 日本三级黄在线观看| 国产午夜福利久久久久久| 亚洲人成77777在线视频| 精品久久久久久成人av| 此物有八面人人有两片| 91国产中文字幕| 欧美乱码精品一区二区三区| 丰满的人妻完整版| 99热6这里只有精品| 欧美激情久久久久久爽电影| 一个人免费在线观看的高清视频| 最新美女视频免费是黄的| 婷婷精品国产亚洲av在线| 久久久久国内视频| 久久国产亚洲av麻豆专区| 丁香欧美五月| 国产色视频综合| 一本大道久久a久久精品| 亚洲,欧美精品.| e午夜精品久久久久久久| 国产精品免费视频内射| 日韩欧美免费精品| 精品久久久久久久久久免费视频| 巨乳人妻的诱惑在线观看| 亚洲色图 男人天堂 中文字幕| 国产免费男女视频| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 日韩欧美国产一区二区入口| 亚洲成av人片免费观看| 99国产精品一区二区三区| 亚洲久久久国产精品| 在线av久久热| 不卡一级毛片| 中亚洲国语对白在线视频| 波多野结衣巨乳人妻| 日韩欧美一区视频在线观看| e午夜精品久久久久久久| 午夜两性在线视频| 国产高清有码在线观看视频 | 亚洲专区字幕在线| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| 人人妻,人人澡人人爽秒播| 欧美成人一区二区免费高清观看 | 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情福利司机影院| 精品国产亚洲在线| 国产高清有码在线观看视频 | 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美精品永久| 国产精品免费视频内射| 亚洲中文av在线| 亚洲avbb在线观看| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 丝袜人妻中文字幕| 成人国产综合亚洲| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| 两个人免费观看高清视频| aaaaa片日本免费| 午夜两性在线视频| 亚洲av第一区精品v没综合| 看免费av毛片| 亚洲,欧美精品.| 中出人妻视频一区二区| 国产三级在线视频| tocl精华| av免费在线观看网站| 91成年电影在线观看| 在线播放国产精品三级| 一区福利在线观看| 精品欧美一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 黄色成人免费大全| 性色av乱码一区二区三区2| 国产精品野战在线观看| 长腿黑丝高跟| 男女那种视频在线观看| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 亚洲专区字幕在线| 精品久久久久久久毛片微露脸| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 国产精品亚洲av一区麻豆| 欧美一区二区精品小视频在线| 久久精品91无色码中文字幕| 国产乱人伦免费视频| 免费观看人在逋| 亚洲av中文字字幕乱码综合 | 99久久99久久久精品蜜桃| 中文字幕人妻丝袜一区二区| 久久热在线av| 免费av毛片视频| 色av中文字幕| 亚洲第一av免费看| 狂野欧美激情性xxxx| 91字幕亚洲| 欧美乱妇无乱码| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 日韩大尺度精品在线看网址| 欧美日本亚洲视频在线播放| 成人亚洲精品一区在线观看| 亚洲真实伦在线观看| 国产精品免费一区二区三区在线| 十八禁人妻一区二区| 黄片大片在线免费观看| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 给我免费播放毛片高清在线观看| 亚洲五月色婷婷综合| 久久久久久久精品吃奶| 亚洲专区字幕在线| 午夜亚洲福利在线播放| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 亚洲 欧美一区二区三区| 国产91精品成人一区二区三区| 色av中文字幕| 亚洲自拍偷在线| x7x7x7水蜜桃| 国产精品久久久久久亚洲av鲁大| 99热6这里只有精品| 亚洲成人久久性| 久久久久九九精品影院| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 人人澡人人妻人| 国产91精品成人一区二区三区| 午夜久久久在线观看| 精华霜和精华液先用哪个| 日韩一卡2卡3卡4卡2021年| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 不卡一级毛片| 欧美人与性动交α欧美精品济南到| 日韩中文字幕欧美一区二区| 一本久久中文字幕| 国产一级毛片七仙女欲春2 | 无遮挡黄片免费观看| 很黄的视频免费| 日韩免费av在线播放| 欧美成狂野欧美在线观看| 国产亚洲av高清不卡| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 91成年电影在线观看| 一级毛片精品| 国产精品爽爽va在线观看网站 | 天堂动漫精品| 国产99久久九九免费精品| 国产精品一区二区三区四区久久 | 婷婷六月久久综合丁香| 午夜成年电影在线免费观看| 国产蜜桃级精品一区二区三区| 欧美另类亚洲清纯唯美| 国产av一区二区精品久久| 亚洲av电影不卡..在线观看| 男女做爰动态图高潮gif福利片| 午夜久久久在线观看| 午夜a级毛片| 精品午夜福利视频在线观看一区| a级毛片在线看网站| 国产成人精品久久二区二区免费| a级毛片a级免费在线| 久久久久久久久中文| 久久香蕉国产精品| 99久久99久久久精品蜜桃| a级毛片a级免费在线| 亚洲国产欧美网| 欧美午夜高清在线| 国产成人一区二区三区免费视频网站| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 法律面前人人平等表现在哪些方面| 每晚都被弄得嗷嗷叫到高潮| 人成视频在线观看免费观看| 淫妇啪啪啪对白视频| 成人三级黄色视频| 大型av网站在线播放| 黄片播放在线免费| 女人高潮潮喷娇喘18禁视频| 91成年电影在线观看| 99热这里只有精品一区 | 精品一区二区三区四区五区乱码| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 国产视频一区二区在线看| 男人的好看免费观看在线视频 | 亚洲熟妇熟女久久| 久久 成人 亚洲| av有码第一页| 欧美日本视频| а√天堂www在线а√下载| 国产精品乱码一区二三区的特点| 母亲3免费完整高清在线观看| 激情在线观看视频在线高清| 亚洲精品久久国产高清桃花| 成人特级黄色片久久久久久久| 给我免费播放毛片高清在线观看| 国产爱豆传媒在线观看 | 男男h啪啪无遮挡| videosex国产| 成人永久免费在线观看视频| 国产成人精品无人区| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 精品国产亚洲在线| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美在线二视频| 在线永久观看黄色视频| 午夜免费鲁丝| 91成年电影在线观看| 香蕉久久夜色| 欧美在线一区亚洲| 国产视频一区二区在线看| 欧美乱妇无乱码| 久久久久久人人人人人| aaaaa片日本免费| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 88av欧美| 色综合婷婷激情| 日本免费a在线| 欧美日韩瑟瑟在线播放| 俺也久久电影网| 国产99白浆流出| 操出白浆在线播放| 无遮挡黄片免费观看| 99热这里只有精品一区 | 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 日本五十路高清| 欧美日韩一级在线毛片| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 亚洲国产中文字幕在线视频| 亚洲全国av大片| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 性欧美人与动物交配| 999久久久国产精品视频| 欧美黑人精品巨大| 两人在一起打扑克的视频| 日韩免费av在线播放| 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 中文资源天堂在线| 欧美黑人欧美精品刺激| 国产片内射在线| 国产亚洲精品第一综合不卡| 黄色片一级片一级黄色片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产日韩欧美精品在线观看 | 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| cao死你这个sao货| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 国产乱人伦免费视频| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 亚洲aⅴ乱码一区二区在线播放 | 一二三四在线观看免费中文在| 大型av网站在线播放| 又黄又粗又硬又大视频| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 91成年电影在线观看| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看 | 亚洲中文字幕日韩| 免费在线观看成人毛片| 午夜a级毛片| 50天的宝宝边吃奶边哭怎么回事| 99国产综合亚洲精品| 白带黄色成豆腐渣| 久久午夜亚洲精品久久| 村上凉子中文字幕在线| 正在播放国产对白刺激| 视频区欧美日本亚洲| 国产1区2区3区精品| 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 99热只有精品国产| 国产片内射在线| 国产蜜桃级精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 午夜a级毛片| 欧美日韩亚洲国产一区二区在线观看| 久久久国产欧美日韩av| 免费在线观看成人毛片| 男女午夜视频在线观看| 18禁黄网站禁片午夜丰满| 欧美av亚洲av综合av国产av| 日本一本二区三区精品| 久久人妻福利社区极品人妻图片| 在线观看66精品国产| 日本一区二区免费在线视频| 国内揄拍国产精品人妻在线 | 亚洲成人国产一区在线观看| 色播在线永久视频| 久久精品91无色码中文字幕| 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 亚洲精品美女久久久久99蜜臀| 亚洲午夜理论影院| 中亚洲国语对白在线视频| 午夜福利高清视频| 午夜久久久在线观看| 国产黄a三级三级三级人| 日本熟妇午夜| 99在线视频只有这里精品首页| 成人三级黄色视频| 国内精品久久久久精免费| 性色av乱码一区二区三区2| 亚洲三区欧美一区| 十分钟在线观看高清视频www| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 午夜福利在线观看吧| 日韩欧美国产一区二区入口| 日本在线视频免费播放| 露出奶头的视频| 又紧又爽又黄一区二区| 午夜老司机福利片| 国产av一区二区精品久久| 看黄色毛片网站| 欧美成人一区二区免费高清观看 | 欧美激情极品国产一区二区三区| 亚洲一区中文字幕在线| 日韩有码中文字幕| 久久亚洲精品不卡| 99国产精品99久久久久| 午夜福利在线观看吧| 亚洲精品在线观看二区| 正在播放国产对白刺激| 久久久久久久久久黄片| 日韩大尺度精品在线看网址| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 欧美成人性av电影在线观看| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 欧美色视频一区免费| 久久精品人妻少妇| 欧美黄色淫秽网站| 丁香欧美五月| 中文在线观看免费www的网站 | 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 国产精品亚洲av一区麻豆| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 国产伦在线观看视频一区| 一级片免费观看大全| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 老司机靠b影院| 老司机午夜十八禁免费视频| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 国内揄拍国产精品人妻在线 | 丝袜在线中文字幕| 99久久精品国产亚洲精品| 在线视频色国产色| 午夜久久久在线观看| 精品乱码久久久久久99久播| 亚洲精品av麻豆狂野| av在线天堂中文字幕| 国产精品亚洲美女久久久| 日韩av在线大香蕉| 熟女电影av网| 无人区码免费观看不卡| 无遮挡黄片免费观看| 国内久久婷婷六月综合欲色啪| 欧美黄色片欧美黄色片| 中文字幕av电影在线播放| 亚洲狠狠婷婷综合久久图片| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 久久精品91蜜桃| 热99re8久久精品国产| 精品久久久久久,| 丰满人妻熟妇乱又伦精品不卡| 国产午夜精品久久久久久| 午夜激情av网站| 成年免费大片在线观看| 99在线人妻在线中文字幕| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美98| 波多野结衣高清作品| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| 久久久水蜜桃国产精品网| 久久国产精品影院| 亚洲成国产人片在线观看| 女生性感内裤真人,穿戴方法视频| 黑人巨大精品欧美一区二区mp4| 可以免费在线观看a视频的电影网站| 欧美激情极品国产一区二区三区| 女同久久另类99精品国产91| 欧美成人免费av一区二区三区| 亚洲av电影在线进入| 国产一区二区三区视频了|